

INFORME TÉCNICO DE FISCALIZACIÓN AMBIENTAL

Fiscalización Ambiental

GUACOLDA

DFZ-2022-359-III-RCA

DICIEMBRE 2022

	Nombre	Firma
Aprobado	Felipe Sánchez Aravena	X Felipe Sánchez Aravena Jefe Oficina Regional Atacama
Elaborado	Claudia Acevedo Meins	X Claudia Acevedo Meins Fiscalizadora OR Atacama

C	ontenio	do		1
1	RES	SUME	N	2
2	IDE	NTIFI	CACIÓN DE LA UNIDAD FISCALIZABLE	5
	2.1	Ante	ecedentes Generales	5
	2.2	Ubio	cación y Layout	4
3	INS	TRUM	MENTOS DE CARÁCTER AMBIENTAL FISCALIZADOS	6
4	AN	TECED	DENTES DE LA ACTIVIDAD DE FISCALIZACIÓN	8
	4.1	Mot	tivo de la Actividad de Fiscalización	8
	4.2	Mat	teria Específica Objeto de la Fiscalización Ambiental	8
	4.3	Asp	ectos relativos a la ejecución de la Inspección Ambiental	8
	4.3	.1	Ejecución de la inspección	8
	4.3	.2	Esquema de recorrido	9
	4.3	.3	Detalle del Recorrido de la Inspección	9
	4.4	Rev	isión Documental	10
	4.4	.1	Documentos Revisados	10
5	HEC	CHOS	CONSTATADOS.	17
	5.1	Mar	nejo de aguas de refrigeración	17
	5.2 autori		ema de captación y tratamiento de agua de mar /Sistema de tratamiento de Riles, obras y nes asociadas	31
	5.3 Altera		dad de agua de columna de agua, sedimentos marinos y comunidades bentónicas / Pérdida o de hábitat acuático	56
6	COI	NCLU:	SIONES	106
7	۱۱۸۸	EVOS		116

RESUMEN 1

El presente documento da cuenta de los resultados de la actividad de fiscalización ambiental realizada por la Superintendencia de Medio Ambiente (SMA), junto a la Gobernación Marítima de Caldera, a la instalación "Guacolda". La actividad de inspección fue desarrollada durante el día 03 de mayo de 2022 (Ver anexo 1, acta de inspección ambiental).

Los proyectos que componen la unidad fiscalizable y que fueron fiscalizados durante el desarrollo de la actividad, corresponden a "Central Termoeléctrica Guacolda y Vertedero" (RCA N°4/1995), "Central Guacolda Unidad N°3" (RCA N°56/2006), "Flexibilización Unidad 3" (RCA N°175/2006), "Incremento de generación y control de emisiones del complejo generador Centra Térmica Guacolda" (RCA N°236/2007), "Ampliación de la Capacidad de Almacenamiento de Combustibles sólidos en Central térmica Guacolda" (RCA N°249/2008), "Unidad 5 Central Térmica Guacolda" (RCA N°191/2010), "Adaptación de Unidades a la Nueva Norma de Emisión Para Centrales Termoeléctricas" (RCA N°44/2014) y "Eliminación del uso de Petcoke en Central Guacolda y ajuste de la capacidad de Generación Eléctrica" (RCA N°80/2017).

El proyecto "Central Termoeléctrica Guacolda y Vertedero" (RCA N°4/1995) consiste en la instalación de una central conformada por 2 unidades (Unidades 1 y 2) de generación a vapor operadas con carbón, de 152 MW c/u por 30 años. Este proyecto incluyó: Mecanización del muelle y habilitación de un sistema de abastecimiento de carbón; un precipitador electrostático en chimenea, y un programa de monitoreo para los siguientes contaminantes SO2, NOx, PM-10 y MPS; la captación y desalinización de agua de mar y un sistema de descarga de las aguas de enfriamiento del condensador al mar; un vertedero para la disposición de las cenizas y escorias con una capacidad de 5,2 Mm3, ubicado a 5 km al suroeste de Huasco en el sector Punta Huasco Sur y un sistema de transmisión para evacuar la energía eléctrica generada en 220 kV hasta la S/E Maitencillo (LTE, S/E).

Los proyectos "Central Guacolda Unidad N°3" (RCA N°56/2006) y "Flexibilización Unidad 3" (RCA N°175/2006) aprobaron la instalación y operación de la Unidad 3 de 200 MW por 30 años, del tipo caldera de lecho fluidizado circundante (CFB) o de carbón pulverizado (PC), que opera con carbón, petcoke o sus mezclas como combustibles, incorporando un desulfurizador húmedo, que opera con caliza para abatir SO2, Instalaciones para el acopio y manejo de caliza, acondicionamiento de las instalaciones para el acopio y manejo de combustibles sólidos, instalaciones para la captación, aducción, tratamiento y descarga de agua de mar, nuevos monitoreos para las descargas al mar y el cuerpo receptor, para la línea de gases de combustión de la chimenea 3, un ciclón y precipitador electrostáticos, además se incorporó esta unidad en las medidas de los planes de manejo de emisiones y un sistema de información en línea para las autoridades y comunidad, la generación de calizas no reactivas (sólo con CFB), yeso, escorias y cenizas, las cuales serán dispuestas en el vertedero autorizado, cuya área será impermeabilizada con yeso, medidas y planes viales asociadas al transporte de insumos, una serie de medidas con la finalidad de reducir emisiones fugitivas de MP en sus propias instalaciones y en fuentes de la zona urbana de Huasco, en virtud del acuerdo firmado con el Municipio de esta ciudad.

El proyecto "Incremento de generación y control de emisiones del complejo generador Centra Térmica Guacolda" (RCA N°236/2007) incorporó la operación de la Unidad 4 de 152 MW sólo con carbón y con un sistema SCR (control NOx), y mantuvo la generación de las Unidades 1, 2 y 3 en 152 MW, debido a que esta última fue finalmente adquirida para esa potencia en lugar de 200 MW, con lo cual se tiene un incremento en la generación de 104 MW. Para controlar el incremento de emisiones se incorporó equipos adicionales para MP en la chimenea de las Unidades 1 y 2, además control en la mezcla de combustibles. Se incorporó el monitoreo atmosférico el parámetro NH3 y un monitoreo de V y Ni en receptor marítimo frente al vertedero.

El proyecto "Ampliación de la Capacidad de Almacenamiento de Combustibles sólidos en Central térmica Guacolda" (RCA N°249/2008) incorporó un nuevo sector para el almacenamiento de combustibles sólidos, con medidas específicas para el control de emisiones en el acopio y transporte.

Mediante RCA N°191/2010 se aprobó el proyecto "Unidad 5 Central Térmica Guacolda", que implicaba la instalación de una quinta unidad de 152 MW y características técnicas y de operación similares a la Unidad 4. Además de modificaciones en el sistema de tratamiento de gases de la chimenea de las Unidades 1 y 2, y del monitoreo establecido para las demás unidades en la RCA 236/2007.

La RCA N°44/2014 aprobó el proyecto "Adaptación de Unidades a la Nueva Norma de Emisión Para Centrales Termoeléctricas", cuya finalidad fue evaluar la adaptación de las unidades 1, 2 y 4 para cumplir con la Nueva Norma de Emisión para Centrales Termoeléctricas.

Finalmente el proyecto "Eliminación del uso de Petcoke en Central Guacolda y ajuste de la capacidad de Generación Eléctrica" (RCA N°80/2017) tiene por objeto aumentar la potencia total de generación eléctrica de cada unidad de la Central Guacolda y modificar la matriz de combustibles de la central eliminando el uso de petcoke.

Las materias relevantes objeto de la fiscalización incluyeron:

- Manejo de aguas de refrigeración
- Sistema de captación y tratamiento de agua de mar
- Sistema de tratamiento de Riles, obras y autorizaciones asociadas
- Calidad de agua de columna de agua, sedimentos marinos y comunidades bentónicas (Equivalente al Plan de Vigilancia Ambiental cuando corresponda)
- Pérdida /Alteración de hábitat Acuático
- Plan de contingencia

Entre los hechos constatados que representan hallazgos se encuentran:

1.- El titular da cuenta del uso de una cantidad mayor de antiincrustante a lo señalado en RCA N°44/2014 (600 kg/mes), en todos los meses del año 2021 con valores entre 640 l/mes (en febrero) a 1320 l/mes (en agosto), excepto en el mes de noviembre con 580 litros/mes.

Cabe señalar que en la evaluación ambiental (Adenda 1 de proyecto "Adaptación de Unidades a la Nueva Norma de Emisión Para Centrales Termoeléctricas") se definió una cantidad de antiincrustante a utilizar (600kg/mes) de manera de no afectar a la biota, por lo cual valores superiores a lo estipulado podrían eventualmente afectar a los organismos marinos.

2.- Respecto a concentraciones de hierro en sedimentos submareales en el año 2014 se registraron valores sobre la normativa canadiense que indicaría un efecto severo sobre la biota marina (sobre 4%), en estaciones CG-H1 (cercana a CAP) un valor de 12,1 % de hierro, en estación ST-G4 (cercana a muelle) 8,6 % de hierro y en estación ST-G6 (cercana a muelle) un 26% de hierro.

En el año 2018 se registraron valores sobre la normativa canadiense que indicaría un efecto severo sobre la biota marina (sobre 4%) en todas las estaciones muestreadas (ST-G3, ST-G4, ST-G5, ST-G6).

En el año 2019 la estación GC 5-2 supera el 4% de concentración, por lo cual está sobre el límite de efectos severos sobre la

En el año 2020 tres estaciones presentaron valores de hierro en sedimento sobre el límite de efectos severos para la biota (sobre 40.000 mg/kg o 4%), siendo estas la estación CG-G1 con 43.435 mg/kg de hierro en sedimento, estación ST-G5 con 55.237 mg/kg de hierro y estación ST-G4 con 43.592 mg/kg.

Cabe señalar que los altos valores de hierro en sedimento registrados dan cuenta de una sedimentación de partículas de carbón, lo cual podría modificar las características químicas de los sedimentos afectando el desarrollo de la biota marina asociada a los sedimentos.

3.- Respecto a concentraciones de cobre en sedimentos submareales en el año 2015 la concentración de este metal en la estación ST-G6 fue de 209 mg/kg valor que supera en 101 mg/kg el valor de la normativa canadiense, es decir, esta sobre el límite que indicaría efectos severos para biota (límite de 108 mg/kg).

En el año 2017 la estación CG-G1 (descarga), registró valores de cobre en sedimento sobre el límite PEL (116 mg/kg), es decir, sobre los efectos severos para biota (sobre 108 mg/kg).

En el año 2020 la estación CG-G1 registró 139,64 mg/kg, valor sobre el límite PEL (108 mg/kg), es decir, sobre límite de efectos severos para biota.

Finalmente en año 2021 en la estación ST-G5 se registró 166,66 mg/kg, valor sobre el límite PEL (108 mg/kg), es decir, sobre límite de efectos severos para biota.

- 4.- Respecto a concentraciones de níquel en sedimentos submareales, y de acuerdo a la línea base de medio marino de Proyecto Central Guacolda Unidad 3 y Proyecto Adaptación de Unidades a la Nueva Norma de Emisión Para Centrales Termoeléctricas (Adenda 1) en el año 2019 la estación CG-K registró un valor superior a lo registrado en la misma estación en línea base para el parámetro níquel.
- 5.- Respecto a concentraciones de plomo en sedimentos submareales en el año 2015 en la estación ST-G6 cercano a muelle el valor de plomo fue de 226 mg/kg, superando el doble del límite de efectos severos sobre la biota (límite 112 mg/kg).
- 6.- Respecto a concentraciones de vanadio en sedimentos submareales, en el año 2017 las estaciones CG-G1-M y CG-G1-R presentan valores de 238 mg/kg y 241 mg/kg lo cual supera con creces el rango habitual de vanadio en sedimento marino según Moore (1991) el cual sería entre 20 y 150 mg/kg.

En cuanto a los valores de vanadio en sedimento marino registrados en línea base de medio marino Proyecto Central Guacolda Unidad 3 para el año 2017 las estaciones CG-G1, CG-H1, CG-K y CG-L registraron valores superiores a lo registrado en la misma estación en línea base, destacando que en CG-G1 el valor fue de 241 mg/kg y superó el rango máximo habitual en sedimentos marinos según Moore (1991) el cual sería entre 20 y 150 mg/kg. Moore (1991).

Así mismo, todas las estaciones registradas en año 2018 y 2019 registraron valores superiores a lo registrado en la misma estación en línea base. En año 2020 estaciones CG-G1 y CG-K registraron valores superiores a lo registrado en la misma estación en línea base.

Para año 2021 estaciones CG-G1, CG-H1 y CG-K registraron valores superiores a lo registrado en la misma estación en línea hase

Cabe señalar que en concentraciones altas, el vanadio puede ser considerado como un contaminante tóxico, generando efectos adversos en el desarrollo de la biota marina al encontrarse en magnitudes superiores a 57 mg/kg (referente AET, Buchman 2008), lo que se observa en base a los resultados expuestos en los años 2017 a 2021, ya que sobrepasan los límites de efectos severos en estaciones cercanas al muelle y la descarga.

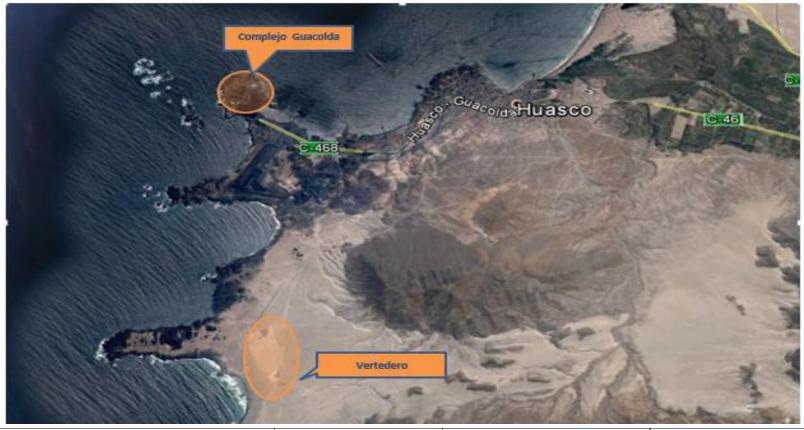
7.- Respecto a concentración de carbono orgánico total (C.O.T.) en sedimentos submareales en el año 2013 la estación ST-G6, cercana a muelle supera el límite de efecto severo sobre la biota marina (10%).

En el año 2017 las estaciones CG-F3, CG-K, ST-G5, ST-G4 y ST-G6 presentan un valor de COT sobre 10% superando así el límite de efecto severo para la biota (10%). Destaca la estación ST-G5 cercano al muelle, con un valor de 41,55%, cuatro veces superior al límite de efecto severo sobre la biota marina

En año 2018 la estación CG-G1 presenta un valor de 10,7% de COT, superando el límite de efecto severo para la biota (10%). En el año 2020 las estaciones CG-F3, CG-G1, CG-K, ST-G5, ST-GC, ST-G3, ST-G4 y ST-G6 superan el límite de efecto severo sobre la biota marina (sobre 10%).

Finalmente en el año 2021 las estaciones ST-G6, CG-F3 y CG-K superan el límite de efecto severo sobre la biota marina (sobre 10%).

Es así como los años 2013, 2017, 2018, 2020 y 2021 se evidenciaron contenidos de COT superiores al 10% los que se asocian con condiciones que afectan el desarrollo de comunidades submareales sedimentarias. Además una sobreabundancia puede causar reducciones en la riqueza de especies, abundancia y biomasa, debido al agotamiento de oxígeno y la acumulación de subproductos tóxicos como amoniaco y sulfuros (Hyland et al. 2005).


2 IDENTIFICACIÓN DE LA UNIDAD FISCALIZABLE

2.1 Antecedentes Generales

Identificación de la Unidad Fiscalizable: GUACOLDA	Estado operacional de la Unidad Fiscalizable: Operación		
Región: Atacama	Ubicación específica de la unidad fiscalizable:		
Provincia: Huasco	La Central Guacolda se ubica en la costa de la región de Atacama, en la península de Guacolda aledaña a la ciudad de Huasco, a unos 50 km al poniente de la ciudad		
Comuna: Huasco	de Vallenar, a unos 200 km al sur de la ciudad Copiapó. Administrativamente pertenece a la comu de Huasco y a la provincia de Huasco.		
Titular(es) de la unidad fiscalizable: GUACOLDA ENERGIA SPA.	RUT o RUN: 76.418.918-3		
Domicilio titular(es): Los Conquistadores 1730 of 1001 - P10, Providencia, Región Metropolitana	Correo electrónico: marco.arrospide@eguacolda.cl rene.opazo@eguacolda.cl victor.henriquez@eguacolda.cl		
	Teléfono: 44507402 - 67692963		
Identificación representante(s) legal(es): Javier Federico Dib	RUT o RUN: 24.957.431-7		
Domicilio representante(s) legal(es): Sin información	Correo electrónico: milka.kera@aes.com		
	Teléfono: Sin información		

2.2 Ubicación y Layout

Figura 1. Mapa de ubicación local (Fuente: Elaboración propia)

Coordenadas UTM de referencia: DATUM WGS 84 Huso: 19 S UTM N: 6.849.216 m. UTM E: 279.034 m

Ruta de acceso: Desde la Ruta 5 a la altura de Vallenar, tomar hacia el poniente la Ruta C-46, que une la ciudad de Vallenar con Huasco. Al llegar a la ciudad de Huasco, continuar derecho por la misma ruta en dirección al suroeste hasta atravesar la ciudad, saliendo de la ciudad la ruta costera se transforma en la Ruta C-468, la cual termina en el acceso a la Península de Guacolda, donde se emplaza el Complejo Guacolda. Al sur del complejo, se emplaza el vertedero.

Figura 2. Layout del proyecto (Fuente: antecedentes presentados por titular en carta GCG – 2022/048 del 23 de mayo de 2022 (Anexo 2). Zona de Seguridad Tsunami Estanque Amoníaco SCR Unidad Brecipitador Unidad 5 Galpón Desaladoras 3 Galpón Desaladoras Descarga Unidad Estanques Agua Desaladoras 6 y Sala de Cambio 6 y Sala de Cambio. Casino Taller Mantenimiento Contratista Portuario Patio Maniobras Unidades 182 Oficinas Apilador Radial Muelle Guacolda Galpón Desaladoras Retrofi Cancha de Carbón o Mufas Alta Tensión

Oficinas Administrativas

Garita Principal Control Acces 6 ascula Pesaje

3 INSTRUMENTOS DE CARÁCTER AMBIENTAL FISCALIZADOS

Iden	Identificación de Instrumentos de Carácter Ambiental fiscalizados.					
N°	Tipo de instrumento	N°/ Descripción	Fecha	Comisión/ Institución	Título	Comentarios
1	RCA	4	1995	COREMA	Central Termoeléctrica	Sin pertinencias
	NCA	4		Atacama	Guacolda y Vertedero	
2	RCA	56	2006	COREMA Atacama	Central Guacolda Unidad N°3	2 consultas de pertinencia: - "Entrega de Ceniza a Terceros para su Reutilización" Res. Ex. N° 29/2018. No requiere ingresar al SEIA. - "Actualización PTAS y usos alternativos del efluente en Central Guacolda". Res. Ex. 202103101257/2021. No requiere ingresar al SEIA.
3	RCA	175	2006	COREMA Atacama	Flexibilidad Unidad N°3	2 consultas de pertinencia: - "Entrega de Ceniza a Terceros para su Reutilización" Res. Ex. N° 29/2018. No requiere ingresar al SEIA. - "Actualización PTAS y usos alternativos del efluente en Central Guacolda", Res. Ex. 202103101257/2021. No requiere ingresar al SEIA.
4	RCA	236	2007	COREMA Atacama	Incremento de generación y control de emisiones del complejo generador Central Térmica Guacolda	Sin pertinencias
5	RCA	249	2008	COREMA Atacama	Ampliación de la Capacidad de Almacenamiento de Combustibles sólidos en Central térmica Guacolda	1 consulta de Pertinencia: - "Actualización PTAS y usos alternativos del efluente en Central Guacolda", Res. Ex. 202103101257/2021. No requiere ingresar al SEIA.

6	RCA	191	2010	COREMA Atacama	Unidad 5 Central Térmica Guacolda	5 consultas de pertinencia: - "Patio de Acopio de Equipos, Estructuras y Contenedores de Construcción". Res. Ex. N° 112142 / 2011. No requiere ingresar al SEIA. - Modificación al proyecto Unidad 5 Central Térmica Guacolda S.A". Carta N°. 895/2011. Debe ingresar al SEIA. - "Modificaciones Unidad 5, Central Termoeléctrica Guacolda". Res. Ex. N° 002 / 2016. No requiere ingresar al SEIA. - "Entrega de Ceniza a Terceros para su Reutilización" Res. Ex. N° 29/2018. No requiere ingresar al SEIA. "Actualización PTAS y usos alternativos del efluente en Central Guacolda", Res. Ex. 202103101257/2021. No requiere ingresar al SEIA.
7	RCA	44	2014	COREMA Atacama	Adaptación de Unidades a la Nueva Norma de Emisión Para Centrales Termoeléctricas	i agua de circulación del Compleio I
8	RCA	80	2017	COREMA Atacama	Eliminación del uso de petcoke en central Guacolda y ajuste de la capacidad de generación eléctrica	1 consulta de Pertinencia: - "Optimización del sistema de agua de circulación del Complejo Termoeléctrico Guacolda". Res Ex

4 ANTECEDENTES DE LA ACTIVIDAD DE FISCALIZACIÓN

4.1 Motivo de la Actividad de Fiscalización

Motivo Descripción						
Х	Programada	"Según Resolución SMA N°2.741 que fija Programa y Subprogramas Sectoriales de Fiscalización Ambiental de Resoluciones de Calificación Ambiental para el año 2022".				
		Denuncia				
	No programada	Autodenuncia				
		De Oficio				
		Otro				
		Detalles:				

4.2 Materia Específica Objeto de la Fiscalización Ambiental

- Manejo de aguas de refrigeración
- Sistema de captación y tratamiento de agua de mar
- Sistema de tratamiento de Riles, obras y autorizaciones asociadas
- Calidad de agua de columna de agua, sedimentos marinos y comunidades bentónicas (Equivalente al Plan de Vigilancia Ambiental cuando corresponda)
- Pérdida /Alteración de hábitat Acuático
- Plan de contingencia

4.3 Aspectos relativos a la ejecución de la Inspección Ambiental

4.3.1 Ejecución de la inspección

Existió oposición al ingreso: NO	Existió auxilio de fuerza pública: NO
Existió colaboración por parte de los fiscalizados: SI	Existió trato respetuoso y deferente: SI

Observaciones: Según acuerdo con Sr. Víctor Henríquez, se decidió no realizar el acta de inspección ambiental en terreno, esto por la situación sanitaria que actualmente se vive por la pandemia por COVID-19, por lo que se acordó que el acta de inspección ambiental será enviada posteriormente mediante correo electrónico. Por esta razón, no se firma acta por parte de participantes de la empresa.

4.3.2 Esquema de recorrido

4.3.3 Detalle del Recorrido de la Inspección

N° de estación	Nombre/ Descripción de estación			
1	CIRCUITO DE TOMA DE AGUA			
2	SALA DE CONTROL			
3	DESALINIZADORAS DE UNIDADES 1 A LA 5			
4	ESTANQUES DE ACUMULACIÓN			
5	DESCARGA DE LAS UNIDADES (INCLUYE POZOS DE SELLO Y EFLUENTE FINAL)			
6	PLANTA DE TRATAMIENTO DE AGUAS SERVIDAS			

4.4 Revisión Documental

4.4.1 Documentos Revisados

4.4.1.1. Documentos solicitados en acta de inspección ambiental

ID	Nombre del documento revisado	Origen/ Fuente	Organismo encomendado	Observaciones
1	Layout actualizado que incluya todas las obras de proyectos asociados a Unidad Fiscalizable Guacolda. El layout deberá ser entregado en formato KMZ, sistema de coordenadas UTM WGS 84.	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta
2	Plano explicativo de sistema de captación de agua de mar, con detalle de cada obra asociada y uso del agua.	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta
3	Plano con coordenadas UTM WGS 84 en formato PDF, con detalle de proceso de desalinización de agua, indicando entradas y salidas del proceso, estanques de acumulación, captación y descargas, entre otros.	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta
4	Plano con coordenadas UTM WGS 84 en formato PDF, con detalle de todas las descargas al mar y respectiva explicación del proceso.	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta
5	Diagrama explicativo de flujos de circulación principal de Unidades 1 a la 5.	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta
6	Planes de contingencias por aumento de temperaturas de agua en descarga del condensador, por variaciones térmicas entrada y salida de agua de mar, por superación de caudales de aducción máximos de agua de mar y por superación de descarga de riles.	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta
	Registro de temperatura de entrada y de descarga para cada unidad por hora durante el día de la inspección	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta

7	ambiental (03 de mayo 2022), en formato Excel			
8	Promedios mensuales de Riles (m3/h) descargados al pozo de sello para cada unidad año 2021 y 2022, en formato Excel.	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta
9	Informes de análisis de calidad de agua según NCh 1.333/87 de efluente de Planta de Tratamiento de Aguas Servidas, últimos 3 meses. Además indicar desde que año se hace uso de efluente para humectación.	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta
10	Registro de caudal de descarga de Riles (m3/h) para cada unidad por hora durante el día de la inspección ambiental (3 de mayo 2022).	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta
11	Registros promedios mensual de caudal de captación y caudal de descarga total del complejo Guacolda, año 2021 y año 2022, en formato Excel.	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta
12	Planilla de registro de promedios mensuales de temperatura de entrada y de descarga para cada unidad, año 2021 (formato Excel).	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta
13	Plan de seguimiento del medio marino según lo señalado en considerando 1.7.2 RCA N°44/2014 y Registros internos de parámetros medidos durante el año 2021	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta
14	Registro mensual de consumo de antiincrustante ID-206 y concentración durante el año 2021.	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta
15	Reporte de salmuera aforada durante el año 2021.	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta

16	Registro de promedio de riles descargados año 2021 relacionado a lo ambientalmente autorizado (m3/h), en formato Excel.	I Documento colicitado en acta de incrección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta
17	Registro de cumplimiento tabla 4 de D.S. 90 año 2021 (Formato Excel).	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta
18	Registro de volúmenes descargados por unidad desaladora año 2021.	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta
19	Certificados de disposición final de la biomasa extraída de los pozos intake (canastillos) luego de limpieza de rejas móviles, año 2021.	Documento solicitado en acta de inspección ambiental	DIRECTEMAR	Documento entregado en plazo estipulado en acta

4.4.1.2. Seguimientos Ambientales

ID	Nombre del documento revisado	Origen/ Fuente	Organismo encomendado	Observaciones
1	Informe 11 plan de vigilancia ambiental unidad 3	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/57160	DIRECTEMAR	Período reportado: Semestral Desde 01-07-2013 hasta 31-12-2013
2	Informe 11 Plan de Vigilancia Ambiental Unidad 3	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/57524	DIRECTEMAR	Período reportado: Semestral Desde 01-01-2014 Hasta 30-06-2014
3	Informe 12 Plan de Vigilancia Ambiental Unidad 3	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/57528	DIRECTEMAR	Período reportado: Semestral Desde 31-07-2014 hasta 31-12-2014
4	Informe 10 Plan de Vigilancia Ambiental	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/57587	DIRECTEMAR	Período reportado: Semestral Desde 01-07-2014 hasta 31-12-2014
5	Informe 10 Plan de Vigilancia Ambiental	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/58075	DIRECTEMAR	Período reportado: Semestral Desde 01-01-2015 hasta 30-06-2015

6	Informe 11 Plan de Vigilancia Ambiental Unidad 4	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/58076	DIRECTEMAR	Período reportado: Semestral Desde 01-01-2015 hasta 30-06-2015
7	Informe 12 Plan de Vigilancia Ambiental Unidad 4	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/58077	DIRECTEMAR	Período reportado: Semestral Desde 01-07-2015 hasta 31-12-2015
8	Informe Anual Plan de Vigilancia Ambiental Unidad 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/58083	DIRECTEMAR	Período reportado: Anual Desde 01-12-2016 hasta 31-12-2016
9	Monitoreo Junio 2017 Programa Plan Vigilancia Ambiental del Medio Marino Central Termoeléctrica Guacolda Unidades 1, 2, 3, 4, 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/60832	DIRECTEMAR	Período reportado: Semestral Desde 01-01-2017 hasta 30-06-2017
10	Monitoreo septiembre 2017 programa plan vigilancia ambiental del medio marino guacolda energía-unidades 1, 2, 3, 4, 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/64570	DIRECTEMAR	Período reportado: Trimestral Desde 01-07-2017 hasta 30-09-2017
11	PVA_Guacolda_Informe_Trimestral 08 (2019) PVE Marino Unidades 1, 2, 3, 4, y 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106424	DIRECTEMAR	Período reportado: Trimestral Desde 01-01-2019 hasta 31-03-2019
12	PVA_Guacolda_Informe_Trimestral 09 (2019) PVA Marino Unidades 1, 2, 3, 4 y 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106425	DIRECTEMAR	Período reportado: Trimestral Desde 01-04-2019 hasta 30-06-2019
13	PVA-Guacolda_Informe_Trimestral 10 (Octubre 2019) PVA Marino Unidades 1, 2, 3, 4 y 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106426	DIRECTEMAR	Período reportado: Trimestral Desde 01-07-2019 hasta 30-09-2019
14	PVA Guacolda Informe Semestral 11 (2019) PVA Marino Unidades 1, 2, 3, 4 y 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106428	DIRECTEMAR	Período reportado: Semestral Desde 01-01-2019 hasta 30-06-2019
15	PVA_Guacolda_Informe_Semestral 12 (Julio 2019) PVA Marino Unidades 1, 2, 3, 4 y 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106429	DIRECTEMAR	Período reportado: Semestral Desde 01-07-2019 hasta 31-12-2019
16	PVA-GUA-A4 (v.1, Diciembre 2019) PVA Marino Unidad 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106430	DIRECTEMAR	Período reportado: Anual Desde 01-01-2019 hasta 31-12-2019

17	PVA-GUA-T12 (v.1, Enero 2020) PVA Marino Unidades 1, 2, 3, 4 y 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106433	DIRECTEMAR	Período reportado: Trimestral Desde 01-01-2020 hasta 31-03-2020
18	PVA-GUA-ANU-05 (v.1, Diciembre 2020) PVA Anual Medio Marino Unidad 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106435	DIRECTEMAR	Período reportado: Anual Desde 01-01-2020 hasta 31-12-2020
19	PVA-GUA-TRI-15 (v.1, Noviembre 2020) PVA Medio Marino Unidades 1, 2, 3, 4 y 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106437	DIRECTEMAR	Período reportado: Trimestral Desde 01-10-2020 hasta 31-12-2020
20	PVA-GUA-SEM13 (v.1, Julio 2020) PVA Medio Marino Unidades 1, 2, 3, 4 y 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106439	DIRECTEMAR	Período reportado: Semestral Desde 01-01-2020 hasta 30-06-2020
21	PVA-GUA-T13 (v.1, Julio 2020) PVA Medio Marino Unidades 1, 2, 3, 4 y 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106440	DIRECTEMAR	Período reportado: Trimestral Desde 01-04-2020 hasta 30-06-2020
22	PVA-GUA-T14 (v.1, Septiembre 2020) PVA Medio Marino Unidades 1, 2, 3, 4 y 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106441	DIRECTEMAR	Período reportado: Trimestral Desde 01-07-2020 hasta 30-09-2020
23	PVA_Guacolda_Informe_Trimestral 11 (v.1, Diciembre 2019) PVA Medio Marino Unidades 1, 2, 3, 4 y 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106452	DIRECTEMAR	Período reportado: Trimestral Desde 01-10-2019 hasta 31-12-2019
24	PVA-GUA-T16 (v.1, Febrero 2021) PVA Marino Unidades 1, 2, 3, 4 y 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/108986	DIRECTEMAR	Período reportado: Trimestral Desde 01-01-2021 hasta 31-03-2021
25	PVA-GUA-SEM15 (v.2, marzo 2021)	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/112719	DIRECTEMAR	Período reportado: Semestral Desde 01-01-2021 hasta 23-06-2021
26	PVA-GUA-T17 (v.1, Abril 2021) PVA Marino Unidades 1, 2, 3, 4 y 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/116024	DIRECTEMAR	Período reportado: Trimestral Desde 01-04-2021 hasta 30-06-2021
27	PVA-GUA-T18 (v.2, Julio 2021) PVA Marino Unidades 1, 2, 3, 4 y 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/119057	DIRECTEMAR	Período reportado: Trimestral Desde 01-07-2021 hasta 30-09-2021

28	PVA-GUA-SEM16 (v.1, Septiembre 2021) Programa de Vigilancia Ambiental del Medio Marino. Central Termoeléctrica Guacolda Energía Unidades 1, 2, 3, 4 y 5	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/123405	DIRECTEMAR	Período reportado: Semestral Desde 01-07-2021 hasta 31-12-2021			
29	Informe 07 Plan de Vigilancia Ambiental Unidad 4	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/57530	DIRECTEMAR	Período reportado: Semestral Desde 01-01-2013 hasta 30-06-2013			
30	Informe 08 Plan de Vigilancia Ambiental Unidad 4						
31	Informe 09 Plan de Vigilancia Ambiental Unidad 4						
32	Monitoreo Septiembre 2017 Programa de Vigilancia Ambiental Muelle Guacolda I	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/62809	DIRECTEMAR	Período reportado: Trimestral Desde 01-07-2017 hasta 30-09-2017			
33	Monitoreo Septiembre 2018 Programa de Vigilancia Ambiental Muelle Guacolda I	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106415	DIRECTEMAR	Período reportado: Trimestral Desde 01-07-2018 hasta 30-09-2018			
34	Monitoreo Junio 2018 Programa Plan de Vigilancia Ambiental del Medio Marino Guacolda Energía-Unidades 1, 2, 3, 4, 5.	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106420	DIRECTEMAR	Período reportado: Semestral Desde 01-01-2018 Hasta 30-06- 2018			
35	Monitoreo Diciembre 2018 Programa Plan de Vigilancia Ambiental del Medio Marino Guacolda Energía-Unidades 1, 2, 3, 4, 5.	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106421	DIRECTEMAR	Período reportado: Semestral Desde 01-07-2018 Hasta 31-12- 2018			
36	Monitoreo Marzo 2018 Programa Plan de Vigilancia Ambiental del Medio Marino Guacolda Energía-Unidades 1, 2, 3, 4, 5.	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106423	DIRECTEMAR	Período reportado: Trimestral Desde 01-01-2018 Hasta 31-03- 2018			
37	Monitoreo Septiembre 2018 Programa Plan de Vigilancia Ambiental del Medio	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106456	DIRECTEMAR	Período reportado: Trimestral			

	Marino Guacolda Energía-Unidades 1, 2, 3, 4, 5.			Desde 01-07-2018 Hasta 30-09- 2018
38	Monitoreo anual 2018 Programa Plan de Vigilancia Ambiental del Medio Marino Guacolda Energía- Unidad 5.	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/106418	DIRECTEMAR	Período Reportado: Anual Desde 01-01-2018 Hasta 31-12- 2018
39	Programa de Vigilancia Ambiental de Medio Marino – Campaña Anual 2021.	Seguimiento Ambiental: https://snifa.sma.gob.cl/SeguimientoAmbiental/Ficha/125591	DIRECTEMAR	Período reportado: Anual Desde 01-01-2021 Hasta 31-12- 2021.

5 HECHOS CONSTATADOS.

5.1 Manejo de aguas de refrigeración

Número de hecho constatado: 1	Estación N°: 2
-------------------------------	----------------

Documentación revisada:

Antecedentes solicitados en acta de inspección ambiental:

- 1.- Layout actualizado que incluya todas las obras de proyectos asociados a Unidad Fiscalizable Guacolda. El Layout deberá ser entregado en formato KMZ, sistema de coordenadas UTM WGS 84.
- 2.- Plano explicativo de sistema de captación de agua de mar, con detalle de cada obra asociada y uso del agua.
- 3.- Diagrama explicativo de flujos de circulación principal de Unidades 1 a la 5.
- 4.- Registro de temperatura de entrada y de descarga para cada unidad por hora durante el día de la inspección ambiental (03 de mayo 2022), en formato Excel.
- 5.- Planilla de registro de promedios mensuales de temperatura de entrada y de descarga para cada unidad, año 2021 (formato Excel).

Exigencia (s):

Considerando 4.3.3 numeral f de RCA N° 56/2006

1) El condensador será enfriado por agua de circulación proveniente de la captación mediante sifón en el mar y conducción subterránea hacia el pozo de bombas centrífugas, para la circulación y descarga en el mar. El flujo de agua de circulación se ha estimado en 24.500 m³ /h y la temperatura del agua de descarga se estima que se incrementará en 10°C sobre la temperatura de entrada de agua de mar. La temperatura media del agua de mar de entrada en Guacolda varía entre 13°C a 18°C.

Considerando 1.7.6 RCA N°44/2014

Aditivos químicos Para la operación de las plantas desalinizadoras se necesitará 600 kg/mes de anti-incrustante ID-206.

Considerando 1.8.2 RCA N°44/2014

La descarga final del proyecto se reduce, reutilizando una parte del agua (105 m³/h) para los equipos de abatimiento (dado que esta es la aducción a las plantas desaladoras, pozos de sello), por lo tanto el volumen total a descargar, incluyendo el presente Proyecto, alcanzará aproximadamente 91.350,5 m³/h. Para las Plantas desaladoras, a la salida de cada una de ellas se ha considerado un medidor de caudal (individual), el que reportará la salmuera aforada de forma continua al panel del operador, tras lo cual se ha considerado un punto de toma de muestra.

Considerando 3.1 RCA N°44/2014

El proyecto dará cumplimiento a la Ley N° 18.892 artículo 136. En el PAS 73 del capítulo 6 de la DIA, se presentó la caracterización del efluente evacuado especificando las características físico-químicas de la descarga (ver Tabla AD-44 del Adenda 1), la que no superará los límites definidos en la tabla N° 4 del D.S. 90/00 dándose cumplimiento a la norma de emisión y por lo tanto al artículo 136 de la LGPA.

Considerando 4.2.1. b) RCA N°191/2010

La Unidad se compone principalmente de los siguientes equipos, sistemas e infraestructura:

(...) Descarga: el agua de enfriamiento descargará hacia el mar por medio de una cañería y canal abierto que se ubicará paralela a la descarga existente de las Unidades 1, 2, 3 y 4.

Profundidad de la descarga: 2m. Profundidad local de la descarga: 4 m.

Ancho de descarga: 10 m. Caudal de descarga: 25,4 m³/s"

Considerando 6.4 RCA N°191/2010

En términos generales se estima que no había diferencias significativas en la composición, abundancia y/o concentraciones de elementos evaluados en la columna de agua, sedimentos y comunidades entre las estaciones ubicadas en el área de influencia del proyecto y aquella ubicada en el área de control. Lo anterior, para las distintas etapas del proyecto.

Temperatura: El impacto por la alteración de la calidad física-química de la columna de agua del cuerpo receptor, generado por las aguas de enfriamiento provenientes de la Unidad 5, que serán descargadas mediante una tubería al canal abierto existente para la descarga de las Unidades 1, 2, 3 y 4. El canal de descarga de agua de enfriamiento consiste en un disipador de carga de características similares al disipador de las unidades actuales, el cual tiene como objetivo evitar la erosión de la playa. Este proyecto considera un caudal de descarga estimado en 20.255,5 m³/h, con un incremento en la temperatura del agua de descarga de 10° (sobre la temperatura de entrada de agua de mar. Por lo tanto la modelación consideró el peor escenario en que el agua de descarga alcanza los 28°C.

Para la evaluación de impacto se ha considerado como referencia lo señalado en el Anteproyecto de Norma de Calidad de Aguas Marinas a Nivel Nacional, en que se establece una diferencia de máximo 2°C para aguas Clase 1 (la más exigente).

Este diferencial se ha asumido como el área de influencia directa y por lo tanto donde se verificará el impacto de la descarga en las características físico-químicas de la columna de agua.

Respecto de la dirección predominante que toman ambas flujos descargados, cabe hacer presente que es hacia el N-NW, debido a la dirección predominante de las corrientes. En función de lo anterior, corresponde a un impacto de carácter negativo (Ca= -1). El valor ambiental de la variable "Calidad del agua" es medio, debido a que en el área de influencia la columna de agua no presenta características singulares o particulares que permitan considerarlas como únicas, y el grado de perturbación del proyecto es fuerte, debido a que, según los resultados del modelo, en el área que se verificará la pluma térmica podrían existir diferenciales de hasta 6°C en los primeros 100 metros de generada la Pluma.

Se estima que la mayor temperatura se producirá en las capas superficiales de la columna de agua la cual tendría que disminuir con la profundidad. A continuación se presenta una tabla comparativa de las isotermas con y sin proyecto. La situación "sin proyecto" corresponde al funcionamiento de las unidades 1 a 4, mientras que la "situación con proyecto" corresponde al funcionamiento simultáneo de las Unidades 1, 2, 3,4 y 5. La tabla presentada en la Adenda 2, anexo IM-1 indica las distancias paralela y perpendicular a la costa para diferencias de temperatura de 6, 5, 4, y 3 °C.

En la Adenda 3 se real izó una nueva modelación, considerando el límite más bajo de temperatura en el rango informado, es decir 13 oc. en este caso el diferencial de 2°C con respecto a la temperatura de entrada se produce a los 1190 m. y en el caso de la modelación anterior el valor se redondeó en 1.200 m.

Finalmente se podría concluir que la entrada en operación de la 5a unidad en el área se traduciría en aumentar la distancia de atenuamiento de la temperatura superficial de la columna de agua. Sin embargo, esta distancia podría ser eventualmente menor, debido principalmente a la configuración costera del área y a la turbulencia que podría generarse por los cambio de mareas".

Considerando 7.c. RCA N° 191/2010

"Unidad 5: Sistema de Agua de Circulación: El condensador será enfriado por agua de circulación proveniente de la captación mediante sifón en el mar y conducción subterránea hacia el pozo de bombas centrífugas, para la circulación y descarga en el mar. El sifón de agua de mar consistirá de una tubería de aproximadamente 80 m de largo y diámetro menor a 2 m, con su sistema de vacío, el cual descargará en un pozo de admisión donde se ubicarán las rejas fijas y móviles para el filtrado del agua de mar. El flujo de agua de circulación se ha estimado no mayor a 20.312 m³/h (Ver diagrama DP-9) y la temperatura del agua de descarga se estima que se incrementará en 10°C sobre la temperatura de entrada de agua de mar. La temperatura media del agua de mar de entrada en Guacolda varía entre 13°C a 18°C. (...) Sistema Auxiliar de Enfriamiento: Se instalará un sistema de enfriamiento en circuito cerrado. Este sistema incluye un sistema cerrado de agua desmineralizada, impulsada con bombas para abastecer a todos los sistemas que requieran enfriamiento, un intercambiador de calor para el traspaso de calor al circuito primario (agua de mar) y disminuir la temperatura del agua y un estanque de expansión. El sistema de enfriamiento primario será por medio de agua procedente del sistema de agua de circulación".

Considerando 7.c. 2. RCA N° 191/2010

Insumos: Agua de Mar: Se requiere para refrigerar el condensador de la turbina de vapor y otros usos menores. El total de agua a extraer corresponderá a $20.312 \text{ m}^3/\text{h}$ de los cuales se utilizará 18.700 para enfriamiento y el resto para otros usos. Se requerirá agua de reposición o de reemplazo de pérdidas, para el ciclo de vapor de la unidad (makeup), no mayor a $8.6 \text{ m}^3/\text{h}$.

Hecho (s):

ESTACIÓN 2: SALA DE CONTROL

Durante las actividades de inspección, se constató:

- Sector de salas de control para Unidades 1, 2, 3, 4 y 5 de la Termoeléctrica Guacolda, visitando en específico sala de control de la Unidad 4, donde el Sr. Bernardo Ossandón, Encargado de sala de control Unidad 4 señaló y explicó el circuito de agua (Fotografía N°1).
- El Sr. Ossandón indicó que el agua de mar que ingresa al pozo intake de cada unidad, luego de filtrada es bombeada mediante bombas de vacío que se encargan de elevar la columna de agua y la hacen circular por el condensador, inyectando vapor de agua a la turbina y cuando completa el ciclo llega al condensador, es decir, mediante la transferencia de calor por la circulación de agua de mar se condensa el vapor que sale de la turbina. Se absorbe la temperatura y aumenta de 13,6° a 17,3° (al momento de la inspección diferencia de 3,7°C) lo cual fue mostrado visualmente en el monitor en pantalla contrastado por el indicador límite de diferencial de 10°C o temperatura de salida que no supere 30°C.
- Al momento de la inspección el Sr. Ossandón indicó que ante un eventual aumento de la temperatura se cuenta con un sistema de alarmas y de superarse los 10°C permitidos como límite, se realiza procedimiento según Plan de contingencia por variación térmica entrada y salida de agua de mar y Plan de Contingencia por aumento de Temperatura agua descarga condensador. Así mismo señala que se realiza un informe o registro de cada evento.
- En el registro en línea del flujo de circulación se observó que la temperatura promedio actual (delta de temperatura) al momento de la inspección registraba 3.7°C (Fotografía N° 2 y Fotografía N°3).
- En cuanto al caudal de descarga total de agua de enfriamiento, al momento de la inspección se registró 14.828 m³/h aprox. (Fotografía N°3), siendo el flujo total de descarga promedio de 16.267 m³/h (Fotografía N°3). Al respecto el Sr. Ossandón indicó que el flujo total no debe superar los 19.000 m³/h para el caso de la Unidad 4 y que en resto de unidades dicho límite varía según lo evaluado y aprobado ambientalmente. El Sr. Ossandón señaló que en caso de acercarse al límite de parámetros establecidos se realiza un ajuste de la Unidad, bajando la carga.

- En monitor de potencia operativa de la Unidad un valor de 38 MW (Fotografía N°5). Esta se regula con los flujos de agua de mar de ciclo cerrado, donde se debe condensar el flujo de vapor de esta que sale de la turbina, y para realizar esto se necesita cierto flujo de agua de mar para realizar la transferencia de temperatura. Mientras más carga de carbón a los silos (que es coordinada con despacho), aumenta el flujo de vapor y se necesita más agua de mar para producir condensación, lo que se logra mediante válvulas motorizadas que controlan el flujo de agua de mar hacia el condensador, controlando la temperatura de transferencia y las variables ambientales de t° de agua de entrada y salida (diferencia de 10°C). El Sr. Ossandon indicó que si las condiciones ambientales (en verano, por ejemplo), no permiten una regulación adecuada se coordina la baja de carga de carbón con la unidad de despacho y se actúa mediante las directrices de los planes de contingencia internos.
- El Sr. Ossandón indicó que al momento de la inspección en sala de control los parámetros de emisiones de aire y agua se encontraban dentro de los parámetros exigidos por cada norma ambiental y considerandos de las RCA pertinentes.
- Respecto a emisiones atmosféricas los valores en panel de control de Unidad 4 (Fotografía N°6) indicaban para SO² un valor al momento de la inspección de 202,5 mg/Nm³ (límite según DS 13/2011 de 400 mg/Nm³), para NOx un valor de 179,6 mg/Nm³ (límite según DS 13/2011 de 500 mg/Nm³) y para MP un valor de 17,1 mg/Nm³ (límite según DS 13/2011 de 30 mg/Nm³).
- Así mismo se observó un valor de SO² de 0,93 ton/día (siendo el límite establecido en RCA de 5,42 ton/día), para NOx un valor de 0,82 ton/día (siendo el límite de RCA de 0,8 ton/día) y para MP un valor de 0,08 ton/día (siendo el límite de RCA de 0,67 ton/día). En cuanto a valores acumulados para SO², NOx y MP se registraban al momento de la inspección 1,64 ton/día, 0,8 ton/día y 0,10 ton/día respectivamente, bajo el límite (Fotografía N°6).

Examen de información:

- Antecedentes provistos por el Titular mediante Carta GCG 2022/048 del 23 de mayo de 2022 (Anexo 2).
- 1.- <u>Layout actualizado que incluya todas las obras de proyectos asociados a Unidad Fiscalizable Guacolda. El Layout deberá ser entregado en formato KMZ, sistema de coordenadas UTM WGS 84.</u>

Mediante Carta GCG – 2022/048 del 23 de mayo de 2022 (Anexo 2), el titular presentó layout en formato pdf de la unidad fiscalizable, dando cumplimiento a lo solicitado (Ver Registro N°1).

2.- Plano explicativo de sistema de captación de agua de mar, con detalle de cada obra asociada y uso del agua.

Mediante Carta GCG – 2022/048 del 23 de mayo de 2022 (Anexo 4), el titular presentó plano explicativo de sistema de captación de agua de mar en pdf, dando cumplimiento a lo solicitado (Ver Registro N°2).

3.- Diagrama explicativo de flujos de circulación principal de Unidades 1 a la 5.

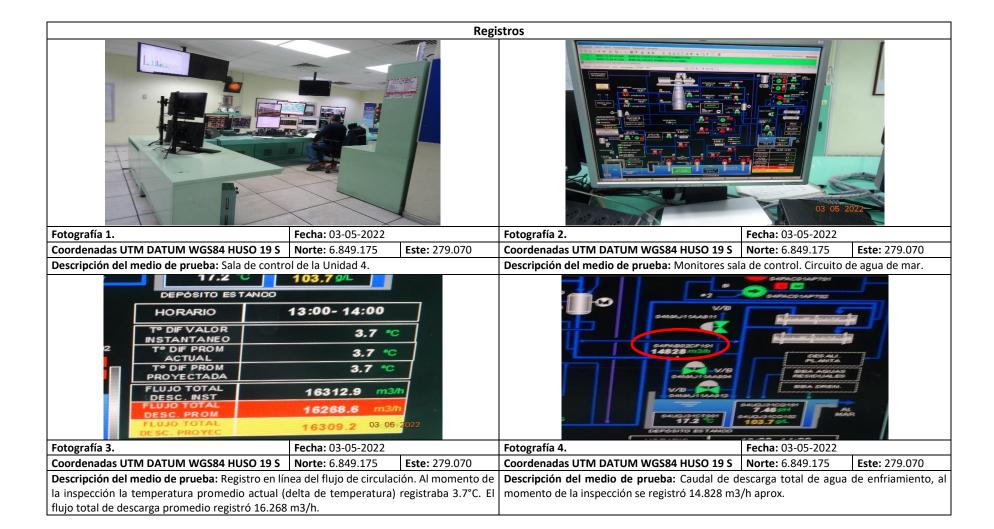
Mediante Carta GCG – 2022/048 del 23 de mayo de 2022 (Anexo 4), el titular presentó diagrama explicativo de flujos de circulación principal de Unidades 1 a la 5, dando cumplimiento a lo solicitado (Ver Registro N° 3).

4.- Registro de temperatura de entrada y de descarga para cada unidad por hora durante el día de la inspección ambiental (03 de mayo 2022), en formato Excel.

Mediante ORD. O.R.A N° 53 del 25 de mayo de 2022 (Anexo 3), la SMA solicita a DIRECTEMAR la revisión de los antecedentes presentados por el titular y que fueron solicitados mediante acta de inspección ambiental. Mediante oficio G.M. CAL Ord. N° 12.600/461 del 28 de julio de 2022 (Anexo 4) DIRECTEMAR dio respuesta y entregó reporte técnico con su análisis. En relación a la temperatura de entrada y de descarga para cada unidad por hora durante el día de la inspección ambiental, DIRECTEMAR indicó lo siguiente:

"De la información presentada por el titular, es posible indicar que de los registro de temperatura de entrada y de descarga para cada unidad por hora durante el día de la inspección ambiental (03 de mayo 2022), se observó que los mayores delta de temperatura ocurren de forma proporcional con el aumento de generación de cada Unidad, aumentando en el horario de las 18:00 horas hasta las 08:00 horas (nocturno). Esto se puede demostrar en el gráfico n°1 (Ver Registro N°4 y Registro N°5) que representa el comportamiento del diferencial de temperatura del afluente y efluente de la Unidad 5. En ningún horario traspasa el umbral del diferencial de 10°C, ni se traspasa el umbral de los 30°C en la descarga, cumpliendo la exigencia de la RCA".

5.- Planilla de registro de promedios mensuales de temperatura de entrada y de descarga para cada unidad, año 2021 (formato Excel).


Mediante ORD. O.R.A N° 53 del 25 de mayo de 2022 (Anexo 3), la SMA solicita a DIRECTEMAR la revisión de los antecedentes presentados por el titular y que fueron solicitados mediante acta de inspección ambiental. Mediante oficio G.M. CAL Ord. N° 12.600/461 del 28 de julio de 2022 (Anexo 4) DIRECTEMAR dio respuesta y entregó reporte técnico con su análisis. En relación a la temperatura de entrada y de descarga para cada unidad, DIRECTEMAR indicó lo siguiente:

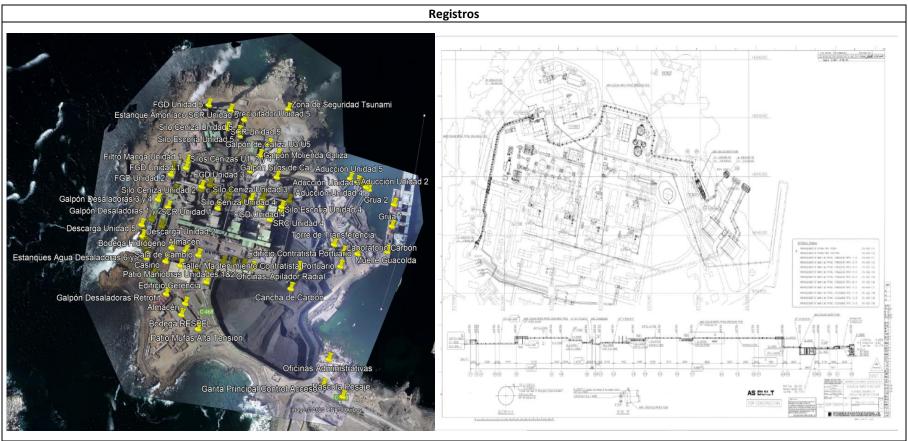
"Revisando el comportamiento de la temperatura del afluente y efluente del año 2021, se observó que los mayores deltas de temperatura ocurren en los meses de invierno, comportándose de manera similar todas las Unidades, con excepción de la Unidad 3 que presenta variaciones cercanas al límite en los meses de otoño y de invierno (ver gráfico n° 2) (Ver Registro N° 6 y Registro N° 7). Sin embargo, en ningún mes, la temperatura promedio traspasa el umbral del diferencial de 10° C, ni se traspasa el umbral de los 30° C en la descarga, cumpliendo la exigencia de la RCA".

En conclusión DIRECTEMAR señaló lo siguiente:

"En relación a las exigencias asociadas a la RCA N°56/2006, sobre Sistema de Agua de Circulación, la temperatura promedio del año 2021 de todas las unidades generadoras de la central termoeléctrica Guacolda no traspasa el umbral del diferencial de 10°C, ni traspasa el umbral de los 30°C en la descarga, cumpliendo la exigencia de la RCA en comento".

INERCO @	GUACOLDA		DESCRIPCE + EX	-98 22 14 (95) 44 mm de a				555.84
								C
Component	e	DS13		_		RCA		A STATE OF THE PARTY OF THE PAR
CO		lor	Limite		Valor	Acun		
NOx	mg/Nm³@O:ref	0,0		ton/dia	0.00	0.04	. Proy. 0.04	Limite
MP	mg/Nm³@O₂ref	179,6	500,00	ton/dia	0.82	0,37	0.04	-
	mg/Nm³@O.ref	17,1	30,00	ton/dia	0.08	0.06	0.10	0,8
SO:	mg/Nm³@Osref	202,5	400,0	ton/dia	0.93	1.18	1.64	5.42
	onente		alor	Con	ponente		Va	
	0,	%	13,1	Humedad Caudal			% 63	
	O ₂	%	6,8				Nm2/h	365516
	eratura	°C	85,7	Po	tencia		MW	39.3
	sión	mbar	1010	Com	bustible	C	rbón subi	oituminoso
Consumo	de carbón	ton/h	22,44	Consum	o de diése	1	m7h	0,12
Alarmas								
03-05-2022 12:4			Grupo 4		MOUNT	l) on verificación		Validar fodes
03 05-2022 12-0 03-05-2022 12-4			Grupo 4 Grupo 4		MMEDIC	o un verificació (O) en manteni	00 0070	8
			Cinipo 4 Grupo 4	-	Limito de errier Limito de errier	ón proventada o	NOT SUDMOVE	
BS-05-2022 12:2					Total or distance	ori proyectada e Se circunstaria d	NULL Supposed or	

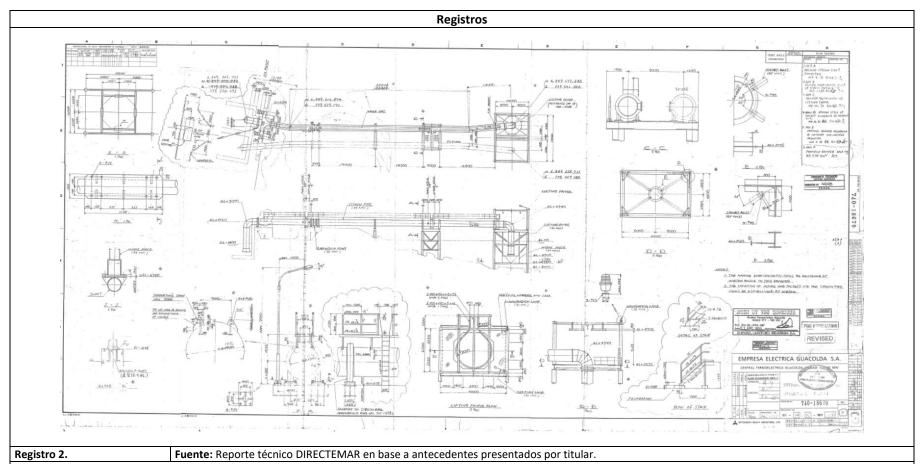
Fotografía 5. Fecha: 03-05-2022 Coordenadas UTM DATUM WGS84 HUSO 19 S | Norte: 6.849.175 Este: 279.070


Fotografía 6.

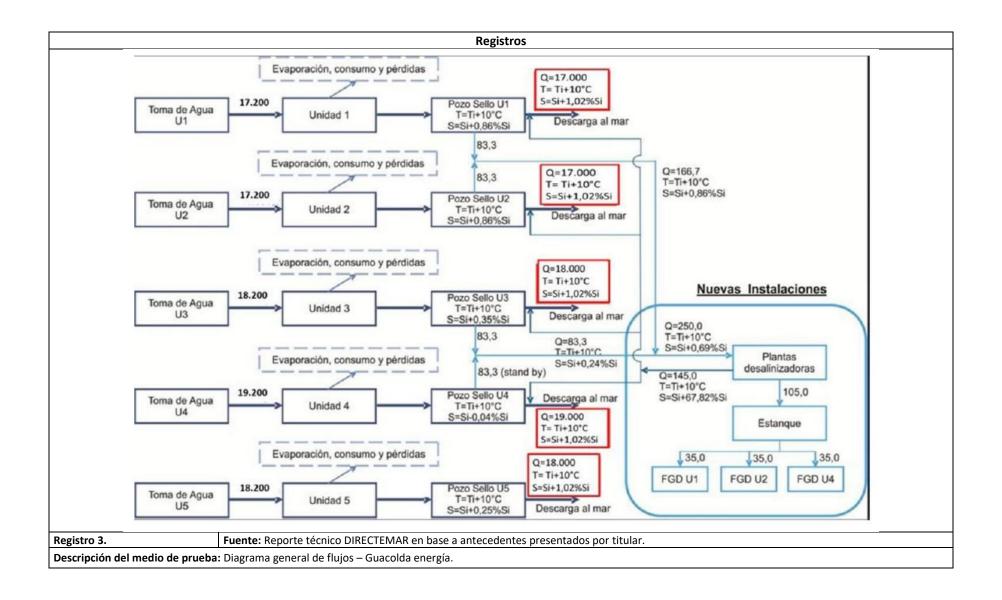
Fecha: 03-05-2022 Coordenadas UTM DATUM WGS84 HUSO 19 S Norte: 6.849.175 Este: 279.070

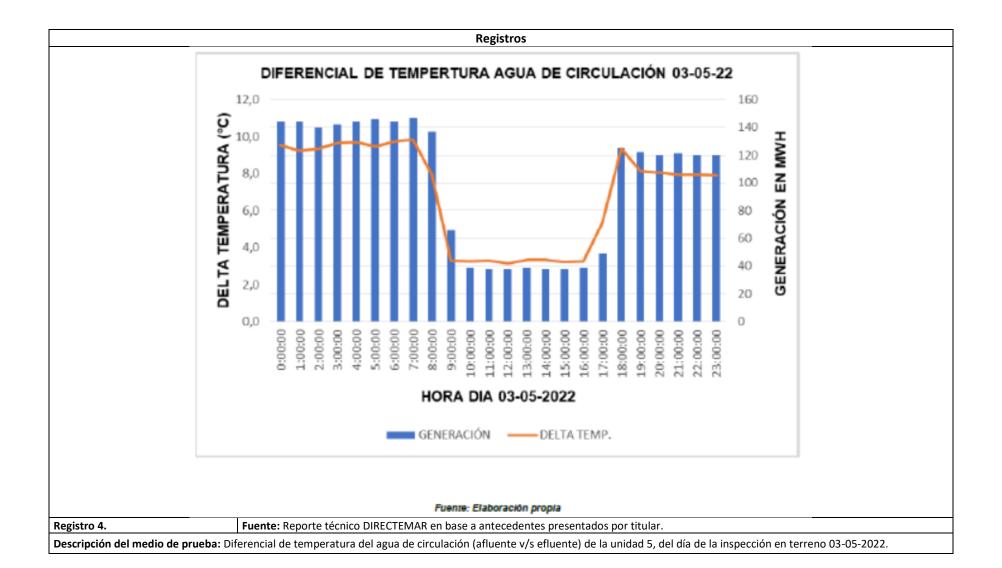
Descripción del medio de prueba: Monitores sala de control. Control maestro de operaciones. Monitor de potencia operativa de la Unidad registra al momento de la inspección un valor de 38 MW.

Descripción del medio de prueba: Monitores sala de control. Parámetros ambientales de Unidad 4 indicaban para SO2 un valor al momento de la inspección de 202,5 mg/Nm3 (límite según DS 13/2011 de 400 mg/Nm3), para NOx un valor de 179,6 mg/Nm3 (límite según DS 13/2011 de 500 mg/Nm3) y para MP un valor de 17,1 mg/Nm3 (límite según DS 13/2011 de 30 mg/Nm3). Así mismo se observó un valor de SO2 de 0,93 ton/día (siendo el límite establecido en RCA de 5,42 ton/día), para NOx un valor de 0,82 ton/día (siendo el límite de RCA de 0,8 ton/día) y para MP un valor de 0,08 ton/día (siendo el límite de RCA de 0,67 ton/día). En cuanto a valores acumulados para SO2, NOx y MP se registraban al momento de la inspección 1,64 ton/día, 0,8 ton/día y 0,10 ton/día respectivamente, bajo el límite.



Registro 1. Fuente: Reporte técnico DIRECTEMAR en base a antecedentes presentados por titular.


Descripción del medio de prueba: Plano general del Proyecto.



Descripción del medio de prueba: Plano estructural Sifón Unidad 1 y Unidad 2.

Registros										
FECHA Y HORA	TEMP. DE AGUA DE ENFR. DE ENTRADA (°C)	TEMP. POZO DE SELLO (°C)	GENERACIÓN MWH	DELTA TEMPERATURA (°C)						
03-05-2022 0:00	14,1	23,6	144	9,6						
03-05-2022 1:00	14,1	23,3	144	9,3						
03-05-2022 2:00	14,1	23,4	140	9,4						
03-05-2022 3:00	14,1	23,7	142	9,7						
03-05-2022 4:00	14,0	23,7	144	9,7						
03-05-2022 5:00	14,0	23,4	146	9,5						
03-05-2022 6:00	14,0	23,7	144	9,8						
03-05-2022 7:00	14,0	23,8	147	9,9						
03-05-2022 8:00	14,1	22,0	137	8,0						
03-05-2022 9:00	14,0	17,3	66	3,3						
03-05-2022 10:00	14,1	17,3	39	3,3						
03-05-2022 11:00	13,9	17,2	38	3,3						
03-05-2022 12:00	14,1	17,2	38	3,2						
03-05-2022 13:00	14,1	17,4	39	3,4						
03-05-2022 14:00	14,0	17,3	38	3,4						
03-05-2022 15:00	14,1	17,3	38	3,2						
03-05-2022 16:00	14,1	17,3	39	3,3						
03-05-2022 17:00	14,1	19,4	49	5,4						
03-05-2022 18:00	14,1	23,4	125	9,4						
03-05-2022 19:00	14,0	22,1	122	8,2						
03-05-2022 20:00	13,9	21,9	120	8,1						
03-05-2022 21:00	13,9	21,8	121	8,0						

Registro 5. Fuente: Reporte técnico DIRECTEMAR en base a antecedentes presentados por titular.

13,8

13,8

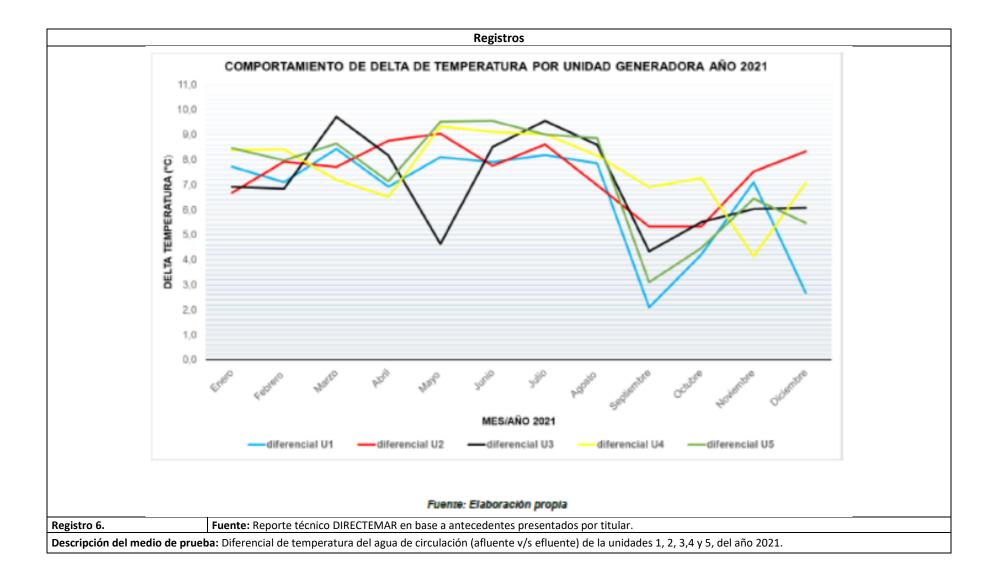
03-05-2022 22:00

03-05-2022 23:00

Descripción del medio de prueba: Diferencial de temperatura del agua de circulación (afluente v/s efluente) de la unidad 5, del día de la inspección en terreno 03-05-2022.

21,7

21,7


120

120

8,0

7,9

Registros

		Unio	dad 1		Uni	dad 2		Unidad 3			Unidad 4			Unidad 5		
Año	Mes	T° Entrada (deg C)	T° Descarga (deg C)	Diferencial												
	Enero	14,5	22,2	7,7	15,3	22,0	6,7	13,7	20,7	6,9	14,4	22,8	8,4	15,0	23,5	8,5
	Febrero	14,6	21,7	7,1	14,6	22,5	7,9	14,5	21,4	6,8	14,8	23,2	8,4	15,3	23,2	8,0
	Marzo	14,8	23,3	8,4	15,6	23,3	7,7	14,1	23,8	9,7	14,7	21,9	7,2	15,4	24,0	8,7
	Abril	14,7	21,6	6,9	14,5	23,3	8,8	14,4	22,5	8,2	15,1	21,6	6,5	14,6	21,8	7,1
	Mayo	14,5	22,6	8,1	14,2	23,3	9,1	15,1	19,7	4,6	14,2	23,5	9,3	14,6	24,2	9,5
2024	Junio	13,8	21,7	7,9	13,9	21,7	7,8	13,8	22,3	8,5	13,7	22,8	9,1	14,1	23,7	9,6
2021	Julio	13,5	21,7	8,2	13,9	22,5	8,6	12,4	21,9	9,6	13,4	22,4	9,0	14,1	23,1	9,0
	Agosto	13,5	21,3	7,9	13,8	20,8	7,0	13,3	21,9	8,6	13,4	21,6	8,2	14,0	22,9	8,9
	Septiembre	13,5	15,5	2,1	12,8	18,1	5,3	13,6	18,0	4,3	12,8	19,7	6,9	13,6	16,7	3,1
	Octubre	12,7	17,0	4,2	12,9	18,3	5,3	13,0	18,5	5,5	13,1	20,3	7,3	14,2	18,6	4,5
	Noviembre	13,6	20,7	7,1	13,5	21,0	7,5	13,3	19,3	6,0	14,4	18,5	4,1	14,2	20,6	6,5
	Diciembre	16,1	18,8	2,7	13,5	21,9	8,3	13,3	19,4	6,1	13,5	20,6	7,1	14,1	19,6	5,5
	Enero	15,2	20,7	5,5	15,0	19,9	4,9	14,9	20,5	5,6	14,8	21,3	6,5	15,4	21,5	6,1
2022	Febrero	15,0	21,1	6,1	14,7	22,2	7,5	14,8	21,9	7,1	14,8	21,7	6,9	15,4	22,0	6,6
2022	Marzo	15,1	22,5	7,4	14,9	22,6	7,7	15,1	22,6	7,5	14,8	22,3	7,4	15,4	22,5	7,1
	Abril	14,0	20,7	6,7	13,9	22,2	8,3	13,9	20,2	6,2	14,0	19,9	5,9	14,3	21,6	7,3

Registro 7. Fuente: Reporte técnico DIRECTEMAR en base a antecedentes presentados por titular.

Descripción del medio de prueba: Diferencial de temperatura del agua de circulación (afluente v/s efluente) de las unidades 1, 2, 3,4 y 5, del año 2021 y principios de 2022.

5.2 Sistema de captación y tratamiento de agua de mar /Sistema de tratamiento de Riles, obras y autorizaciones asociadas

Número de hecho constatado: 2 Estación N°: 1, 3, 4, 5 y 6

Documentación revisada:

Antecedentes solicitados en acta de inspección ambiental:

- 1.- Plano con coordenadas UTM WGS 84 en formato PDF, con detalle de proceso de desalinización de agua, indicando entradas y salidas del proceso, estanques de acumulación, captación y descargas, entre otros.
- 2.- Plano con coordenadas UTM WGS 84 en formato PDF, con detalle de todas las descargas al mar y respectiva explicación del proceso.
- 3.- Promedios mensuales de Riles (m3/h) descargados al pozo de sello para cada unidad año 2021 y 2022, en formato Excel.
- 4.- Informes de análisis de calidad de agua según NCh 1.333/87 de efluente de Planta de Tratamiento de Aguas Servidas, últimos 3 meses. Además indicar desde que año se hace uso de efluente para humectación.
- 5.- Registro de caudal de descarga de Riles (m3/h) para cada unidad por hora durante el día de la inspección ambiental (3 de mayo 2022).
- 6.- Registros promedios mensual de caudal de captación y caudal de descarga total del complejo Guacolda, año 2021 y año 2022, en formato Excel.
- 7.- Registro mensual de consumo de anti incrustante ID-206 y concentración durante el año 2021.
- 8.- Reporte de salmuera aforada durante el año 2021.
- 9.- Registro de promedio de riles descargados año 2021 relacionado a lo ambientalmente autorizado (m3/h), en formato Excel.
- 10.- Registro de cumplimiento tabla 4 de D.S. 90 año 2021 (Formato Excel).
- 11.- Registro de volúmenes descargados por unidad desaladora año 2021.
- 12.- Certificados de disposición final de la biomasa extraída de los pozos intake (canastillos) luego de limpieza de rejas móviles, año 2021.

Exigencia (s):

Considerando 1.8.2, RCA 44/2014.

La descarga final del proyecto se reduce, reutilizando una parte del agua (105 m3/h) para los equipos de abatimiento (dado que esta es la aducción a las plantas desaladoras, pozos de sello), por lo tanto el volumen total a descargar, incluyendo el presente Proyecto, alcanzará aproximadamente 91.350,5 m3/h (ver figura 4). Para las Plantas desaladoras, a la salida de cada una de ellas se ha considerado un medidor de caudal (individual), el que reportará la salmuera aforada de forma continua al panel del operador, tras lo cual se ha considerado un punto de toma de muestra.

Considerando 3.1, RCA 44/2014.

El proyecto dará cumplimiento a la Ley N° 18.892 artículo 136. En el PAS 73 del capítulo 6 de la DIA, se presentó la caracterización del efluente evacuado especificando las características físico-químicas de la descarga, la que no superará los límites definidos en la tabla N° 4 del D.S. 90/00 dándose cumplimiento a la norma de emisión y por lo tanto al artículo 136 de la LGPA.

Considerando 1.7.6 RCA 44/2014.

Aditivos químicos Para la operación de las plantas desalinizadoras se necesitará 600 kg/mes de anti-incrustante ID-206.

Considerando 4.0 Pertinencia Res. Ex. N° 202103101207/2021.

La reducción del caudal total de captación y de descarga del Complejo. Dada a factibilidad de generar la energía autorizada con un menor consumo de agua, se propone la alternativa de reducir el caudal de captación total del Complejo de 92.878 m3/h aprobado por la RCA N° 44/2014, a 90.000 m3/h y, consecuentemente, el caudal de descarga de 91.348 m3/h también aprobado en la RCA N°44/2014, a 89.000 m3/h.

Hecho (s):

ESTACIÓN 1: CIRCUITO DE TOMA DE AGUA

Durante las actividades de inspección, se constató:

- Sector de toma de agua o aducción de agua de mar para Unidades 1, 2, 3, 4 y 5 de la Termoeléctrica Guacolda (Fotografía N°7).
- El Sr. Víctor Henríquez, especialista en Medio Ambiente señaló que el sector de aducción de agua de mar, también denominado "sector intake" cuenta con un circuito de vasos comunicantes alimentado de 5 tomas de agua en orden de oriente a poniente 4-3-1-2-y 5. Cada una de ellas recoge el agua de mar en 5 pozos intake (Fotografía N°8) que cuentan con un sistema de rejas fijas de mayor a menor diámetro de apertura (Fotografía N°9), que impide el paso de organismos marinos y partículas de diversos tamaños siendo las menores partículas retenidas por un filtro rotatorio de malla fina. Mediante un sistema de reja móvil de arrastre ("rasca") (Fotografía N° 10) desprenden y extraen fouling (organismos marinos) adherido en las paredes de cada pozo intake y acumulan en canastillos metálicos para su disposición final (Fotografía N°11).
- Al momento de la inspección un canastillo metálico con restos de picorocos, y caracoles diversos de la Unidad 1 (Fotografía N°12).
- Al momento de la inspección una cañería con descarga de agua hacia el mar bajo sistema de aducción de Unidad 1 (Fotografía N°13), que de acuerdo con lo señalado por el Sr. Henríquez corresponde a agua de pozos intake que son descargadas luego del paso por reja móvil de arrastre, señalando que la misma descarga ocurre en los 5 pozos intake y que el agua descargada corresponde a agua de mar sin tratamiento o químicos.
- Así mismo el Sr. Henríquez indicó que de cada pozo intake se impulsa el agua de mar a destino mediante un sistema de 5 bombas de vacío (Fotografía N°14). El circuito de aducción es continuo las 24 horas del día, indicando que si alguna Unidad se detiene, el circuito de aducción sigue funcionando por un par de días. Respecto a la mantención del circuito el Sr. Henríquez señaló que es anual.
- Al momento de la inspección el circuito de aducción de agua de mar de la Unidad 1 se encontraba detenido (en mantención según lo indicado por el titular). El
 Sr. Henríquez indicó que parte del circuito alimenta a desalinizadoras y que existe un monitoreo continuo por parte de ETFA (Entidad Técnica de Fiscalización Ambiental) controlando diversas variables, como pH y temperatura.

ESTACIÓN 3: DESALINIZADORAS DE UNIDADES 1 A LA 5

Durante las actividades de inspección, se constató:

- Sector de desalinizadoras de Unidades 1, 2, 3, 4 y 5 de la termoeléctrica Guacolda (Fotografía N°15), donde el Sr. Jorge Villalobos, encargado de desalinizadoras señaló que el complejo Guacolda cuenta con 11 desalinizadoras, que las desalinizadoras 1 y 2 abastecen de agua a las Unidades 1 y 2, las desalinizadoras 3 y 4 abastecen a la Unidad 3, la desalinizadora 5 abastece a la Unidad 4 y las desalinizadoras 6 y 7 abastecen a la Unidad 5. Las desalinizadoras 8, 9, 10 y 11 (3 operando y 1 en detención) abastecen el sistema retrofit para la adaptación a la nueva norma de emisión pertinente a la RCA 44/20214.
- El Sr. Villalobos indicó que las desalinizadoras producen agua desalada pretratada (que se usa internamente para aguas de la red de incendios, de bombeo, para el proceso de retrofit, y otros usos) y agua desmineralizada denominada "makeup" que ingresa a las Calderas de cada Unidad. El agua de mar se evapora a altas

temperaturas y el vapor generado se captura y comprime mecánicamente produciendo agua destilada que se conduce a estanques de acumulación diferenciados, y salmuera que se conduce por tuberías de color amarillo hacia la descarga o efluente general. El agua desalinizada es tratada mediante el paso de columnas de resinas de lecho catiónico, aniónico y mixto que purifican el agua (en este punto se mide la conductividad eléctrica).

- Al momento de la inspección se verificó este parámetro en el tablero de control de la desalinizadora 1 y 2. Es así que se observó panel de control de compresor de desaladora Unidad 1 registrándose al momento de la inspección una conductividad eléctrica de 0,631 us/cm y 26,9 m³ de caudal de agua producto (Fotografía N°16); mientras que en panel de control de compresor de Desaladora Unidad 2 se observó una conductividad eléctrica de 4.834 us/cm y 5.4 m³ de caudal de agua producto (Fotografía N°17).
- Al interior de galpones techados se ubican compresores de respectivas desaladoras, indicando el Sr. Villalobos que las plantas desalinizadoras del Complejo Guacolda trabajan por compresión mecánica de presión sin osmosis inversa (Fotografía N°15).

ESTACIÓN 4: ESTANQUES DE ACUMULACIÓN

Durante las actividades de inspección, se constató:

- Sector de estanques de acumulación de Unidades 1, 2, 3, 4 y 5 de la termoeléctrica Guacolda.
- El Sr. Jorge Villalobos, encargado de desalinizadoras explicó el acopio de agua desalinizada en los estanques de acumulación. Señaló que el agua se acumula en 7 estanques diferenciados y 1 estanque de 2.400 m3 para proceso de retrofit.
- De los estanques diferenciados son 3 de 1.000 m3, uno de 250 m3 para agua de uso general, y 3 de 750 m3 de agua "makeup" que ingresa a Calderas (Fotografía N°18 y Fotografía N°19).
- En terreno los estanques de acumulación están debidamente rotulados, al igual que su respectiva bomba de succión. Respecto al estanque de uso general, el Sr. Villalobos indicó que dicho estanque solo se encuentra en proceso de desalinización de Unidad 1 y 2, y que en siguientes desalinizadoras más nuevas no se consideró estanque adicional de 250 m3.

ESTACIÓN 5: DESCARGA DE LAS UNIDADES (INCLUYE POZOS DE SELLO Y EFLUENTE FINAL)

Durante las actividades de inspección, se constató:

- Sector de descarga de las unidades y efluente final de agua de mar para Unidades 1, 2, 3, 4 y 5 de la Termoeléctrica Guacolda.
- Respecto a la descarga el Sr. Víctor Henríquez especialista en Medio Ambiente señaló que cada unidad descarga el agua de mar a estanques de hormigón denominados pozo de sello (Fotografía N°20, Fotografía N°21), los cuales por rebalse derivan a un pozo de recepción que conduce el agua al canalón general (Fotografía N°22).
- Cada unidad conduce mediante tuberías diferenciadas por colores el agua de riles, salmuera, y de neutralización hacia cada pozo de sello (Fotografía N°23). De igual manera el Sr. Henríquez indicó que en el pozo de sello de cada unidad se instalan los medidores de parámetros del Decreto Supremo 90/00 (Fotografía N°24).
- Al momento de la inspección se observó que la descarga de cada unidad se encuentra separada por muro de hormigón, que según lo indicado por el Sr. Henríquez evita que efluentes se mezclen al momento de la descarga. El Sr. Henríquez indicó además que se ha implementado una redistribución de flujo de descarga, lo cual ha sido presentado mediante carta de pertinencia.

ESTACIÓN 6: PLANTA DE TRATAMIENTO DE AGUAS SERVIDAS

Durante las actividades de inspección, se constató:

• Sector de planta de tratamiento de aguas servidas de la Termoeléctrica Guacolda, el cual se encuentra ubicado cercano al mar (Fotografía N°25). En el lugar el Sr. Claudio Cabrera Alarcón, Encargado de control químico y operación de la planta de tratamiento señaló que la canalización de aguas servidas llega mediante una tubería subterránea a dos cámaras de acumulación donde se separan sólidos de líquidos mediante proceso mecánico de rejillas. La sección líquida se eleva mediante bombas sumergibles y es sometida a procesos de sedimentación y digestión bacteriana que mediante inyección de oxígeno permite la oxidación bacteriana para descomponer materia orgánica. Mediante acumulación en cámaras el agua es sometida a procesos de cloración y decloración. El Sr. Cabrera indicó que el lodo resultante se extrae con camión externo de Aguas Chañar pero que en último período no se han generado grandes cantidades de lodo por la situación sanitaria y la consecuente baja de personal. El Sr. Cabrera indicó que el agua obtenida se monitorea según normativa NCh 1333 y se acumula en dos estanques de 25 m3 a los cuales se conectan camiones aljibes para uso interno de humectación de caminos, regadío de plantas y otros. Al momento de la inspección se observó camión cargando agua desde estos estanques. El Sr. Cabrera indicó que no se realiza descarga de agua tratada al mar, siendo solo utilizada para humectación de caminos, regadío de plantas y otros usos en proceso de Complejo Guacolda.

Examen de información:

- Antecedentes provistos por el Titular mediante Carta GCG 2022/048 del 23 de mayo de 2022 (Anexo 2).
- 1.- Plano con coordenadas UTM WGS 84 en formato PDF, con detalle de proceso de desalinización de agua, indicando entradas y salidas del proceso, estanques de acumulación, captación y descargas, entre otros.

Mediante Carta GCG – 2022/048 del 23 de mayo de 2022 (Anexo 4), el titular presentó plano en formato pdf con el detalle de proceso de desalinización, dando cumplimiento a lo solicitado (Ver Registro N°8 y Registro N°9).

2.- Plano con coordenadas UTM WGS 84 en formato PDF, con detalle de todas las descargas al mar y respectiva explicación del proceso.

Mediante Carta GCG – 2022/048 del 23 de mayo de 2022 (Anexo 4), el titular presentó plano en formato pdf con el detalle explicativo de descargas al mar, dando cumplimiento a lo solicitado (Ver Registro N°10).

3.- Promedios mensuales de Riles (m3/h) descargados al pozo de sello para cada unidad año 2021 y 2022, en formato Excel; Registro de caudal de descarga de Riles (m3/h) para cada unidad por hora durante el día de la inspección ambiental (3 de mayo 2022); Registros promedios mensual de caudal de captación y caudal de descarga total del complejo Guacolda, año 2021 y año 2022, en formato Excel; Reporte de salmuera aforada durante el año 2021; Registro de promedio de riles descargados año 2021 relacionado a lo ambientalmente autorizado (m3/h), en formato Excel; Registro de volúmenes descargados por unidad desaladora año 2021.

Mediante ORD. O.R.A N°53 del 25 de mayo de 2022 (Anexo 3), la SMA solicita a DIRECTEMAR la revisión de los antecedentes presentados por el titular y que fueron solicitados mediante acta de inspección ambiental. Mediante oficio G.M. CAL Ord. N° 12.600/461 del 28 de julio de 2022 (Anexo 4) DIRECTEMAR dio respuesta y entregó reporte técnico con su análisis. En relación a registros de captación y descarga, DIRECTEMAR indicó lo siguiente:

"De la información presentada por el titular, es posible indicar que de los registros analizados respecto del Sistema de captación y tratamiento de agua de mar, y sistema de tratamiento de riles, el volumen total descargado durante el año 2021, alcanzó aproximadamente 67.190,1 m3/h promedio, según lo que se presenta en tabla 3 y gráfico 3 (por debajo de lo comprometido de 91.350,5 m3/h) (Ver Registro N°11 y Registro N°12). Para las Plantas desaladoras, se reportó la salmuera aforada en un 67%, y el producto de agua desalada en un 33%, según lo que se presenta en tabla 5 y gráfico 5. Se da cumplimiento a RCA 44/2014. Considerando 1.8.2/página 12, y a la pertinencia 202103101207/2021. Considerando 4.0/página 4 que propone la alternativa de reducir el caudal de descarga a 89.000 m3/h" (Ver Registro N°13 y Registro N°14).

4.- Informes de análisis de calidad de agua según NCh 1.333/87 de efluente de Planta de Tratamiento de Aguas Servidas, últimos 3 meses. Además indicar desde que año se hace uso de efluente para humectación

Mediante Carta GCG – 2022/048 del 23 de mayo de 2022 (Anexo 4), el titular presentó Informes de análisis de calidad de agua según NCh 1.333/87 de efluente de Planta de Tratamiento de Aguas Servidas, dando cumplimiento a lo solicitado (Ver Registro N°15).

Además respecto a solicitud de indicar desde que año se hace uso de efluente para humectación el titular indicó que: "Desde el año 2020 se hace uso de efluente para humectación".

5.- Registro mensual de consumo de antiincrustante ID-206 y concentración durante el año 2021;

Mediante ORD. O.R.A N°53 del 25 de mayo de 2022 (Anexo 3), la SMA solicita a DIRECTEMAR la revisión de los antecedentes presentados por el titular y que fueron solicitados mediante acta de inspección ambiental. Mediante oficio G.M. CAL Ord. N° 12.600/461 del 28 de julio de 2022 (Anexo 4) DIRECTEMAR dio respuesta y entregó reporte técnico con su análisis. En relación a registro mensual de consumo de antiincrustante ID-206 y concentración al año 2021, DIRECTEMAR indicó lo siguiente:

"En relación al requerimiento de las exigencias asociadas a uso de aditivos químicos para la operación de las plantas desalinizadoras establecidos en la RCA N 44/2014, que indica que se necesitará 600 kg/mes de anti-incrustante ID-206 (7.200 kilos/año), los documentos presentados por el titular muestran el consumo promedio de 1.018 litros/mes (consumo 12.210 litros año), con concentraciones de inyección que varía por desalinizadora entre 6 a 10 ppm (ver tabla 4 y gráfico 4) (Ver Registro N°16 y Registro N°17), dando cumplimiento solo en los meses de febrero y noviembre de 2021 (en cuanto a kilos de consumo). Cabe mencionar que el titular, en Adenda 2 presentó el estudio "Evaluación de la toxicidad aguda del aditivo antiincrustante ID-206" realizado por la Universidad de Valparaíso (Anexo AD2-1, en el cual se determina la toxicidad aguda del producto. Este estudio considera la determinación de la concentración letal al 50% o LC50 a través de la realización de bioensayos en el microcrustáceo Daphnia pulex (en el caso de agua dulce) y en el copépodo intermareal Harpacticus littoralis (en el caso de agua de mar), siguiendo lo establecido por la Nch. 2083 Of. 1999, norma vigente para evaluar la toxicidad aguda de productos químicos, en donde la concentración letal al 50% o LC50 se define como la concentración del producto a la cual el 50% de los organismos utilizados en los ensayos sobrevive en un tiempo determinado (24 o 48 horas). Las principales conclusiones del estudio presentado fueron que para D. pulex el LC50-48 h fue de 1.602,09 mg/l, mientras que para H. littoralis fue de 1.299,78 mg/l.

El titular indicó que "estos resultados son coherentes con el uso de este producto en el presente proyecto, dado que la concentración del ID-206 en el efluente de salida del pozo de sello del Complejo será menor a 12 mg/l, concentración que se encuentra muy por debajo del rango del LC50 – 48 h hallado usando ambas especies (1.299,78 – 1.602,09 mg/l) y al rango LC50 – 96 h (436,87 – 989,16 mg/l). De lo anterior el titular concluye que el uso del producto, no afectará la biota marina circundante al sector de descarga, y que complementariamente se verificará a través de un seguimiento lo anteriormente señalado, por cuanto el titular contará con

un Plan de seguimiento ambiental del medio marino, que permite monitorear la evolución en el tiempo de indicadores ecológicos de comunidades bentónicas y planctónicas.

6.- Registro de cumplimiento tabla 4 de D.S. 90 año 2021 (Formato Excel);

Mediante ORD. O.R.A N°53 del 25 de mayo de 2022 (Anexo 3), la SMA solicita a DIRECTEMAR la revisión de los antecedentes presentados por el titular y que fueron solicitados mediante acta de inspección ambiental. Mediante oficio G.M. CAL Ord. N° 12.600/461 del 28 de julio de 2022 (Anexo 4) DIRECTEMAR dió respuesta y entregó reporte técnico con su análisis. En relación a registro de cumplimiento tabla 4 de D.S. 90 año 2021, DIRECTEMAR indicó lo siguiente:

"De la información presentada por el titular, es posible indicar que de los registros analizados respecto de las características físico-químicas de la descarga, no supera los límites definidos en la tabla N° 4 del D.S. 90/00, dándose cumplimiento a la norma de emisión comprometidos en RCA 44/2014 (ver tabla 6) (Ver Registro N°18)".

7.- Certificados de disposición final de la biomasa extraída de los pozos intake (canastillos) luego de limpieza de rejas móviles, año 2021

Mediante Carta GCG – 2022/048 del 23 de mayo de 2022 (Anexo 4), el titular presentó certificados de disposición final a Relleno sanitario provincial de Huasco, el cual correspondería a envío de biomasa extraída de los pozos intake, dando cumplimiento a lo solicitado (Ver Registro N°19).

En conclusión DIRECTEMAR señaló lo siguiente:

En relación a las exigencias asociadas a la RCA N°44/2014, el volumen total descargado durante el año 2021, alcanzó aproximadamente 67.190,1 m3/h promedio, por debajo de lo comprometido de 91.350,5 m3/h, y a la pertinencia 202103101207/2021, que propone la alternativa de reducir el caudal de descarga a 89.000 m3/h. En relación al requerimiento de las exigencias asociadas a uso de aditivos químicos para la operación de las plantas desalinizadoras establecidos, que indica que se necesitará 600 kg/mes de antiincrustante ID-206 (7.200 kilos/año), los documentos presentados por el titular muestran el consumo promedio de 1.018 litros/mes (consumo 12.210 litros año), con concentraciones de inyección que varía por desalinizadora entre 6 a 10 ppm, dando cumplimiento solo en los meses de febrero y noviembre de 2021 (en cuanto a kilos de consumo) (énfasis agregado). De los registros analizados respecto de las características físico-químicas de la descarga, no supera los límites definidos en la tabla N° 4 del D.S. 90/00, dándose cumplimiento a la norma de emisión comprometidos en RCA 44/2014.

Fotografía 7. Fecha: 03-05-2022 Coordenadas UTM DATUM WGS84 HUSO 19 S Norte: 6.849.249 Este: 279.364

Fotografía 8. Fecha: 03-05-2022 Coordenadas UTM DATUM WGS84 HUSO 19 S Norte: 6.849.187 Este: 279.370

Descripción del medio de prueba: Pozos intake.

Fotografía 9. Coordenadas UTM DATUM WGS84 HUSO 19 S Norte: 6.849.186 Este: 279.365 Descripción del medio de prueba: Sistema de rejas fijas de mayor a menor diámetro de apertura que impide el paso de organismos marinos y partículas de diversos tamaños siendo

Fecha: 03-05-2022

Fotografía 10. Fecha: 03-05-2022 Coordenadas UTM DATUM WGS84 HUSO 19 S Norte: 6.849.186 Este: 279.365

Descripción del medio de prueba: Sistema de reja móvil de arrastre ("rasca").

las menores partículas retenidas por un filtro rotatorio de malla fina.

Fotografía 11. Fecha: 03-05-2022
Coordenadas UTM DATUM WGS84 HUSO 19 S Norte: 6.849.219

Norte: 6.849.219 Este: 279.334

Descripción del medio de prueba: Canastillos metálicos con restos de fouling desprendidos por la rastra de la Unidad 1.

 Fotografía 12.
 Fecha: 03-05-2022

 Coordenadas UTM DATUM WGS84 HUSO 19 S
 Norte: 6.849.185
 Este: 279.369

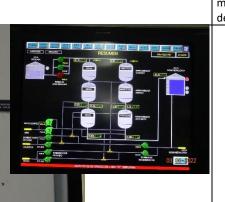
Descripción del medio de prueba: Canastillo metálico con restos de picorocos, y caracoles diversos de la Unidad 1.

Fotografía 13.Fecha: 03-05-2022Coordenadas UTM DATUM WGS84 HUSO 19 SNorte: 6.849.247Este: 279.362

Descripción del medio de prueba: Cañería con descarga de agua hacia el mar bajo sistema de aducción de Unidad 1.

 Fotografía 14.
 Fecha: 03-05-2022

 Coordenadas UTM DATUM WGS84 HUSO 19 S
 Norte: 6.849.219
 Este: 279.351


Descripción del medio de prueba: Bombas de vacío.

Fotografía 15. Fecha: 03-05-2022 Coordenadas UTM DATUM WGS84 HUSO 19 S Norte: 6.849.219 Este: 278.902

Descripción del medio de prueba: Desalinizadora N°1. Se observa compresor en funcionamiento.

Fotografía 17. Fecha: 03-05-2022 Coordenadas UTM DATUM WGS84 HUSO 19 S Norte: 6.849.229 Este: 278.910

Descripción del medio de prueba: Panel de control de compresor de desaladora Unidad 2 se observó una conductividad eléctrica de 4.834 us/cm y 5.4 m3 de caudal de agua producto (círculos rojos). Además se observa monitor control de operaciones de desalinizadora.

Fotografía 16. Fecha: 03-05-2022 Coordenadas UTM DATUM WGS84 HUSO 19 S Norte: 6.849.229

Este: 278.910

Descripción del medio de prueba: Tablero de control de compresor de la desalinizadora 1. Al momento de la inspección se observó una conductividad eléctrica de 0,631 us/cm y 26,9 m3 de caudal de agua producto.

Fotografía 18. Fecha: 03-05-2022

Coordenadas UTM DATUM WGS84 HUSO 19 S Norte: 6.849.176 Este: 278.883

Descripción del medio de prueba: Estanques de acumulación diferenciados de 750 m3 de agua desalinizada.

Fotografía 19. Coordenadas UTM DATUM WGS84 HUSO 19 S

Fecha: 03-05-2022 Norte: 6.849.174

Este: 278.876

Fotografía 20. Coordenadas UTM DATUM WGS84 HUSO 19 S

Fecha: 03-05-2022

Norte: 6.849.157

Este: 278.852

Descripción del medio de prueba: Estanques de 750 m3 de capacidad de acumulación de

agua "makeup" que ingresa a Calderas. Bombas de vacío.

Descripción del medio de prueba: Pozo de sello Unidad 2.

Fotografía 21.

Fecha: 03-05-2022 Coordenadas UTM DATUM WGS84 HUSO 19 S

Norte: 6.849.157 Este: 278.852 Descripción del medio de prueba: Pozo de recepción.


Coordenadas UTM DATUM WGS84 HUSO 19 S

Fotografía 22.

Fecha: 03-05-2022 Norte: 6.849.138

Este: 278.858

Descripción del medio de prueba: Canelón general

Fotografía 23. Coordenadas UTM DATUM WGS84 HUSO 19 S Norte: 6.849.138

Fecha: 03-05-2022

Fotografía 24.

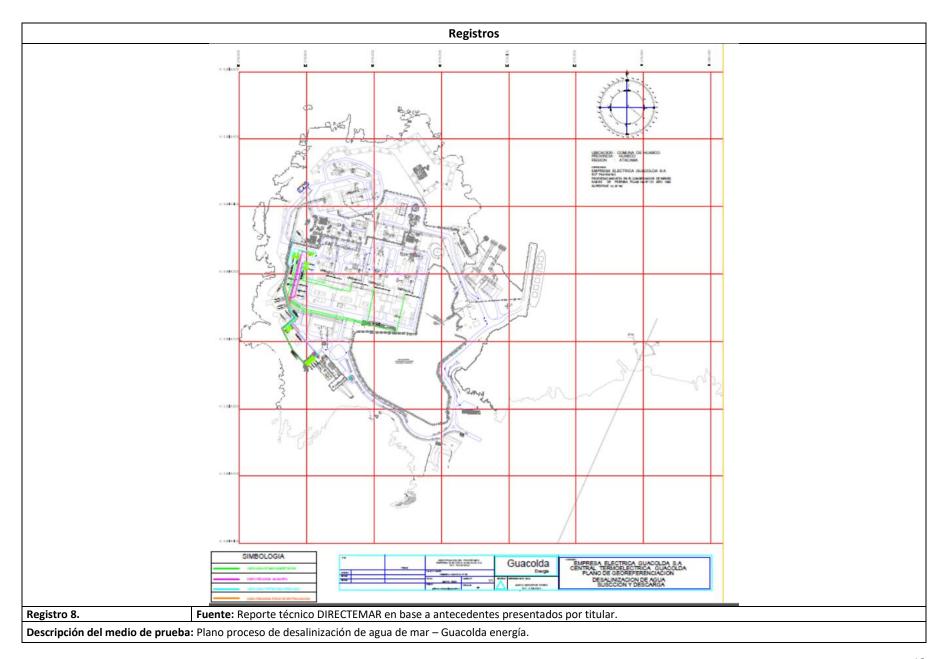
Fecha: 03-05-2022

Este: 278.858 Descripción del medio de prueba: Tubería de efluente de Salmuera (en amarillo).

Coordenadas UTM DATUM WGS84 HUSO 19 S Norte: 6.849.157 Este: 278.852

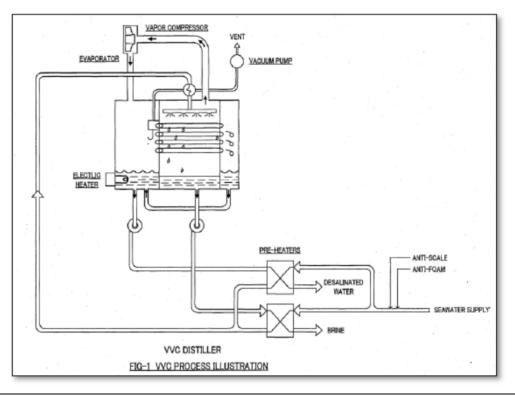
Descripción del medio de prueba: Medidores de parámetros del Decreto supremo 90/00.

Fotografía 25.

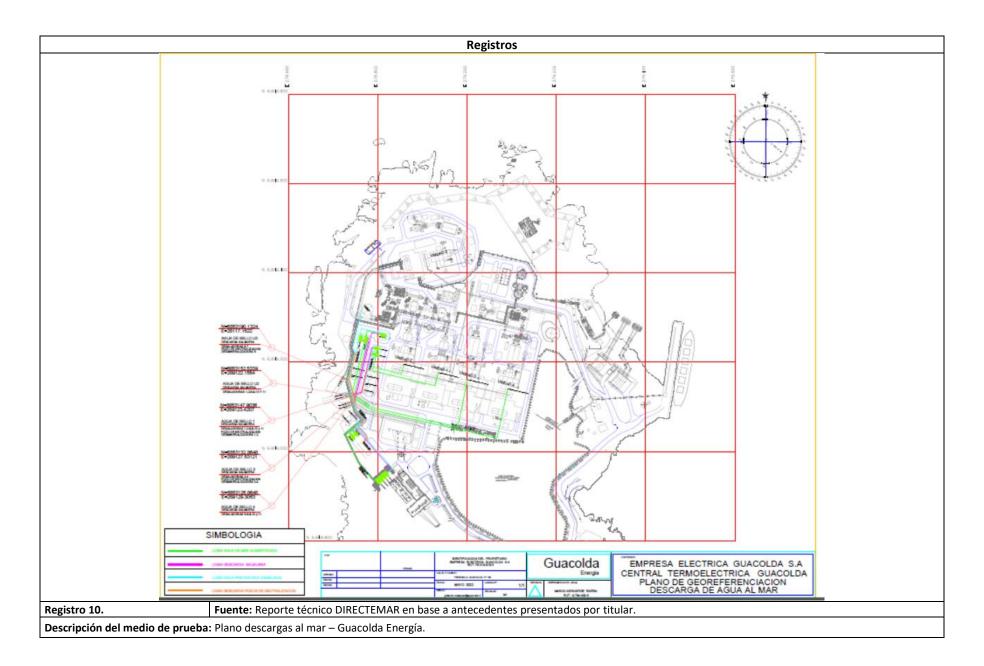

Fecha: 03-05-2022

Coordenadas UTM DATUM WGS84 HUSO 19 S Norte: 6.849.107

Este: 278.846


Descripción del medio de prueba: Planta de tratamiento de aguas servidas.

ESQUEMA DE PROCESO DESALINIZACIÓN



Registro 9.

Fuente: Reporte técnico DIRECTEMAR en base a antecedentes presentados por titular.

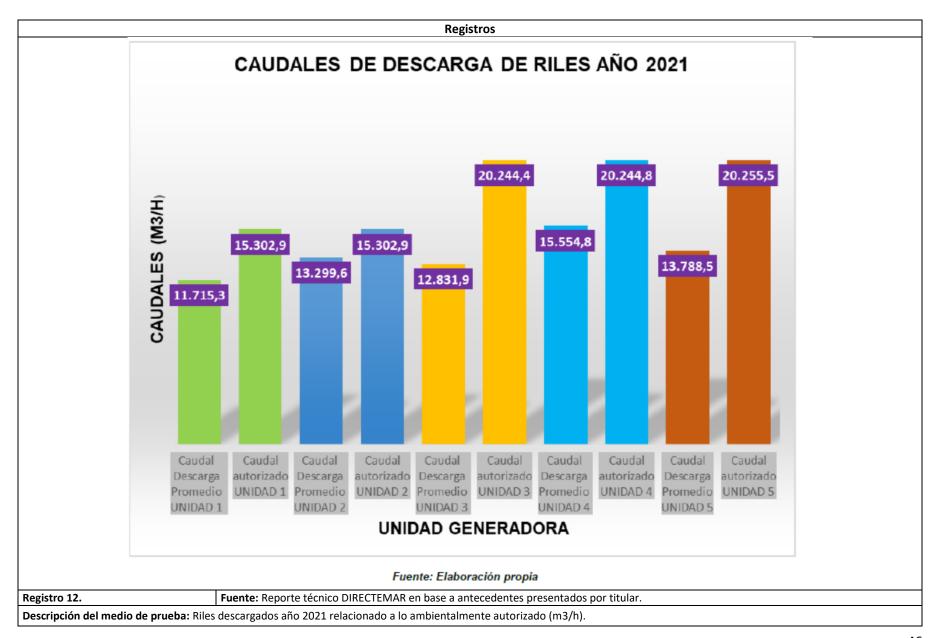
Descripción del medio de prueba: Esquema de proceso de desalinización.

					Caudales de descar	ga por unidad año	vs Caudal ambient	almente autorizado)		
						(m3	/hr)				
		Unic	lad 1	Unid	lad 2	Unid	lad 3	Unid	ad 4	Unid	ad 5
Año	Mes	Caudal Descarga Promedio Mensual (m3/h)	Caudal autorizado (m3/h)	Caudal Descarga Promedio Mensual (m3/h)	Caudal autorizado	Caudal Descarga Promedio Mensual (m3/h)	Caudal autorizado	Caudal Descarga Promedio Mensual (m3/h)	Caudal autorizado	Caudal Descarga Promedio Mensual (m3/h)	Caudal autorizado
	Enero	11.049,9	15.302,9	14.219,9	15.302,9	12.242,1	20.244,4	15.910,5	20.244,8	14.095,5	20.255,5
	Febrero	13.670,2	15.302,9	14.392,7	15.302,9	11.891,0	20.244,4	15.889,4	20.244,8	13.821,1	20.255,5
	Marzo	12.912,3	15.302,9	13.475,3	15.302,9	11.076,2	20.244,4	14.486,0	20.244,8	14.519,9	20.255,5
	Abril	12.416,9	15.302,9	14.231,3	15.302,9	12.621,3	20.244,4	12.336,9	20.244,8	14.618,5	20.255,5
	Mayo	12.168,9	15.302,9	14.351,4	15.302,9	7.859,0	20.244,4	17.173,3	20.244,8	15.047,0	20.255,5
2021	Junio	13.281,7	15.302,9	13.833,7	15.302,9	15.896,5	20.244,4	16.780,8	20.244,8	14.470,0	20.255,5
2021	Julio	12.606,8	15.302,9	10.848,2	15.302,9	16.299,2	20.244,4	16.626,2	20.244,8	14.819,7	20.255,5
	Agosto	11.794,8	15.302,9	9.557,1	15.302,9	15.996,2	20.244,4	16.339,7	20.244,8	13.596,0	20.255,5
	Septiembre	9.336,5	15.302,9	13.698,2	15.302,9	1.285,1	20.244,4	16.776,8	20.244,8	9.837,8	20.255,5
	Octubre	12.443,8	15.302,9	13.450,6	15.302,9	15.600,8	20.244,4	15.274,1	20.244,8	9.218,5	20.255,5
	Noviembre	12.234,5	15.302,9	13.817,2	15.302,9	17.187,8	20.244,4	9.805,5	20.244,8	15.588,0	20.255,5
	Diciembre	6.869,3	15.302,9	13.901,9	15.302,9	15.796,4	20.244,4	19.080,5	20.244,8	15.812,8	20.255,5

2021 (m3/h) 2021 (2021 2021 2021 2021 2021 2021 202	Unic	Unidad 1		lad 2	Unid	lad 3	Unid	lad 4	Unidad 5		
por Unidad - Año 2021 11.715,3 15.302,9 13.299,6 15.302,9 12.831,9 20.244,4 15.554,8 20.244,8 13.788,5 20.255	Promedio Año 2021		Promedio Año 2021	Caudal autorizado							
(m3/n)	l	15.302,9	13.299,6	15.302,9	12.831,9	20.244,4	15.554,8	20.244,8	13.788,5	20.255,5	

Registro 11. Fuente: Reporte técnico DIRECTEMAR en base a antecedentes presentados por titular.

Descripción del medio de prueba: Caudales de descarga por unidad año vs caudal ambientalmente autorizado (m3/hr).


91.350,5

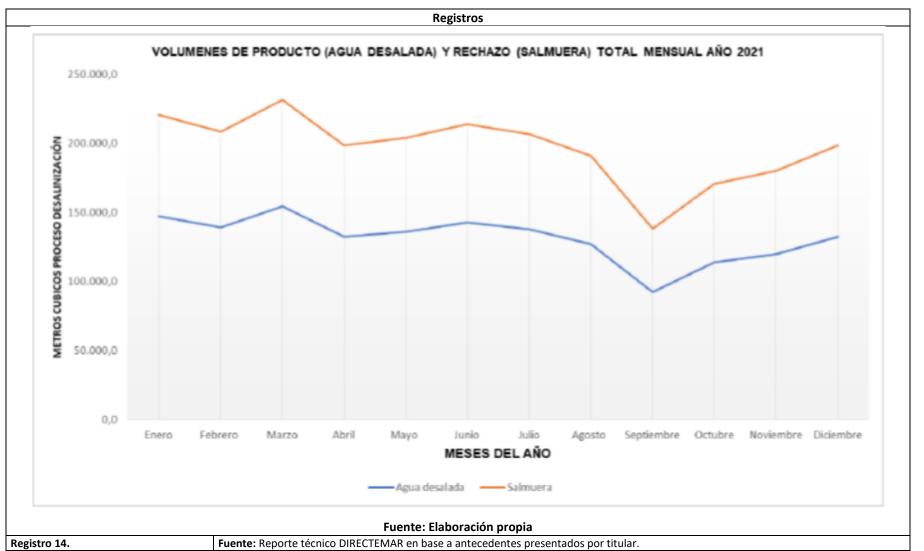
67.190,0

Total Complejo - Año 2021

(m3/h)

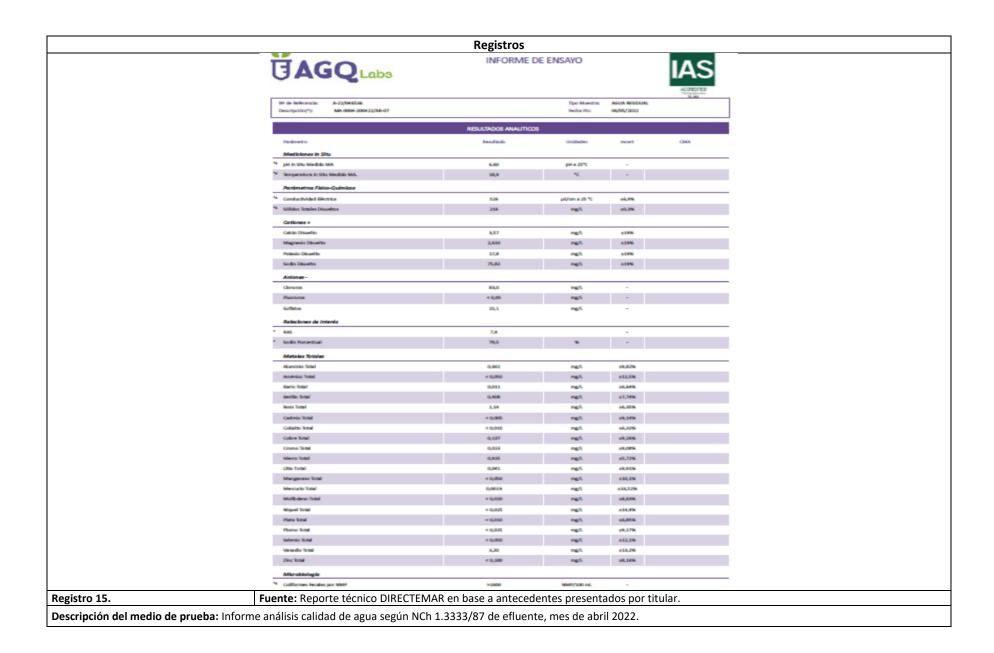
			Volum	nen de ag	ua producida	y salmu	era descarga	do por de	saladora 202	1 (m3)			
Mes	Desaled	ore 1	Desalado	rs2	Deseled	ore 3	Desalado	ors 4	Desalad	ora 5	Desaladora 6		
INIES	Agua decalada	Salmuora	Agua decalada	Salmuera	Agua decalada	Salmuera	Agua decalada	Salmuora	Agua decalada	Salmuera	Agua decalada	Salmuora	
linero	12.747,0	19.120,5	16.098,8	24.140,7	19.245,8	28.865,0	12.698,7	19.048,1	15.182,1	22,775,2	9.886,0	14.829,0	
Febrero	6,039,0	9.058,5	13.507,1	20.260,7	16.354,8	24,532,2	16.485,6	24.728,4	12,566,1	18.849,2	17,006,7	25.510,1	
Marzo	0,0	0,0	15.142,7	22.714,1	19.110,4	28.665,6	19.236,6	28.854,9	17.952,7	26,929,1	12.355,8	18.588,7	
Abril	0,0	0,0	16.202,4	24.303,6	18.327,8	27,491,7	13 949,3	20.924,0	201,0	301,5	21.212,0	31.818,0	
Mayo	12.900,0	19.350,0	15.722,3	23.583,5	18.058,1	27.087,2	9.568,5	14.352,8	4.162,9	6.244,4	22.257,1	33.385,7	
tunio	13.594,2	20.391,3	16.094,0	24.141,0	20.066,0	30.099,0	17.784,2	26.676,3	6.675,3	10.013,0	17.857,3	26.786,0	
tulio	15.233,0	19.849,5	7.164,0	10.745,0	8.767,7	13.151,6	17.105,3	25.658,0	20.117,5	30.176,3	8.014,4	12.021,6	
Agosto	1.877,0	2.815,5	9.881,5	14.822,3	1.978,8	2.968,2	18.133,4	27.200,1	15.702,4	23.553,6	13.935,2	20.902,8	
Septiembre	0,0	0,0	1.770,0	2.655,0	4.748,2	7.114,8	19.029,9	28.544,9	6.973,5	10.460,3	7.281,1	10.846,7	
Octubre	0,0	0,0	13.174,0	19.761,0	6.170,1	9.255,2	11.856,3	17.784,4	19.173,8	28.760,7	11.818,6	17.727,9	
Naviembre	7.841.0	11.761.5	12.002,0	18.003,0	954,4	1.431,6	16.854,9	25.282,4	12.200,2	18.300,3	16.947,3	25.421,0	
Diciembre	11.173,0	16.759,5	15.291,0	22.956,5	0,0	0,0	17.163,9	25.745,9	15.997,8	23.996,7	11.980,9	17.971,4	
Total Anual (m3)	79.404,2	119.106,3	152,044,8	228.067,2	133.774,6	200.661,9	189.866,6	284.799,8	146,905,3	220.358,0	170.502,4	255,753,6	

		Volum	en de agua p	roducida	y salmuera d	escargado	por desalad	ora 2021	(m3)		
	Desalado	ora 7	Desalado	ora 8	Deseled	ore 9	Desalado	re 10	Desaladora 11		
Mes	Agua desalada	Salmuera									
Enero	12.996,2	19.494,3	11.785,0	17.674,5	0,0	0,0	17.122,0	25.683,0	19.392,0	29.088,0	
Febrero	13.056,3	19.584,5	16.698,0	25.047,0	6.350,0	9.525,0	8.106,0	12,159,0	12.884,0	19.326,0	
Marzo	15.811,2	23.716,8	8.192,0	12.288,0	18.338,0	27.507,0	13.622,0	20.433,0	14,639,0	21,958,5	
Abril	10.703,0	16.054,5	42,0	63,0	16.926,0	25.389,0	19.691,0	29.536,5	15.072,0	22,608,0	
Mayo	2.468,5	3.702,8	0,0	0,0	15.275,0	22.912,5	17.389,0	26.083,5	18.256,0	27.384,0	
kmio	8.653,1	12.979,7	0,0	0,0	11.328,0	16.992,0	14.597,0	21.895,5	16,040,0	24,060,0	
Iulio	17.107,9	25.661,9	0,0	0,0	14,778,0	22.167,0	13.921,0	20.731,5	17,794,0	26,691,0	
Agosto	10.796,6	15.194,9	7.548,0	11.322,0	15.318,0	22.977,0	11.954,0	17.931,0	20.101,0	30.151,5	
Septiembre	4.128,5	5.192,8	18.514,0	27.771,0	11.551,0	17,296,5	0,0	0,0	18,452,0	27,678,0	
Octubre	8.634,3	12.951,4	20.355,0	50.532,5	5.272,0	7.908,0	12.705,0	19.057,5	4.744,0	7.116,0	
Naviembre	11,586,3	17.579,5	18.822,0	28.233,0	0.512,0	9.768,0	16.541,0	24,511,5	0,0	0,0	
Diciembre	11.403,4	17.105,1	17.586,0	16.379,0	14.297,0	21,445,5	17.530,0	26.295,0	0,0	0,0	
Total Anual (m3)	127.545,5	191.017,9	119.540,0	179.310,0	135.925,0	205.887,5	162,878,0	244,317,0	157.374,0	236,061,0	

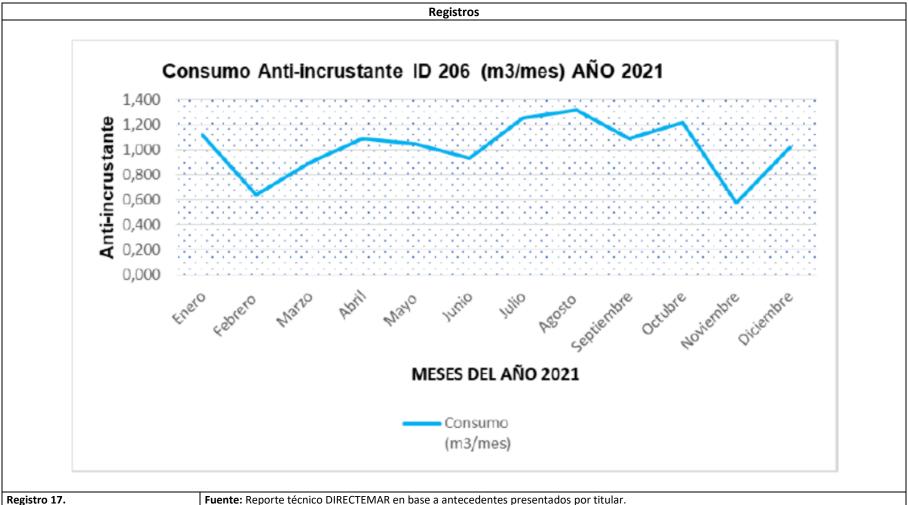

14	Total me	ensuel	Total aforo acumulado					
Mes	Agua desalada	Salmuera	Producto	Salmuera				
Enero	147.144,1	220.716,2	147.144,1	220,716,2				
Febrero	139.053,6	208.580,4	286.197,7	429.196,6				
Marzo	154.400,4	231.600,6	440.598,1	660.897,2				
Abril	132 326,5	198.489,7	572.924,6	859.386,9				
Mayo	136.057,4	204.086,1	708.982,0	1.063.473,0				
Junio	142.689,1	214.033,7	851.671,1	1.277.506/				
Julio	137.902,8	206.854,2	989.573,9	1,484,360,8				
Agosto	127.225,9	190.838,0	1.116.790,8	1,675,199				
Septiembre	92.373,2	138,559,8	1.209.173,0	1.813.739,				
Octubre	113.903,0	170.854,5	1.523.076,0	1.084.614)				
Noviembre	120.061,1	180:091,7	1.443.157,1	2.164.705/				
Diciembre	132.423,0	198.634,5	1.575.560,1	2.368.340,				
Total Anual (m3)	1.575.500,1	2.365.340,1						

Registro 13.

Fuente: Reporte técnico DIRECTEMAR en base a antecedentes presentados por titular.


Descripción del medio de prueba: Volúmenes de agua por unidad desaladora.

Descripción del medio de prueba: Volúmenes de agua desalada y salmuera mensual año 2021.


REGISTRO MENSUAL CONSUMO ANTI-INCRUSTANTE ID206 - AÑO 2021

AÑO	MES	Consumo (L/mes)	Consumo (m3/mes)
	Enero	1.115	1,115
	Febrero	640	0,640
	Marzo	900	0,900
	Abril	1.090	1,090
	Мауо	1.050	1,050
2021	Junio	930	0,930
2021	Julio	1.255	1,255
	Agosto	1.320	1,320
	Septiembre	1.090	1,090
	Octubre	1.220	1,220
	Noviembre	580	0,580
	Diciembre	1.020	1,020
Concentracio	n inyeccion ID 206 en	desaladora 1-2	5-6 ppm
Concentracio	n inyeccion ID 206 en	desaladora 8 -9-10-11	9-10 ppm

Registro 16. Fuente: Reporte técnico DIRECTEMAR en base a antecedentes presentados por titular.

Descripción del medio de prueba: Consumo mensual anti-incrustante ID206- año 2021

Descripción del medio de prueba: Consumo anti-incrustante ID 206 – año 2021.

									ке	gistros										
Lugar de Muestreo	Descarga	Unidad 1	Empresa	Guacold	a Energía	RUT	76.418	.918-3												
Nombre Laboratorio	AGQ Chile	S.A/Agri	quen Amèri	ca S.A																
			A- 21/000777	A- 21/022105	A- 21/025591	A- 21/027527	A- 21/031531	A- 21/033989	A- 21/037621	A- 21/040115	A- 21/040698	A- 21/043455	A- 21/043985	A- 21/045920	A- 21/049140	A- 21/052082	A- 21/055338	A- 21/058746	A- 21/061156	A- 21/06416
Parámetros	Unidad de Medida	Valor Limite	05-01-2021		04-03-2021	09-03-2021			30-03-2021		08-04-2021		15-04-2021			04-05-2021		19-05-2021		01-06-202
Aceites y Grasas	mg/L	20	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Arsénico	mg/L	0,2	0,005	0,006	0,005	0,009	0,011	0,015	0,005	0,008	0,005	0,007	0,005	0,007	0,006	0,005	0,008	0,008	0,01	0,005
Cadmio	mg/L	0,02	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,003	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002
Caudal	m3/dia		299016	305856	293784	277632	273984	289872	255000	290040	289872	292008	289224	286152	271824	263544	261432	259440	278138	243960
Cobre	mg/L	1	0,01	0,01	0,01	0,01	0.01	0.01	0,01	0,02	0,01	0,01	0.01	0.01	0,01	0,01	0,01	0.01	0.01	0,06
Coliformes Fecales o Termotolerantes	NMP/100 m1	1000	2	2	2	22	30	2	2	7	4	2	30	4	6,1	2	130	2	4	2
Cromo Total	mg/L	2,5	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009
DBO5	mgO2/L	60	3,37	2	5,47	5,29	2	2	2	2	2	2	2,03	2	2	2	2	2	2	2
Fluoruro	mg/L	1,5	0,81	0,94	0,83	0,87	0,42	1,08	0,99	0,86	0,78	0,81	0,81	0,89	0,92	1	1,08	1	0,86	0,88
Hidrocarburos	ms/L		0,125	0,125	0,125	0,125	0.125	0,125	0,125	0,125	0,125	0,125	0.125	0,125	0,125	0,125	0,125	0,125	0.125	0.125
Aromáticos Hidrocarburos Totales	mg/L	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Hierro Disueto	ms/L	10	0.008	0,008	0.008	0.1	0.03	0.131	0,008	0.008	0.008	0.008	0.008	0,008	0.008	0,008	0.008	0.008	0.008	0.028
Manganeso	ms/L	2	0.01	0,008	0.008	0.008	0.008	0,014	0,008	0.008	0.008	0.008	0.008	0.008	0,008	0.008	0.008	0.008	0.008	0,028
Mercurio	mg/L	0,005	0.001	0,001	0.001	0.001	0.001	0.002	0,001	0,001	0,001	0.001	0.001	0,001	0,001	0,001	0,001	0.001	0.001	0,001
Niquel	mg/L	2	0,009	0,009	0,009	0,009	0,01	0,015	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009
Nitrógeno Total Kjeldahl	mg/L	50	0,32	0,58	0,734	0,688	1,34	2,47	0,27	0,238	0,44	0,299	0,41	0,619	0,671	0,36	0,46	0,11	3,68	0,54
pH	Unidad	6-9	8,06	8,01	8,32	8,39	8,25	8,14	8,12	8,07	8,07	8,09	8,42	8,06	7,99	8,03	8,01	8	8,01	7,98
SAAM	mg/L	10	0,11	0,11	0,11	0,19	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11
Solidos Disuccos Totales (mo/L)	mg/L		39101	34300	42776	33340	42680	42400	40580	43316	44216	48640	43552	43120	45996	40392	43880	43240	39380	40140
Sólidos Sedimentables	m1/L/h	5	0,1	0,1	0,1	0,1	0,1	0,1	0,1	20	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Sólidos Suspendidos Totales	mg/L	100	6	6	13	6	2,7	7	10	2,7	10	6	7	4	6	121	12	7	17	11
Sulfuro	mg/L	1	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06
Temperatura	°C	30	20,06	18,39	25,84	27,99	25,75	26,07	24,63	24,27	23,92	24,21	23,91	26,95	25,19	25,41	25,77	24,85	23,36	24,85
Zinc	mg/L	5	0,125	0,02	0,018	0,008	0,008	0,102	0,027	0,048	0,025	0,042	0,024	0,055	0,016	0,032	0,018	0,02	0,024	0,039
Boro (*)	mg/L									2,98										
Cloro Libre Residual (*)	mg/L									0,08										
Clorures (*)	mg/L									21228										
Fósforo (*) (*): Muestreo anual por	mg/L	5								0,6										

Nombre Laboratorio	AGQ Chile	S.A/Agric																		
IOTHER EUDOFATORIO	Aug cilic	JANAGIR						N.	onitoree Au	tocontrol Ril	a.c									
			A-	A-	A-	A-	Α-	Α-	Α-	A-	A-	Α-	Α-	A-						
			21/067539	21/071187	21/074300	21/077125	21/077812		21/089077	21/091291	21/092105	21/094224	21/097532	21/099835	21/102594	21/106736	21/108659	21/111395	21/112065	21/115090
Parametros	Unidad de Medida	Valor Límite	08-06-2021	16-06-2021	23-06-2021	30-06-2021	01-07-2021	06-07-2021	28-07-2021	03-08-2021	04-08-2021	10-08-2021	18-08-2021	24-08-2021	31-08-2021	09-09-2021	14-09-2021	21-09-2021	22-09-2021	28-09-202
Aceites y Grasas	mg/L	20	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Arsénico	mg/L	0,2	0,005	0,012	0,008	0,008	0,015	0,01	0,006	0,005	0,005	0,007	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,009
Cadmio	mg/L	0,02	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002
Caudel	m3/dia		296335	295440	297005	292392	291984	282936	261552	242736	241272	216331	254136	259920	253608	254928	93504	131760	141600	285000
Cobre	mg/L	1	0,01	0,01	0,01	0,01	0,05	0,01	0,06	0,01	0,01	0,01	0,01	0,2	0,26	0,01	0,01	0,01	0,01	0,15
Coliformes Fecales o Termotolerantes	NMP/100 m1	1000	2	4	16	2	2	2	2	2	2	2	2	2	2	2	2	2	23	2
Creme Total	mg/L	2,5	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009
DB05	mgO2/L	60	2	2,21	3,77	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Fluoruro Hidrocarburos	mg/L	1,5	0,72	0,86	0,93	0,83	0,87	0,88	0,93	0,92	0,93	0,92	0,93	0,86	0,91	0.97	0,85	0,91	0,89	0,91
Aromáticos	mg/L		0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125
Hidrocarburos Totales	mg/L	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Hierro Disuelto	mg/L	10	0,132	0,104	0,03	0,008	0,033	0,008	0,082	0,023	0,036	0,19	0,008	0,008	0,008	0,008	0,008	0,046	0,066	0,008
Manganeso	mg/L	2	0,008	0,008	0,008	0,008	0,013	0,008	0,008	0,008	0,008	0,008	0,008	0,409	0,008	0,008	0,008	0,008	0,008	0,008
Mercurio	mg/L	0,005	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001
Niquel	mg/L	2	0,009	0,019	0,012	0,014	0,009	0,017	0,02	0,009	0,009	0,01	0,009	0,009	0,009	0,009	0,009	0,009	0,012	0,009
Nitrógeno Total Kjeldahl	mg/L	50	0,33	0,4	0,19	0,14	0,1	0,17	0,48	0,28	0,35	0,23	0,19	0,39	0,65	0,24	0,771	0,851	0,641	0,22
pH	Unidad	6-9	7,99	8,01	7,89	7,92	7,8	7,92	7,9	7,89	7,9	7,8	7,8	7,9	8,1	7,9	7,88	7,99	7,83	8,26
SAAM	mg/L	10	0,11	0,2	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11
Solidos Disuetos Totales (mo/L)	mg/L		7416	39070	40200	39900	41140	44550	39740	43380	41120	38600	39150	39730	37304	39620	83340	39320	39360	38820
Sólidos Sedimentables	ml/L/h	5	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Sólidos Suspendidos Totales	mg/L	100	16	13	7	6	9	7	16	10	9	9	8	2,7	18	7	7	3	7	6
Sulfuro	mg/L	1	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06
Temperatura	°C	30	22,86	23,05	22,48	21,5	20,67	23,09	23,58	24,82	25,17	22,3	23,27	23,68	24,55	16,75	12,35	12,09	12,44	16,05
Zinc	mg/L	5	0,008	0,008	0,008	0,008	0,059	0,008	0,724	0,008	0,024	0,008	0,025	0,034	0,008	0,025	0,03	0,02	0,066	0,036
Boro (*)	mg/L																			
Cloro Libre Residual (*)	mg/L																			
Cloruros (*)	mg/L																			
Fósforo (*)	mg/L	5																		

Lugar de Muestreo	Descarga	Unidad 1								İ							
Nombre Laboratorio	AGQ Chile	S.A/Agric								1							
			A- 21/115090	A- 21/118111	A- 21/121713	A- 21/124415	A- 21/125145	A- 21/129042	A- 21/131705	A- 21/132268	A- 21/135719	A- 21/136523	A- 21/137744	A- 21/138728	A- 21/142387	A- 21/146902	A- 21/15013
Parâmetros	Unidad de Medida	Valor Limite	28-09-2021	05-10-2021	13-10-2021	19-10-2021	20-10-2021	27-10-2021	03-11-2021	04-11-2021	11-11-2021	12-11-2021	16-11-2021	17-11-2021	24-11-2021	02-12-2021	09-12-202
Acetes y Grasas	mg/L	20	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Arsénico	mg/L	0,2	0,009	0,008	0,007	0,005	0,008	0,005	0,005	0,005	0,005	0,007	0,005	0,005	0,005	0,005	0,005
Cadmio	mg/L	0,02	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002
Caudal	m3/día		285000	264912	268512	274032	277248	281160	268056	271584	269592	270768	269976	268296	249000	270432	100200
Cobre	mg/L	1	0,15	0,04	0,01	0,01	0,06	0,02	0,44	0,1	0,03	0,05	0,04	0,01	0,01	0,03	0,01
Coliformes Fecales o Termotolerantes	NMP/100 ml	1000	2	2	8	4	2	2	2	2	2	2	2	4	2	2	2
Cromo Total DBO5	mg/L	2,5	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009
	mgO2/L	60		_	2	2	2		2		2	2			2	,	
Fluoruro Hidrocarburos Aromáticos	mg/L mg/L	1,5	0,91	0,81	0,87	0,83	0,93	0,91	0,89	0,92	0,125	0,125	1,12 0,125	0,99	1,04 0,125	0,125	0,98
Hidro carburos Totales	mg/L	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Hierro Disuelto	mg/L	10	0,008	0,008	0,008	0,008	0,093	0,053	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,008
Manganeso	mg/L	2	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,019	0,008	0,008	0,008	0,008
Mercurio	mg/L	0,005	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001
Niquel	mg/L	2	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009
Nitrógeno Total Kjeldahl	mg/L	50	0,22	0,26	0,571	0,65	0,65	0,65	0,65	0,65	0,65	1,01	0,65	0,65	0,65	0,65	0,65
pH	Unidad	6 - 9	8,26	7.9	7.9	7.9	7,8	8,3	8,1	8	7.9	7.7	7,7	7,8	7.9	7,7	7,8
SAAM	mg/L	10	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,13	0,11	0,11
Solidos Disueitos Totales (mo/L)	mg/L		38820	42620	40760	40370	43050	40480	16696	41390	39440	40760	38670	38840	39170	39550	39700
Sólidos Sedimentables	ml/L/h	5	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Sólidos Suspendidos Totales	mg/L	100	6	2,7	2,7	7	9	7	7	7	5	7	3	5	9	2,7	2,7
Sulfuro	mg/L	1	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06
Temperatura	°C	30	16,05	12,5	12,7	23,6	24,1	23,7	19,6	19,8	18,3	24,2	23,9	24,1	26,2	23,2	13,5
Zinc	mg/L	5	0,036	0,042	0,03	0,04	0,342	0,247	0,018	0,05	0,023	0,027	0,04	0,02	0,019	0.044	0,008
Boro (*)	mg/L									l I							
Cloro Libre Residual (*)	mg/L																
Cloruros (*)	mg/L																
Fósforo (*)	mg/L	5															
(*): Muestreo anual por	my 2	-															L

Registro 18. Fuente: Reporte técnico DIRECTEMAR en base a antecedentes presentados por titular.

Descripción del medio de prueba: Registro cumplimiento tabla 4 D.S. N° 90 año 2021 (Unidad 1).

CERTIFICADO

COSEMAR S.A., RUT 96.827.370-1 con instalaciones en camino interior de ruta 5 Norte km 665 a 3,7 km en línea recta al Nor-Oeste del centro de la ciudad de Vallenar, certifica que la empresa COSEMAR SERVICIOS INDUSTRIALES S.A., R.U.T. 76.214.156-6, ha ingresado durante el año 2021 al Relleno Sanitario Provincial de Huasco, un total de 137,43 toneladas como disposición final de "RESIDUOS SOLIDOS DOMICILIARIOS O ASIMILABLES", provenientes de Empresa GUACOLDA, Huasco. Lo anterior, de acuerdo al siguiente detalle:

Mes	Año	Toneladas
Enero	2021	2,89
Febrero	2021	4,75
Marzo	2021	8,69
Abril	2021	8,88
Mayo	2021	12,89
Junio	2021	8,13
Julio	2021	6,76
Agosto	2021	13,70
Septiembre	2021	16,07
Octubre	2021	15,80
Noviembre	2021	19,59
Diciembre	2021	13,35
Total		131,5

Vallenar, 10 de Mayo del 2022

Registro 19.

Fuente: Reporte técnico DIRECTEMAR en base a antecedentes presentados por titular.

Descripción del medio de prueba: Certificado de Disposición Final Residuos Sólidos 2021 (incluye biomasa extraída de los pozos intake) – Guacolda Energía.

5.3 Calidad de agua de columna de agua, sedimentos marinos y comunidades bentónicas / Pérdida o Alteración de hábitat acuático

Número de hecho constatado: 3 Estación N°: no aplica

Documentación revisada:

Documentos solicitados en acta de inspección ambiental:

1.- Plan de seguimiento del medio marino según lo señalado en considerando 1.7.2 RCA Nº44/2014 y Registros internos de parámetros medidos durante el año 2021.

Seguimientos ambientales:

- 1.- Monitoreo Septiembre 2017 Programa de Vigilancia Ambiental Muelle Guacolda I (Código SSA: 62809).
- 2.- Monitoreo Septiembre 2018 Programa de Vigilancia Ambiental Muelle Guacolda I (Código SSA: 106415).
- 3.- Monitoreo Junio 2018 Programa Plan de Vigilancia Ambiental del Medio Marino Guacolda Energía-Unidades 1, 2, 3, 4, 5 (Código SSA: 106420).
- 4.- Monitoreo Diciembre 2018 Programa Plan de Vigilancia Ambiental del Medio Marino Guacolda Energía-Unidades 1, 2, 3, 4, 5 (Código SSA: 106421).
- 5.- Monitoreo Marzo 2018 Programa Plan de Vigilancia Ambiental del Medio Marino Guacolda Energía-Unidades 1, 2, 3, 4, 5 (Código SSA: 106423).
- 6.- Monitoreo Septiembre 2018 Programa Plan de Vigilancia Ambiental del Medio Marino Guacolda Energía-Unidades 1, 2, 3, 4, 5 (Código SSA: 106456).
- 7.- Monitoreo anual 2018 Programa Plan de Vigilancia Ambiental del Medio Marino Guacolda Energía- Unidad 5 (Código SSA: 106418).
- 9.- Programa de Vigilancia Ambiental de Medio Marino Campaña Anual 2021. (Código SSA: 125591).

Exigencia (s):

Considerando 1.7.2 RCA N°44/2014

Modificación al Plan de seguimiento de medio marino. La modificación consistirá en la adición de parámetros a medir y en nuevas estaciones de monitoreo. Los compromisos ya asumidos en RCA previas se mantendrán inalterados. En la matriz agua, se incorporará la medición de las variables salinidad, presión, pH, radiación, clorofila a y oxígeno disuelto en la columna de agua (perfiles). En la matriz sedimento, se incorporará la determinación in situ de pH y potencial redox. Para el análisis de comportamiento pluma de dispersión térmica y salina, se incorporarán 3 nuevos puntos de fondeo para data loggers y 4 nuevas estaciones de perfiles de T° y salinidad.

Considerando 4.4.4 d) d.1) RCA N° 56/2006 en relación a "Evaluación de los Impactos; Calidad del Agua; Alteración físico-química de la columna de agua del cuerpo receptor"

Tal como ya se ha mencionado, la única característica relevante de esta descarga es el diferencial de temperatura que se establecerá entre ésta y el agua que tomará la central en el marco de su proceso de enfriamiento (que corresponde al mismo efecto que genera la descarga actual). El caudal de descarga de la Unidad 3 será de 24.552 m3 /h y la temperatura de descarga es de aproximadamente 25°C. Respecto de lo anterior, para el cálculo de la pluma de descarga y establecimiento del diferencial de temperatura que ésta provocará (área en que se verificaría el impacto), se utilizaron los datos informados por Programa de Vigilancia Ambiental que Guacolda ejecuta desde 1996 a la fecha. Cabe destacar que estos valores consideran la descarga actual de la Central por lo que representan el estado actual del área. A su vez, para la evaluación de impacto se ha considerado como referencia lo señalado en el Anteproyecto de Norma de Calidad de Aguas Marinas a Nivel Nacional, en que se establece una diferencia de máximo 2ºC para aguas Clase 1 (la más exigente). Este diferencial se ha asumido como el área de influencia directa y por lo tanto donde se verificará el impacto de la descarga en las características físico-químicas de la columna de agua. La Línea base de la R.C. A 56/2006 señala: a.1 Temperatura El comportamiento de la temperatura, tanto espacial como temporalmente no ha registrado grandes variaciones, como es de esperar las menores temperaturas promedio se han registrado en invierno (en tomo a los 13,8 °C), consecuentemente las mayores temperatura promedio se han registro en verano (en torno a los 14,5°C). Esta homogeneidad en los valores de temperatura también se detecta al analizar las temperaturas por estación en sentido vertical (aprox 10

metros de profundidad) denotando una columna homogénea sin la presencia de termoclinas. Cabe destacar que la estación más cercana a la actual descarga ha registrado valores de temperatura que en promedio no superan los 0,5°C en comparación con los registros de las restantes estaciones que se ubican fuera del área de influencia de la descarga. R.C. A 191/2010. 6.4 Medio Marino Temperatura: Este proyecto considera un caudal de descarga estimado en 20.255,5 m3 /h, con un incremento en la temperatura del agua de descarga de 10°C sobre la temperatura de entrada de agua de mar. Por lo tanto, la modelación consideró el peor escenario en que el agua de descarga alcanza a los 28°C

Considerando 4.4.4 f) f.1) RCA N° 56/2006 en relación a "Evaluación de los Impactos; Sedimentos Submareales"

Alteración de la calidad química de los sedimentos submareales El efecto de la descarga de agua de enfriamiento de la Central podría potencialmente, luego de un fenómeno de sedimentación o depositación en el fondo de la columna de agua, alterar la calidad química de los sedimentos que actúan como receptores de este material. Otro fenómeno que puede provocar cierta alteración en las características químicas de los sedimentos del área de influencia del proyecto es la potencial sedimentación de partículas de carbón y/ o coque de petróleo producto del proceso de combustión, dada la volatilidad del componente combustionado, este podría depositarse en un área amplia de la Bahía. Cabe destacar que este carbón o coque de petróleo poseen concentraciones variables de Níquel y Vanadio, material que potencialmente podría modificar las características químicas de los sedimentos. Los sedimentos del área de influencia del proyecto no presentan características singulares, están habitados por muy pocos organismos, los que se encuentran, además, en toda la Bahía, fuera del área de influencia del proyecto. Es importante destacar, tal como lo señala la descripción de Línea Base, que los sedimentos del área son de granulometría gruesa lo que dificultará la asimilación de elementos.

Línea base, literal b RCA N° 56/2006 en relación a "Sedimentos"

b.1 Granulometría.

Los resultados del análisis granulométrico evaluado en el programa de vigilancia ambiental, en las estaciones CG-F3, CG-G1 y CG-K, muestran la variación natural entre las fracciones más gruesas de la escala granulométrica. En general, la fracción granulométrica ha mostrado la presencia de arenas muy gruesas (AMG), arena gruesa (AG) y cascajo muy fino (CMF). Los resultados serían producto de un sistema de gran dinámica oceanográfica lo que no permite la presencia de material fino en el área.

b.2 Cobre

El contenido de cobre en los sedimentos de las tres estaciones monitoreadas históricamente han mostrado una gran variabilidad (0 a 300 mg/kg en promedio), presentando un peak de concentración promedio en el monitoreo de julio de 2004. Este aumento respondería básicamente a las altas concentraciones determinadas en la estación CG-F3 (600 mg/kg). Espacialmente, la estación más cercana a la descarga actual de la Central (CG-G 1) presenta valores relativamente bajos en comparación al resto de las estaciones caracterizadas, denotando que las altas concentraciones detectadas en la estación CG-F3 no serían producto de la descarga. b.3 Níquel

Debido a la ausencia de límites normados para níquel o cualquier otro metal en la matriz sedimentaria, los resultados obtenidos fueron contrastados con valores reportados en la literatura científica. En este sentido, los valores obtenidos, en general, son inferiores a los límites máximos propuestos por distintas directrices extranjeras (concentraciones que varían entre 15,9 y 51,6 (μg/g))

b.4 Vanadio

Al igual que para el caso de Níquel en cada una de las estaciones muestreadas fue evaluada la concentración de vanadio en los sedimentos marinos. El método analítico empleado fue el "SM 3500-V 3113D" cuyo límite de detección es de 10 (μ g/g). En cuanto a los resultados, es posible señalar que todas las muestras analizadas presentaron valores bajo el límite de detección del método analítico utilizado. De la misma forma que en el caso de Níquel, la ausencia de límites normados para vanadio o cualquier otro metal en la matriz sedimentaria, obliga a contrastar las concentraciones obtenidas con valores reportados en la literatura científica. En este sentido, los valores obtenidos son inferiores a los límites máximos propuestos por directrices extranjeras revisadas (57 μ g/g).

Considerando 4.4.4 e) e.1) RCA N°56/2006 en relación a "Evaluación de los Impactos; Comunidades Bióticas; Alteración de las comunidades submareales"

El efecto de la descarga de agua de enfriamiento de la Central podría potencialmente, luego de un fenómeno de sedimentación o depositación en el fondo de la columna de agua, ser asimilado (mediante procesos filtración, absorción o adsorción) por los distintos organismos que habiten los sustratos que actúan como receptores del material depositado. Cabe destacar que esta descarga será muy similar a la composición del agua que será succionada por la central para su proceso de enfriamiento, la diferencia más relevante será el diferencial de temperatura entre una y otra. Otro fenómeno que puede provocar cierta alteración en las comunidades biológicas submareales es la potencial sedimentación de partículas de carbón o coque de petróleo producto del proceso de combustión, dada la volatilidad del componente combustionado, este podría depositarse en un área amplia de la Bahía. Cabe destacar que este carbón o coque de petróleo posee concentraciones variables de Níquel y Vanadio, material que podría ser asimilado por los organismos marinos.

Punto 4.5 Línea base RCA N°56/2006 en relación a "Macrofauna Sublitoral"

La macrofauna sublitoral del área de interés ha sido caracterizada como parte del Plan de Vigilancia Ambiental que ha implementado Guacolda desde 1996. Esta caracterización ha sido realizad en las mismas tres estaciones en que ha sido evaluado las características sedimentológicas (CG-3, CG-G1 y CG-K). En cuanto a los resultados obtenidos hasta la fecha, es posible señalar que la composición de la macrofauna está dominada por la presencia de poliquetos (aproximadamente el 45%) de la composición porcentual del número de especies) y moluscos (aproximadamente el 30% de la composición porcentual del número de especies). Entre sí aportan aproximadamente dos tercios de las categorías específicas y supraespecíficas identificadas. En cuanto al número de especies, las tres estaciones se han presentado más o menos homogéneas. En la primera época de monitoreo (1996-2003) el número de especies promedio del área fue un tanto fluctuante (entre 11 y 35 especies), a partir de esta fecha el número de especies promedio se ha homogeneizado variando entre 11 y 20 especies. De la misma forma, el número de individuos promedio en el área de estudio, en la primera época (1996-2003), fue variable (entre 100 y 2800 individuos), a partir de esta fecha el número promedio de individuos se ha homogeneizado fluctuando entre 50 y 500 individuos). Ambas fluctuaciones corresponden a variaciones esperadas debido a las épocas del año en la que se han realizado los muestreos. De los índices ecológicos analizados a lo largo del Programa de Vigilancia Ambiental que ha desarrollado Guacolda, la diversidad específica ha sido el más estable, fluctuando sólo entre 1 y 2 bit/ind., aunque en algunas campañas se ha superado el límite máximo de este rango. De acuerdo a lo esperado, el comportamiento de los índices ecológicos estaría sujetos a un patrón estacional. De manera específica, tanto la Diversidad como la Uniformidad muestran valores similares (cercanos a 2 en el caso de la diversidad y a 0,8 en el caso de la uniformidad) en las estaciones CG-F3 y CG-G1 ambas ubicadas al NO de la Península Guacolda, en cambio la estación CG-K, ubicada al NE de la península, utilizada como estación de referencia muestra valores levemente inferiores 1,2 en el caso de la diversidad y 0,4 en el caso de la Uniformidad). En cuanto a los dendogramas de clasificación y ordenamiento de escalamiento multidimensional, estos confirman los resultados de los índices comunitarios en el sentido de mostrar una mayor similitud, aunque baja, entre las estaciones CG-G1 y CG-F3, ambas separadas de la estación CG-K. Todos los resultados obtenidos para la macrofauna submareal, evidencian que las condiciones ambientales del área son relativamente diferentes para cada estación. Esto estaría explicado por las variables naturales (exposición al oleaje, ubicación en la bahía, entre otros) y no por influencia externas como por ejemplo la descarga de la actual Central. • Como parte de la caracterización de Línea de Base para la Unidad 3 de la Central, se diseñó la evaluación de las concentraciones de Níquel y Vanadio en los tejidos blandos de alguna especie de molusco filtrador presente en el área de estudio. No obstante, un extenso recorrido de los fondos submareales efectuado durante la campaña de muestreo (mayo 2005), no arrojó resultados positivos sobre la presencia de bivalvos en los alrededores de la península, recolectando una cantidad insuficiente de material lo que no permitió realizar los análisis requeridos.

Sin embargo, esto permitió confirmar los resultados históricos obtenidos recolectando pequeños moluscos gasterópodos (caracoles), poliquetos y crustáceos.

Punto 4.6 Línea Base RCA N°56/2006 en relación a "Comunidades Intermareales"

Como parte de las actividades del programa de vigilancia ambiental que ha desarrollado Guacolda, en el área de interés del proyecto, se han caracterizado dos transectas intermareales ubicadas equidistante de la actual descarga de la Central. En cuanto a los resultados, tanto la cobertura porcentual, como el número de individuos, especies e índices comunitarios no han sufrido gran variación. Al respecto podemos señalar, por ejemplo, que la especie de alga Ulva lactuca alcanza las

mayores coberturas. En la transecta CG-R1 ubicada al norte de la descarga, han predominado las especies de algas Iridaea sp. y Durvilea antarctica. En cambio, en la transecta CG-R2 fueron observados el molusco Littorina peruviana y el crustáceo Jehlius cirratus, desplazando la presencia de algas. Finalmente, es posible señalar que tanto la riqueza específica como la diversidad y la Uniformidad muestran variaciones menores, probablemente condicionado por los cambios estacionales entre una campaña de muestreo y otra.

Examen de información:

> Antecedentes provistos por el Titular mediante Carta GCG – 2022/048 del 23 de mayo de 2022 (Anexo 2).

15) (Ver Registro N°25). Ambos metales presentaron concentraciones dentro de los rangos esperados para aqua de mar.

1.- Plan de seguimiento del medio marino según lo señalado en considerando 1.7.2 RCA Nº44/2014 y Registros internos de parámetros medidos durante el año 2021.

Mediante ORD. O.R.A N°53 del 25 de mayo de 2022 (Anexo 3), la SMA solicita a DIRECTEMAR la revisión de los antecedentes presentados por el titular y que fueron solicitados mediante acta de inspección ambiental. Mediante oficio G.M. CAL Ord. N°12.600/461 del 28 de julio de 2022 (Anexo 4) DIRECTEMAR dio respuesta y entregó reporte técnico con su análisis. En relación a plan de seguimiento del medio marino durante año 2021, DIRECTEMAR indicó lo siguiente:

"El estudio de dispersión de la pluma termosalina de marzo, junio, septiembre y octubre de 2021, mostró que, a nivel superficial, la mayor temperatura y salinidad se registró en la zona de la descarga de la central Guacolda, registrándose una influencia térmica y halina en dicha zona consistente en un incremento entre 4-5°C y 1,6 p.s.u., respectivamente. Este aumento fue observado solo en superficie, sin que se observaran efectos sobre la salinidad y la temperatura en los estratos de 5 y 10 m, la única excepción a esta tendencia se observó en la estación CG-G1, donde se aprecia una diferencia térmica entre los primeros 5 metros de profundidad, indicando la presencia de una leve termoclina en dicho nivel de la columna de agua. En cuanto al incremento de la salinidad, este representó un 4,6% de aumento con respecto a la estación de referencia.

Los resultados indicarían que la influencia de la descarga sobre la temperatura y la salinidad del cuerpo de agua marino en la zona de la descarga tendrían un efecto transitorio, y sería rápidamente disipado por el medio (ver figura 11) (Ver Registro N°20). El diferencial térmico analizado, según se observa en la tabla 7 (Ver Registro N°21), mostró una clase de agua nivel 1, es decir, de buena calidad. En cuanto a la salinidad, esta fue relativamente estable en el sector de estudio, además se encontró dentro de la tendencia histórica, con valores promedio en torno a los 34,5 p.s.u. El oxígeno disuelto, en general, presentó altas concentraciones a lo largo de la columna de agua con una distribución asociada a las fluctuaciones de la temperatura, indicando buenos niveles de ventilación del sector de estudio (ver figura 12) (Ver Registro N°22). El pH se halló dentro de los rangos esperados para el agua de mar (i.e. entre 7,9 y 8,3) (ver figura 13) (Ver Registro N°23), mientras que la turbiedad fue generalmente baja sugiriendo, por lo tanto, escasa abundancia de material suspendido o coloidal, lo cual se ha mantenido a lo largo del desarrollo del PVA. En tanto, los análisis químicos en la columna de agua de marzo, junio, septiembre y octubre de 2021, permitieron advertir que no existió influencia de hidrocarburos aromáticos totales en el sector, manteniendo la tendencia observada históricamente para dicho parámetro. De los elementos metálicos analizados, el cobre presentó concentraciones mayoritariamente estables entre los estratos monitoreados, junto a una distribución espacial uniforme (ver figura 14) (Ver Registro N°24), mientras

que el hierro presentó concentraciones espacialmente estables, con un mayor rango de distribución en el estrato de fondo en todas las estaciones monitoreadas (figura

Por otro lado, los sólidos disueltos totales (SDT) fueron detectados en todas las estaciones de monitoreo y con una alta estabilidad en toda la columna de agua, manteniéndose, además, dentro de los rangos esperados para agua de mar (ver figura 16) (Ver Registro N°26). En tanto, los sólidos suspendidos totales, las concentraciones de SST observadas durante el monitoreo de abril y julio 2021 fueron las mayores del registro histórico, con valores de 66,1 y 48,5 mg/L, respectivamente, y en octubre solo fueron detectados en una estación de monitoreo (CG-H1), presentando concentraciones bajas con valores cercanos al límite de detección analítico (ver figura 17) (Ver Registro N°27). Ambos parámetros presentaron concentraciones dentro de los rangos históricos registrados.

Los sedimentos submareales, en marzo 2021, mostraron un dominio de la fracción de arena media. En julio y septiembre 2021, fueron variables entre las diferentes estaciones, desde arena media a arena muy gruesa, al igual que en octubre donde presentaron un tamaño de grano mayoritariamente del tipo arena muy gruesa, con variaciones relacionadas a un alto dinamismo en los procesos de erosión, transporte y depositación de sedimento, situación que no demostró ser diferente a lo registrado en los monitoreos históricos (ver figura 18) (Ver Registro N°28).

El análisis químico en sedimentos submareales de marzo y septiembre de 2021 mostró que únicamente el cromo hexavalente reportó concentraciones bajo el límite de detección analítico en todas las muestras analizadas, mientras que el resto de los elementos metálicos y metaloides fueron cuantificados en la mayoría de las estaciones, según lo observado en el registro histórico. Dichos elementos presentaron una alta variabilidad en los sedimentos submareales. Dentro de los nutrientes, el nitrógeno y fósforo total fueron cuantificados en todas las muestras y, además, presentaron altas fluctuaciones entre las estaciones de monitoreo del área de estudio. Cabe señalar que los valores registrados en esta oportunidad se ubicaron dentro de los márgenes históricos. Por su parte, el azufre reducido se mantuvo bajo el límite de detección, mientras que el azufre total registró concentraciones variables en la matriz sedimentaria, en tanto, los niveles de sulfatos fueron más estables entre estaciones. Los resultados obtenidos para estos aniones, en consecuencia, estuvieron dentro de la tendencia histórica. Los hidrocarburos fijos, volátiles y totales se reportaron bajo el límite de detección analítico en todas las muestras, evidenciado que no hubo alteración en los sedimentos submareales. El carbono mineral particulado presentó concentraciones bajas, las cuales no superaron los 0,66 %, hallándose dentro de la variabilidad temporal histórica. El pH registró valores normales para sedimentos marinos, los que fluctuaron entre 7,4 y 7,8 unidades. Finalmente, el potencial oxido-reducción registró valores positivos en la mayoría de las estaciones monitoreadas, predominando así las condiciones oxidantes en la matriz sedimentaria. A partir de abril 2021, de los elementos metálicos analizados en los sedimentos, el cobre fue altamente fluctuante, con altas concentraciones asociadas a la estación CG-G1, es decir, hacia el norte de la península de Guacolda, observándose en la campaña de octubre 2021, uno de los mayores valores registrados (106,0 mg/kg), cabe señalar, que la variabilidad observada en esa campaña, presentó una distribución similar a la observada en septiembre 2020, con valores promedio relativamente similares (ver figura 19) (Ver Registro N°29). Desde noviembre 2020 a octubre 2021, las concentraciones de plomo fueron similares, presentando valores promedio entre 1,9 y 4,0 mg/kg, siendo la campaña de octubre de 2021, la que presentó uno de los valores promedio más bajos de plomo en el transcurso del PVA, indicando que las magnitudes de este parámetro se mantuvieron dentro de la variabilidad visualizada a lo largo del proyecto, manteniéndose cercanos a los rangos esperados para sedimentos marinos y cerca de lo estipulado por la normativa internacional de referencia (ver figura 20) (Ver Registro N°30).

La macrofauna submareal, por su parte, estuvo compuesta por un total de 73 taxa en marzo 2021, y 83 taxa en septiembre de 2021, mayoritariamente de moluscos, poliquetos y crustáceos. De ellos, los moluscos constituyeron el grupo de organismos más abundantes en los alrededores de la Central Termoeléctrica Guacolda, destacando particularmente el caracol Incatella cingulata por sus densas agregaciones locales y su alto aporte a la biomasa total del sector. Por otro lado, la riqueza promedio por estación de muestreo fue de 20 taxa, lo cual, sumado a una uniformidad relativamente constante, elevó el índice de diversidad hasta una de sus cifras más altas en el último tiempo (≈ 1,90 nats/ind en marzo y 1,81 en septiembre). Distintas medidas de evaluación ambiental vincularon estos resultados a niveles moderadamente bajos de perturbación biótica, solo notando en ST-G3 una condición un poco más agravada en marzo, y en ST-G4 una condición un poco más agravada en septiembre, a raíz de la aparente proliferación de gusanos capitélidos. Asimismo, la estructura comunitaria fue bastante disímil entre estaciones de muestreo, detectando múltiples grupos de muestras significativamente distintas entre sí. Ello estuvo sobre todo marcado por la densidad poblacional de los moluscos Incatella cingulata y Linucula pisum, así como también por la ocasional prevalencia de ciertas especies de poliquetos oportunistas. El alto impacto de estos grupos sobre la comunidad ha demostrado ser una constante en las últimas campañas, corroborando, nuevamente, un efecto significativo de la temporalidad de muestreo sobre las características comunitarias de la macrofauna presente en torno a la península Guacolda.

Respecto a la epibiota submareal, esta estuvo compuesta por un total de 58 taxa en marzo y 56 taxa en septiembre de 2021, mayoritariamente de invertebrados bentónicos. Alrededor del 89 % de todos los organismos contabilizados correspondieron a moluscos gasterópodos, debido a las densas agregaciones del caracol

Incatella cingulata que elevan la abundancia del área de estudio a un promedio aproximado de 182 ind/m2 en marzo y a 466 ind/m2 en septiembre. La flora y fauna sésil, en tanto, llegó a cubrir cerca del 71 al 74 % de las transectas submareales desplegadas en torno a la península Guacolda, destacando especialmente la extensión de las algas crustosas y organismos filtradores, tales como el picoroco, Austromegabalanus psittacus observados en marzo de 2021, y de algas rodófitas y calcáreas tipo Mesophyllum observadas en septiembre de 2021. Si bien ambos ensambles de organismos presentaron niveles de riqueza relativamente parecidos, la mayor dominancia local de I. cingulata produjo que el conjunto de especies móviles fuera, en general, levemente menos diverso que el conjunto sésil".

En conclusión, DIRECTEMAR señaló lo siguiente:

"- En relación a las exigencias asociadas a la RCA N°44/2014, sobre calidad de agua de columna de agua, sedimentos marinos y comunidades bentónicas, el diferencial térmico analizado, mostró una clase de agua nivel 1, es decir, de buena calidad, indicando que la influencia de la descarga sobre la temperatura y la salinidad del cuerpo de agua marino en la zona de la descarga tendrían un efecto transitorio, y sería rápidamente disipado por el medio. Los parámetros químicos medidos en agua y sedimentos presentaron concentraciones dentro de los rangos históricos registrados. La macrofauna submareal, por su parte, estuvo compuesta mayoritariamente de moluscos, poliquetos y crustáceos. De ellos, los moluscos constituyeron el grupo de organismos más abundantes en los alrededores de la Central Termoeléctrica Guacolda, destacando particularmente el caracol Incatella cingulata por sus densas agregaciones locales y su alto aporte a la biomasa total del sector. Respecto a la epibiota submareal, esta estuvo compuesta mayoritariamente de invertebrados bentónicos. Alrededor del 89 % de todos los organismos contabilizados correspondieron a moluscos gasterópodos.

Se observa cumplimiento del Plan de Vigilancia ambiental del medio marino, de acuerdo a lo requerido por diferentes RCAs".

Seguimientos reportados por el Titular a través del Sistema de Seguimiento Ambiental de RCA.

Mediante ORD. O.R.A. N°45 de fecha 10 de mayo de 2022 (anexo 5) y ORD. O.R.A. Nº31 de fecha 05 de abril de 2022 (anexo 6) esta Superintendencia encomendó la revisión de 39 seguimientos ambientales a DIRECTEMAR Atacama (indicados en punto 4.4.1.2. de este informe). Mediante oficio G.M. CAL Ord. N° 12.600/367 del 15 de junio de 2022 (Anexo 7), DIRECTEMAR Atacama dio respuesta a la solicitud, entregando un reporte técnico en el cual informó lo siguiente:

- MATRIZ AGUA DE MAR Calidad del agua:

La estructura térmica de la columna de agua mostró un mínimo gradiente vertical a medida que aumenta la profundidad, sin presencia de una termoclina en las estaciones CG-H1, CG-K, CG-L, CG-V, CG-5.1 Y CG-5.2 en las campañas de invierno y verano entre los años 2013 y 2021. En estas estaciones la temperatura de invierno fluctuó entre los 13, 0 a 14,0°C (excepto en 2017 que fluctuó entre 14,2 a 15,5°C), y en verano entre 14 a 17°C (excepto en verano 2016 que fluctuó entre 18,3 a 19°C por la influencia del evento El Niño). Es importante mencionar que las termoclinas que se generaron en la estación próxima a la descarga de aguas de refrigeración del complejo termoeléctrico Guacolda (CG-G1) se debió a la presencia, dispersión y dilución de la pluma térmica de la central y no representa una anomalía térmica natural del sistema costero estudiado, temperatura que se dispersa a los 4 a 6 metros de profundidad. En este punto la temperatura superficial en verano alcanza un máximo de 21°C, y en invierno alcanzó un máximo alrededor de los 16°C Por otro lado, al realizar la comparación del diferencial térmico, es posible determinar que todas las estaciones a excepción de CG-G1 se clasificaron en Clase 1, con aguas de buena calidad y aptas para la protección de las comunidades acuáticas. La estación frente a la descarga (CGG1) se clasifica con categoría Clase 3 (Regular calidad. Indica un agua apta para actividades portuarias, navegación u otros usos de menor requerimiento en calidad de agua), clase 2 (Buena calidad. Indica un agua apta para el desarrollo de la acuicultura y actividades pesqueras extractivas y para los usos comprendidos en la Clase 3). Generalmente en las campañas de invierno, y en clase 1 en las campañas de verano durante los años 2013 a 2021. Los resultados de los análisis realizados en las matrices columnas de agua, no muestran desviaciones respecto del comportamiento esperado, manteniéndose dentro de sus respectivos rangos históricos.

MATRIZ SEDIMENTARIA

En el año 2013 las concentraciones de Hierro promedio registradas fueron de un 2,5% y pueden ser consideradas superiores al límite umbral de efectos potenciales sobre la biota (2%) e inferiores al límite de efectos severos sobre la biota marina (10%).

En 2014 se observa un alza sostenida de este metal en la estación CG-H1 (estación cercana a Compañía de Aceros del Pacífico) y en otras estaciones que están sobre el límite PEL (estaciones CG-G4 y CG-G6, ambas cercanas al muelle de descarga de Carbón), lo cual indica que se encuentra sobre el límite de efectos severo para la biota (Ver Registro N°31 y Registro N°32).

Esta situación cambia en 2015, arrojando valores dentro de norma, bajo el límite de umbral de efectos potenciales sobre la biota.

En 2016, 2017, 2018, 2019 la mayoría de las estaciones esta sobre el límite de efectos potenciales pero bajo el límite de efectos severos sobre la biota, y mayores a lo medido en la estación control (Ver Registro N°33, Registro N°34, Registro N°35 y Registro N°36).

En 2020 la estación CG-H1 cercana a CAP arroja valores sobre el límite de efectos severos para la biota (Ver Registro N°37).

En 2021 solo en una estación cercana al muelle, está sobre el límite de efectos potenciales pero bajo el límite de efectos severos sobre la biota (Ver Registro N°38), (énfasis agregados).

De acuerdo a los valores referenciales de calidad de sedimentos propuestos por el Gobierno de Canadá (ISQG, 2002), las concentraciones de cadmio (Cd) obtenidas en la campaña del año 2013, 2014, 2015, 2016, 2017, 2019, 2020 y 2021, son menores al límite inferior propuesto por la ISQG de Canadá para la protección de la vida acuática (0,7mg /kg ISGQ a 4,2 mg/kg PEL), e indican la ausencia de procesos de acumulación de este elemento en los fondos se dimentarios del área de estudio. En 2018 hay un alza de este metal que sobrepasa el límite de efectos potenciales pero bajo el límite de efectos severos sobre la biota. Estos resultados son un indicio de que los sedimentos submareales no han estado afectados por este elemento en particular.

Los valores de Cromo registrados en 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021 son menores al límite inferior propuesto por la ISQG de Canadá para la protección de la vida acuática (52,3 mg/Kg ISQG a 160 mg/Kg PEL), e indican la ausencia de procesos de acumulación de este metal (ISQG 2002). Estos resultados son un indicio de que los sedimentos submareales no han estado afectados por este elemento en particular.

De acuerdo a los estándares de calidad de sedimentos para los niveles Cobre, establecidos por el Gobierno de Canadá, la estación CG-G1 (descarga) fue la única que evidenció concentraciones de Cu que sobrepasan el nivel basal (ISQG; 18,7 mg/Kg), pero son inferiores al límite PEL o de efectos probables sobre la biota impuesto por la ISQG de Canadá (108 mg/Kg) en el año 2013. Este comportamiento permanece en 2014, y 2018 (en este año las estaciones cercanas al muelle sobrepasan el límite de efectos probable) y en 2019 en la estación CG-H1 (estación cercana a Compañía de Aceros del Pacífico) sobrepasan el límite de efectos probable. En 2015 y 2017 este panorama cambia para la estación ST-G6 (muelle) y CG-G1 (descarga), que arrojan valores sobre el límite PEL, es decir, sobre los efectos severos para biota (Ver Registro N°39 y Registro N°40). En 2016 los valores de las estaciones que sobrepasan el nivel basal son dos (cercanas a muelle) y ninguna esta sobre el límite PEL. En 2020 la estación CG-G1 (descarga), arrojó valores sobre el límite PEL, es decir, sobre los efectos severos para biota (Ver Registro N°37), y en 2021 las estaciones cercanas al muelle sobrepasan el límite de efectos severos para la biota respecto de este metal según estándares canadienses (Ver Registro N°38).

Estos resultados difieren de los expuestos en la línea base que indican valores de cobre dentro de la normativa extranjera en las estaciones cerca de la descarga

Estos resultados difieren de los expuestos en la línea base que indican valores de cobre dentro de la normativa extranjera en las estaciones cerca de la descarga (énfasis agregados).

No existen valores referenciales para Níquel en la ISQG (2002) del Gobierno de Canadá, no obstante, McDonald (1996) entrega valores de referencia de calidad de sedimentos para el Estado de Florida (EEUU) de 15,9 ppm (rango inferior de efectos, basado en estudios de toxicidad crónica) y 42,8 ppm (rango medio de efectos, basado en estudios de toxicidad aguda). Considerando estas concentraciones como estándares referenciales de calidad, es posible determinar que los niveles de Ni registrados en 2013, 2014,2015, 2016, 2017, y 2018 indican ausencia de procesos de alteración o perturbación asociados a este metal. En 2019, 2020 estos valores aumentan en la estación CG-H1 (cercanas a CAP), y en la descarga (CG-G1), respecto de la estación control (Ver Registro N° 41 y Registro N° 37). En 2021 este metal se observa con valores sobre el límite de efectos probables para la biota en las estaciones cercanas al muelle de Guacolda (Registro N° 38). Para los años 2019 al 2021 los valores de Níquel difieren de lo expuesto en la línea base (énfasis agregados). (Ver Registro N° 42)

En 2013, 2014, 2016, 2017, 2018, 2020, y 2021 el Plomo (Pb), de acuerdo a los estándares de calidad de sedimentos establecidos por el Gobierno de Canadá para este metal, los resultados registrados son inferiores al nivel umbral de posibles efectos sobre la vida acuática (inferiores a 30,2 mg/kg), e indican la ausencia de procesos de acumulación de este metal en la matriz sedimentaria (ISQG 2002). En 2015, 2019 el promedio de Pb de las estaciones evaluadas supera el límite de efectos potenciales sobre la biota, y en las estaciones ST-G6 y CG-H1 superan el límite de efectos severos sobre la biota (ISQG, 2002) (Ver Registro N°43 y Registro N°44). (énfasis agregado).

No existen valores referenciales para el Vanadio en la ISQG (2002) del Gobierno de Canadá. De acuerdo a Moore (1991), los valores típicos en sedimentos marinos se encuentran en el rango de 20-150 mg/kg, por lo tanto, los registros obtenidos en 2013, 2014, 2015, 2016 pueden ser considerados normales.

Los resultados expuestos en 2017 y 2021 difieren de lo expuesto en la línea base (...) (Ver Registro N°45, Registro N°46, Registro N°44, Registro N°37, Registro N°38, Registro N°47 y Registro N°48) (énfasis agregado).

Por su parte, el Carbono orgánico total (C.O.T.), de acuerdo a Persaud et al. (1993), arrojó valores que se encontraron bajo el límite de efectos potenciales sobre la biota (1%) a excepción de las estaciones cercanas al muelle de descarga de Carbón, ST-G3 y ST-G6, además éste último (G6) se encuentran sobre el límite de efectos severos (10%) en 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 y 2021 con pequeñas variaciones estacionales. En 2020, este mismo comportamiento se registró además en la estación cercana a la descarga (Ver Registro N°49, Registro N°50, Registro N°51, Registro N°52, Registro N°53, Registro N°54, Registro N°57, Registro N°58) (énfasis agregado).

El primer monitoreo anual del Programa de Vigilancia Ambiental (PVA) de la Unidad 5, en cumplimiento con lo señalado en la Resolución de Calificación Ambiental N°191/2010 de la Comisión Regional del Medio Ambiente, Región de Atacama se realiza el año 2016, donde se encuentra carbón particulado en la estación cercana a muelle, con un valor superior a la estación control, no existe evidencia científica que este material provenga de las instalaciones de Guacolda. En 2017 este valor bajó considerablemente y en el año 2018 no hay registro cuantificable en el sector cercano al muelle ni en la estación control. En 2019 los resultados del análisis químico indicaron un bajo contenido de carbón particulado inferior a 0,1%, cuyas concentraciones se hallaron muy por debajo de lo registrado en el año 2016, donde el valor fue más de 10 veces superior al promedio observado. En 2020, El carbono mineral particulado (i.e. gránulos de carbón mineral depositado en el sedimento marino debido a actividades antropogénicas), registró concentraciones entre 0,0003 y 0,028 %. La única excepción a esta generalidad se produjo en la estación ST-G5 (cercana al muelle), la cual presentó un máximo de 8,82 %. Los resultados igualmente sostuvieron que las concentraciones de estas partículas fueron bajas, las cuales posiblemente se asocien al transporte y depositación de las partículas por el viento. En 2021 los resultados del análisis químico indicaron una baja concentración de carbón particulado inferior a 0,015 %, muy por debajo de lo registrado en el año 2016, donde el valor fue superior en más de un 90 % con respecto al promedio observado en esta campaña. Si bien existen pocos antecedentes sobre el contenido de carbón en sedimentos cercanos a actividades industriales asociadas a puertos

marítimos y centrales termoeléctricas a carbón se han encontrado contenidos de carbón particulado que van desde 2 % a 11% (Johnson & Bustin 2006), lo que indicaría que las concentraciones de carbón asociados a la Central Termoeléctrica Guacolda serían comparativamente inferiores a otras zonas de características similares.

Los hidrocarburos totales registraron concentraciones inferiores a los límites de detección en todas las estaciones evaluadas y en todos los estudios revisados del 2013 al 2021

La composición granulométrica de la matriz sedimentaria del área de estudio reveló que la fracción arena fue la más predominante, con valores por sobre el 60% en todas las estaciones durante los años 2013 a 2021, variando entre arena gruesa, y media, concordando con lo estudiado en la línea base. Estas fluctuaciones temporales evidencian un ambiente altamente dinámico y que se encuentra expuesto a múltiples forzantes de transporte y sedimentación del sustrato, debido a su cercanía a la costa.

En consecuencia, respecto a la matriz sedimentaria y lo señalado por DIRECTEMAR y según revisión de esta Superintendencia es posible señalar lo siguiente:

Hierro:

Año 2014: En la estación CG-H1 (cercana a CAP) se registró 12,1 % de hierro, en estación ST-G4 (cercana a muelle) se registró 8,6 % de hierro y en estación ST-G6 (cercana a muelle) un 26% de hierro, valores sobre la normativa canadiense que indicaría un efecto severo sobre la biota marina (sobre 4%).

Año 2016: En estaciones ST-G4, ST-G6, CG-H1 las concentraciones de hierro se encuentran sobre 2% el cual es el límite de efectos potenciales para la biota, pero están bajo el límite de efectos severos sobre la biota marina (4%).

Año 2017: La concentración de hierro en sedimento en todas las estaciones muestreadas están bajo los 20.000 mg/kg (bajo 2%), por lo tanto bajo el límite de efectos potenciales para la biota.

Año 2018: La concentración de hierro en sedimento en todas las estaciones muestreadas (ST-G3, ST-G4, ST-G5, ST-G6) están sobre los 40.000 mg/kg, es decir sobre 4% lo cual corresponde a valores sobre el límite de efectos severos para la biota marina (4%). La estación ST-GC es control y presenta un valor de 8.652 mg/kg (8,6%).

Año 2019: La concentración de hierro en sedimentos solo en la estación GC 5-2 supera el 4% de concentración, por lo cual está sobre el límite de efectos severos sobre la biota. Las estaciones CG-K, ST-G5, ST-G4 y ST-G6 se encuentran sobre el 2%, es decir, sobre el límite de efectos potenciales a la biota.

Año 2020: Estación CG-G1 presenta 43.435 mg/kg de hierro en sedimento, estación ST-G5 presenta 55.237 mg/kg de hierro y estación ST-G4 presenta 43.592 mg/kg, por lo tanto estas 3 estaciones tienen valores de hierro en sedimento sobre el límite de efectos severos para la biota (sobre 40.000 mg/kg o 4%).

Año 2021: Estaciones CG- 5-2, ST-G5, ST-G4 y ST-G6 registraron valores sobre 20.000 mg/kg de hierro en sedimento, valores sobre el límite de efectos potenciales para la biota (sobre 20.000 mg/kg o 2%) pero bajo el límite de efectos severos.

Cabe señalar que los altos valores de hierro en sedimento registrados entre 2014 y 2021 dan cuenta de una sedimentación de partículas de carbón, y tal como lo indica el considerando 4.4.4 f) f.1) de RCA N°56/2006 "(...) este carbón o coque de petróleo poseen concentraciones variables de Níquel y Vanadio, material que potencialmente podría modificar las características químicas de los sedimentos". Por lo que tal como indica Persaud et al. (1993), niveles de concentración de hierro en la cubierta sedimentaria hasta 20.000 mg/kg, no afectarían el desarrollo de la biota marina asociada a los sedimentos.

Así mismo DIRECTEMAR concluyó lo siguiente: "Los valores observados en las campañas del año 2013 al 2021 varían entre estaciones de monitoreo siendo mayores en las estaciones cercanas al muelle de descarga de carbón, las que se encuentran variando entre el límite de efectos potenciales y sobre el límite de efectos severos sobre la biota".

Cobre:

Año 2015. La concentración de Cobre en la estación ST-G6 fue de 209 mg/kg valor que supera en 101 mg/kg el valor de la normativa canadiense, es decir, esta sobre el límite que indicaría efectos severos para biota (límite de 108 mg/kg).

Año 2017. Estación CG-G1 (descarga), registró valores de Cobre en sedimento sobre el límite PEL (116 mg/kg), es decir, sobre los efectos severos para biota (sobre 108 mg/kg).

Año 2020: En estación CG-G1 se registró 139,64 mg/kg, valor sobre el límite PEL (108 mg/kg), es decir, sobre límite de efectos severos para biota.

Año 2021: En estación ST-G5 se registró 166,66 mg/kg, valor sobre el límite PEL (108 mg/kg), es decir, sobre límite de efectos severos para biota.

Así mismo DIRECTEMAR concluyó lo siguiente: En sedimentos marinos, es muy probable que niveles de concentración de cobre mayores a 108,2 mg/kg (PEL), generen efectos adversos en las comunidades subacuáticas, como lo que se observa para la estación de la descarga de la termoeléctrica Guacolda desde 2013 a 2021 (Buchman 2008).

Níquel:

Año 2019: Concentración de níquel es mayor al control (ST-GC) en estación CG-H1 (cercano a CAP), y en 3 estaciones (CG-K, GC-5.2 y ST-G5 (cercano a muelle) de acuerdo a McDonald (1996), todas las estaciones se encuentran sobre límite que produciría ciertos efectos a la biota (15,9 ppm) pero bajo el límite de efecto medio según toxicidad aguda. Pese a que valores no permiten establecer si se generarán efectos de toxicidad sobre biota marina, cabe señalar que los niveles de níquel han aumentado considerablemente en comparación a otros años en el sedimento marino.

Año 2020: En estación CG-5.2 los valores se encuentran levemente superando el rango inferior basado en estudios de toxicidad crónica (15,9 ppm), pero estos valores no generarían efectos sobre la biota de acuerdo a McDonald (1996).

Año 2021: En estaciones CG-5.2, ST-GC (control) y CG-H1 se registraron valores sobre el límite probable de efectos (15,9 ppm= 15,9 mg/kg), aunque estos valores no indican una certeza de que ocurran efectos sobre la biota.

De acuerdo a la línea base de medio marino Proyecto Central Guacolda Unidad 3 y Proyecto Adaptación de Unidades a la Nueva Norma de Emisión Para Centrales Termoeléctricas (Adenda 1), solo en año 2019 en estación CG-K se registró un valor superior a lo registrado en la misma estación en línea base para el parámetro níquel.

Así mismo DIRECTEMAR concluyó lo siguiente: Para sedimentos marinos, se ha descrito que niveles de concentración níquel inferiores a 15,9 mg/kg, no serían perjudiciales para el desarrollo de la biota marina asociada a este tipo de matriz, lo que se observa en las estaciones monitoreadas de la termoeléctrica Guacolda desde los años analizados 2013 a 2018, pero que se superan desde el 2019 al 2021 (Buchman 2008).

Plomo:

Año 2015: Promedio de Plomo (Pb) en PVA de enero de 2015 fue de 35,42 mg/kg superando el límite de efectos potenciales sobre la biota (ISQG, 2002) y en el caso de estación ST-G6 cercano a muelle el valor es de 226 mg/kg, incluso supera al doble el límite de efectos severos sobre la biota (límite 112 mg/kg). En el caso del PVA de julio 2015 si bien el promedio de plomo (Pb) registrado en sedimento fue menor a la normativa canadiense, en el caso de estación ST-G6 el valor fue de 67,5 mg/kg superior al límite de efectos potenciales sobre la biota.

Año 2019: En PVA, 4° trimestre, la estación CG-G1 registró 11,7 mg/kg de Plomo (Pb), estación CG-F3 21 mg/kg y estación CG-FK 34 mg/kg. Este último supera el límite de efectos potenciales sobre la biota (30,2 mg/kg). En resultados semestrales se observan valores entre 2 y 18,9 mg/kg para el primer semestre y valores entre 2,3 mg/kg y 14,6 mg/kg en segundo semestre, todos valores bajo el límite de efectos probables para la biota.

Todos estos resultados se encuentran dentro de las concentraciones detectadas en otras localidades de Chile, las cuales llegan a alcanzar valores máximos de 94,2 mg/kg (Valdés et al. 2010)

Así mismo DIRECTEMAR concluyó lo siguiente: Para la biota asociada a sedimentos marinos, niveles de concentración de plomo que superen los 30,2 mg/kg (nivel TEL) probablemente podrían desencadenar efectos no deseados en su desarrollo (Buchman 2008), lo que para las estaciones analizadas para el complejo Guacolda solo ocurrió los años 2015 y 2019.

Vanadio:

Año 2017: Estaciones CG-G1-M y CG-G1-R presentan valores de 238 mg/kg y 241 mg/kg lo cual supera con creces el rango habitual de vanadio en sedimento marino según Moore (1991) el cual sería entre 20 y 150 mg/kg.

Año 2018: Los valores en estaciones muestreadas se encuentran entre 20,2 mg/kg y 128,7 mg/kg dentro del rango habitual de Vanadio en sedimento marino según Moore (1991) el cual sería entre 20 y 150 mg/kg.

Año 2019: Los resultados semestrales presentan valores entre 17,3 y 110 mg/kg para el primer semestre y valores entre 21,2 y 115,6 mg/kg en segundo semestre, todos valores bajo el límite de rango habitual de vanadio en sedimentos marinos según Moore (1991) el cual sería entre 20 y 150 mg/kg.

Año 2020: En estación CG-5.2 los valores se encuentran levemente superando el rango inferior basado en estudios de toxicidad crónica (15,9 ppm), pero estos valores no generarían efectos sobre la biota de acuerdo a McDonald (1996

Año 2021: En estaciones CG-5.2, ST-GC (control) y CG-H1 se registraron valores sobre el límite probable de efectos (15,9 ppm= 15,9 mg/kg), aunque estos valores no indican una certeza de que ocurran efectos sobre la biota.

En cuanto a los valores de vanadio en sedimento marino registrados en línea base de medio marino Proyecto Central Guacolda Unidad 3 es posible indicar que para el año 2017 las estaciones CG-G1, CG-H1, CG-K y CG-L registraron valores superiores a lo registrado en la misma estación en línea base, destacando que en CG-G1 el valor fue de 241 mg/kg y superó el rango máximo habitual en sedimentos marinos según Moore (1991) el cual sería entre 20 y 150 mg/kg. Moore (1991). Todas las estaciones registradas en año 2018 y 2019 registraron valores superiores a lo registrado en la misma estación en línea base. En año 2020 estación CG-G1 y CG-K registraron valores superiores a lo registrado en la misma estación en línea base. Para año 2021 estaciones CG-G1, CG-H1 y CG-K registraron valores superiores a lo registrado en la misma estación en línea base.

Cabe señalar además que el mismo titular indicó que según "literatura especializada, un estudio realizado por Valdés y Castillo (2014) sobre la calidad ambiental de los sedimentos marinos en el sistema de bahías de Caldera (Región de Atacama), indican valores para vanadio que fluctuaron entre 114,8 mg/kg y 129,9 mg/kg".

Así mismo DIRECTEMAR concluyó lo siguiente: "En concentraciones altas, el vanadio puede ser considerado como un contaminante tóxico, generando efectos adversos en el desarrollo de la biota marina al encontrarse en magnitudes superiores a 57 mg/kg (referente AET, Buchman 2008), lo que se observa en base a los resultados expuestos en los años 2017 al 2021, ya que sobrepasan los límites de efectos severos en estaciones cercanas al muelle y la descarga".

Carbono orgánico total (C.O.T.)

Año 2013: Estaciones CG-H1 y ST-G3 presentan un valor de Carbono Orgánico Total (COT) menor a 1%, excepto SST-G4 y ST-G6 que presenta 6,05 y 11,48% respectivamente. La estación ST-G6 supera el límite de efecto severo sobre la biota marina (10%).

Año 2014: Solo la estación ST-G6 superó el límite de efecto probable sobre la biota marina (1%), con un valor de 1,55%.

Año 2015: Todas las estaciones registradas presentan un valor de Carbono Orgánico Total (COT) menor a 1%, excepto ST-G6 que presenta 2,33% superando el límite de efecto potencial sobre la biota marina.

Año 2016: Todas las estaciones registradas presentan un valor de Carbono Orgánico Total (COT) menor a 1% que es el límite de efecto potencial sobre la biota marina.

Año 2017: Todas las estaciones presentan valores sobre 1% que es el límite de efecto potencial para la biota y las estaciones CG-F3, CG-K, ST-G5, ST-G4 y ST-G6 presentan un valor sobre 10% superando así el límite de efecto severo para la biota (10%). Destaca la estación ST-G5 cercano al muelle, con un valor de 41,55%, cuatro veces superior al límite de efecto severo sobre la biota marina

Año 2018: Todas las estaciones presentan valores sobre 1% que es el límite de efecto potencial para la biota y la estación CG-G1 presenta un valor de 10,7%, superando el límite de efecto severo para la biota (10%).

Año 2019: Todas las estaciones presentan valores sobre 1% que es el límite de efecto potencial para la biota, pero bajo el límite de efectos severos sobre la biota.

Año 2020: Las estaciones CG-F3, CG-G1, CG-K, ST-G5, ST-G6, ST-G3, ST-G4 y ST-G6 superan el límite de efecto severo sobre la biota marina (sobre 10%).

Año 2021: Las estaciones ST-G6, CG-F3 y CG-K superan el límite de efecto severo sobre la biota marina (sobre 10%).

Cabe señalar que el mismo titular señala que "directrices propuesta por la Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario (Persaud et al. 1993), cuyos autores señalan que las comunidades bentónicas expuestas a niveles de COT menores al 1% evidencian condiciones saludables. Contenidos de COT superiores al 10%, se asocian con condiciones que afectan el desarrollo de este tipo de comunidades.

Así mismo DIRECTEMAR concluyó lo siguiente: "una sobreabundancia puede causar reducciones en la riqueza de especies, abundancia y biomasa, debido al agotamiento de oxígeno y la acumulación de subproductos tóxicos como amoniaco y sulfuros (Hyland et al. 2005), esto se condice en las zonas cercanas al muelle descarga de carbón donde los porcentajes de C.O.T. se observaron sobre el límite de efectos severos (10%).

MATRIZ COMUNIDADES BIOTICAS Ecología submareal

En 2013 se registró que Poliquetos y los Crustáceos, presentaron el mayor porcentaje de representación de especies. La mayor densidad se registró en las estaciones ST-G3, CG-L y CG-G1. Las densidades varían estacionalmente. La mayor riqueza de especie se observó en las estaciones CG-G1 y CG-L, mientras que los valores de diversidad más bajos fueron observados en las estaciones CG-H1 y ST-G4. Según los valores de diversidad y conforme con los valores propuestos por Hendey (1977), las estaciones ST-G3, ST-G4, ST-G6, CG-H1 y CG-K se encontrarían en condición de polución moderada. El análisis de las curvas de relación abundancia/biomasa (curvas ABC), reveló signos de perturbación moderada en las estaciones CG-H1. Los análisis basados en el índice de diversidad y en el índice AMBI, presentan un buen nivel de concordancia al momento de clasificar las estaciones de muestreo en alguna de las categorías de perturbación.

En 2014 los grupos con mayor representación en las distintas estaciones de muestreo variaron estacionalmente y fueron Polychaeta, Crustacea y Mollusca, sin embargo, la mayor abundancia promedio fue aportada por el grupo Nematoda en las estaciones CG-K y CG-F3-G6, mientras la menor densidad estuvo en la estación CG-H1 en verano y en invierno el grupo dominante fue Oligochaeta, Nematoda y Mollusca. La mayor abundancia promedio fue aportada por el grupo Oligochaeta. La mayor densidad se registró en la estación ST-G6, mientras la menor densidad estuvo en las estaciones CG-L y CG-GC. En términos de riqueza de especies, se identificaron un total de 49 taxa en verano y 45 en invierno. La mayor riqueza específica y diversidad fue encontrada en la estación CG-K, mientras que la menor riqueza y diversidad se encontró en la estación CG-H1, estación con peor calidad ambiental en condiciones de polución severa. Tres estaciones presentan una condición ambiental severa (CG-F3, CG-H1 y CG-K). Las estaciones ST-G3 y ST-G4 se encontrarían en condiciones algo severas.

Este patrón se repite en 2015, donde el grupo con mayor representación en las distintas estaciones de muestreo y también más abundante fue Nematoda. La mayor densidad se registró en la estación CG-G1, mientras la menor densidad estuvo en la estación CG-H1. Esta elevada abundancia puede deberse a cierto grado de polución. Los Nematodos son organismos tolerantes al enriquecimiento excesivo por materia orgánica, las cuales pueden estar presentes tanto en condiciones normales como perturbadas, ya que ocupan una posición central en la red alimentaria de detritus (Neher, 2001). La mayor riqueza específica fue encontrada en las estaciones CG-G1 y CG-F3, mientras que la menor riqueza se observó en la estación CG-H1. Por otro lado, la mayor diversidad específica se observó en las estaciones ST-G3 y ST-G4. La

menor diversidad se observó en las estaciones CG-H1 y CG-K. De acuerdo con el método de las curvas ABC, la estación CG-GC estaría en condiciones de polución moderada, el resto de las estaciones presentan un tipo de curva que no evidencia perturbación. Probablemente estos resultados estén condicionados por la alta abundancia y biomasa de Turritella cingulata, con leves diferencias estacionales.

En 2016 en general, los mayores niveles de abundancia correspondieron a los grupos taxonómicos Mollusca y Polychaeta, representados por un 86,30% y 8,65% respectivamente, de los ejemplares recolectados. La especie con el mayor nivel de abundancia fue el Mollusca gasterópodo Turritella cingulata, especie que representó el 79,09% de la abundancia total. Las estaciones con mayores niveles de similitud se caracterizaron por presentar niveles de abundancia altos de moluscos, particularmente de la especie Turritella cingulata. En la estación CG-H1, la macrofauna presentó una estructura comunitaria distinta, donde el grupo Mollusca estuvo ausente. La macrofauna asociada a la estación ST-G4, presentó el mayor nivel de riqueza específica, mientras que en la estación CG-H1 se observó el menor nivel. El valor más alto de abundancia se observó la estación ST-G4, donde la macrofauna se caracterizó por estar conformada por una alta cantidad de moluscos gasterópodos de las especies Turritella cingulata, Tegula euryomphala y Rissoina inca. Así mismo, en la estación ST-G4, se registró el nivel de biomasa más alto, lo cual se relaciona con la presencia de ejemplares de T. cingulata, especie que se caracteriza por presentar un gran tamaño corporal. El menor nivel de biomasa se observó en la estación CG-H1, donde la macrofauna estuvo constituida principalmente por poliquetos y crustáceos. El mayor nivel de diversidad específica se observó en la estación CG-K, mientras que el menor valor correspondió a la estación CG-G1 (descarga). De acuerdo a las curvas ABC para la macrofauna de cada estación de monitoreo, en la mayoría de las estación CG-H1, la posición de la curva de abundancia sobre la de biomasa es indicativo de estrés en la macrofauna bentónica (W < 0), no obstante, es importante tener precaución al interpretar por sí solas las curvas ABC, ya que no discrimina entre las fuentes generadoras del disturbio (antrópico y/o ambiental).

En 2017 se recolectó invertebrados marinos bentónicos, pertenecientes a los grupos taxonómicos Crustacea, Mollusca, Polychaeta, Echinodermata y Otros. El grupo Polychaeta fue el más representativo con un aporte del 36,7% del total de las especies identificadas, seguido por el grupo Crustacea (34,4%). El mayor nivel de abundancia correspondió al grupo taxonómico Mollusca (72,6%), seguido por el grupo Polychaeta (14,7%). La especie más abundante (62,4% del total) fue el gastrópodo Turritella cingulata, cuya presencia se observó en la mayoría de las estaciones monitoreadas. La menor abundancia (0,7%) se registró en el grupo Otros. La macrofauna asociada a la estación CG-GL presentó el mayor número de especies, mientras que el menor nivel de este indicador, se observó en la estación CG-H1. La mayor abundancia se presentó en la estación CG-G1, influenciada por la presencia del gastrópodo Turritella cingulata. Este indicador mostró su mínimo en la estación CGH1. Este patrón se repite los años anteriores. Las curvas ABC para la macrofauna de las estaciones monitoreadas en el presente estudio, observándose según lo descrito por Warwick (1986), un leve grado de perturbación (W<0) en la estación ST-GC, ubicándose la curva de abundancia por sobre la curva de biomasa. En cuanto a las demás estaciones, no se registraron señales de perturbación (W>0), posicionándose la curva de biomasa por sobre la abundancia.

En 2018 se recolectó invertebrados marinos bentónicos, pertenecientes a los grupos taxonómicos Crustacea, Echinodermata, Mollusca, Polychaeta y Otros. Dentro de estos grupos Polychaeta fue el más representativo con un 40,9% del total de las especies identificadas, mientras que los grupos Echinodermata y Otros mostraron un menor aporte, equivalente a un 1,1% cada uno. El mayor nivel de abundancia correspondió al grupo taxonómico Mollusca (81,9%), seguido por el grupo Polychaeta (13,7%). En cuanto al menor nivel de abundancia, este correspondió al grupo Echinodermata (0,1%), representado únicamente por el asteroideo Patiria chilensis. El grupo dominante en cuanto a la biomasa fue Mollusca, con un 99,82% del total, situación atribuida a la presencia del gastrópodo Turritela cingulata cuyo aporte con respecto a la biomasa total, fue de 99,4%. El segundo grupo de relevancia para este indicador, correspondió a Polychaeta con un 0,14% del total. La macrofauna asociada a la estación ST-GC presentó el menor número de especies, mientras que el mayor nivel de este indicador, se observó en la estación CG-G1. La máxima abundancia se observó en la estación CG-K, seguida por ST-G4, mientras que la más baja, se presentó en ST-GC. Las curvas ABC para la macrofauna de las estaciones monitoreadas, arrojaron un leve grado de perturbación en la estación CG5-1 (W<0), atribuible a la presencia proporcionalmente más abundante del anfípodo

Microphoxus sp., los cuales presentaron un pequeño tamaño corporal, lo que se traduce en un bajo aporte en biomasa. En cuanto a las demás estaciones, no se registraron señales de perturbación (W>0), posicionándose la curva de biomasa por sobre la abundancia.

En 2019 la macrofauna submareal estuvo compuesta mayoritariamente de moluscos, destacando particularmente la baja en el número de poliquetos. Los moluscos, por otro lado, se alzaron como el grupo taxonómico más preponderante en el submareal de sustrato blando, siendo los caracoles Nassarius gayii y Turritella cingulata las especies más frecuentemente observadas. La riqueza promedio por estación de muestreo fue baja en especies, lo cual, sumado a la ocasional dominancia de Turritella cingulata, se vio reflejado en una menor diversidad específica. Asimismo, los índices ecológicos revelaron una alta variabilidad espacial entre temporadas, no habiendo una mantención de estos estimadores en las estaciones de muestreo a lo largo del tiempo. El índice W y las curvas ABC detectaron bajos niveles de perturbación biótica en torno a la península Guacolda, siendo particularmente diferente la estación control, CG5-1, con respecto a las demás. Tal patrón, no obstante, estuvo principalmente asociado a la condición semidesfaunada detectada en varios sectores ubicados tanto dentro como fuera del área de estudio. Ello además destacó en el contexto histórico, notándose una sostenida disminución en la riqueza, abundancia y diversidad con respecto a los últimos tres años de muestreo semestral.

En 2020 la macrofauna submareal estuvo compuesta por un 44 % correspondieron a especies de moluscos. En este contexto, los moluscos se volvieron a constituir como el taxón más diverso en especies, seguido en menor medida por el conjunto de los crustáceos y de los poliquetos. Aproximadamente el 79 % de los organismos identificados fueron moluscos, destacando el gasterópodo Incatella cingulata no solo como la especie más frecuentemente observada, sino que, además, como el taxón más abundante de todos. El promedio general para el área de estudio, prácticamente cuadriplicó la cantidad de ejemplares reportados en 2019. En cuanto a la biomasa, I. cingulata también fue la especie de mayor contribución (debido a su abundancia), no obstante, el molusco que, en esta oportunidad, registró un mayor peso seco por individuo fue el caracol Priene scabrum. Distintas medidas de evaluación ambiental vincularon estos resultados a bajos niveles de perturbación biótica a lo largo de toda el área de estudio. Pese a ello, la estructura comunitaria fue relativamente disímil entre estaciones de muestreo, distinguiéndose significativamente las estaciones CG-H1, CG5-1 y CG5-2 de las demás. Ello estuvo sobre todo marcado por la presencia/ausencia de I. cingulata y la ocasional ocurrencia de algunas especies de anfípodos y bivalvos. Asimismo, el impacto de estos grupos ha sido destacado en campañas anteriores, notando con ello un efecto significativo de la temporalidad de muestreo sobre las características comunitarias de la macrofauna submareal en torno a la península Guacolda.

En 2021 la macrofauna submareal estuvo compuesta por un 94 % de moluscos, y en menor % por poliquetos y crustáceos, tanto en invierno como en verano. Aproximadamente el 55 % de todos los organismos identificados correspondieron a moluscos gasterópodos, destacando, nuevamente, el caracol Incatella cingulata por sus densas agregaciones locales y su alto importe a la biomasa total del sector. La riqueza específica anotó un promedio de taxas manteniendo constante la tendencia central entre verano e invierno, y en magnitudes relativamente altas dentro del contexto histórico. Distintas medidas de evaluación ambiental vincularon estos resultados a niveles moderadamente bajos de perturbación biótica, solo notando en ST-G4 una condición un poco más agravada a raíz de la aparente proliferación de gusanos capitélidos (bioindicadores de contaminación orgánica). Por otra parte, la estructura comunitaria fue relativamente disímil entre estaciones de muestreo, detectando múltiples grupos de muestras significativamente distintos entre sí. Ello estuvo sobre todo marcado por la ocurrencia y abundancia del caracol Incatella cingulata, así como también por la ocasional prevalencia de ciertas especies de poliquetos oportunistas. El alto impacto de estos grupos sobre la comunidad ha demostrado ser una constante en el último tiempo, corroborando, nuevamente, un efecto significativo de la temporalidad del muestreo sobre la composición de la macrofauna presente. En general todos los resultados obtenidos para la macrofauna submareal durante los años 2013 a 2021, evidencian que las condiciones ambientales del área son relativamente diferentes para cada estación. Esto estaría explicado por las variables naturales (exposición al oleaje, ubicación en la bahía, entre otros), en concordancia con lo mencionado en la Línea Base.

En consecuencia es posible señalar lo siguiente:

- A partir de 2019 la macrofauna submareal estuvo compuesta mayoritariamente por moluscos, destacando la baja en el número de poliquetos y crustáceos. Además en los distintos años hubo variaciones en cuanto a la riqueza de especies. Si bien los resultados obtenidos para la macrofauna submareal durante los años 2013 a 2021 evidenciarían que las condiciones ambientales del área son relativamente diferentes para cada estación, es relevante mantener el análisis continuo de las variaciones encontradas y complementándolo con los análisis químicos registrados para los sedimentos y columna de agua.

Cabe señalar que ciertos autores indican que en sitios con cierta perturbación antrópica se presenta una mayor biomasa de *Turritella cingulata*, y de acuerdo a los monitoreos realizados, se evidencia un aumento de esta especie al pasar los años (Ortiz, M., & Jordán, F. 2021). Este hecho debería ser abordado por el titular de manera de establecer razones por la que ocurren estos cambios ecológicos.

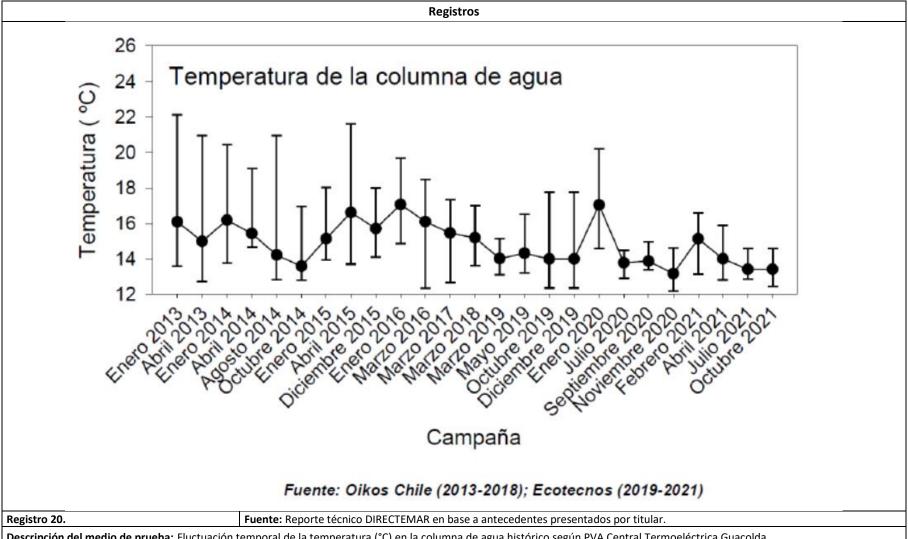
Ecología intermareal

En 2013, 2014, 2015 la abundancia numérica se encuentra dominada por invertebrados. La especie más abundante correspondió a Equinolittorina peruviana, mientras que la Biopelícula, mostró los mayores índices de ocupación espacial del sustrato rocoso (en 2013, 2015) y Ulva sp con C. officinalis en 2014. Si bien, la cobertura biótica alcanzó valores máximos en torno a 100 % en la zona mediolitoral y franja infralitoral, la franja supramareal se encontró mayoritaria mente con el sustrato rocoso no colonizado en 2013 y 2014, que comienza a colonizarse con alga crustosa el 2015. Se observa un ensamble típico de este tipo de ambientes conformado por parches de macroalgas como Gelidium sp., Pyropia columbina y otras especies. Además este tipo de ambientes es propicio para encontrar una diversidad de invertebrados principalmente herbívoros del género Scurria spp., Fissurella spp. y otros consumidores primarios (Stotz et al. 2005). Esto se condice en 2013 y 2014, 2015 con lo que se observó en la franja media del intermareal estudiado en los transectos CG-TN y CG-TS, sin embargo el transecto CG-R1 presenta variaciones anuales.

En 2016, la macrobiota del intermareal rocoso del área de monitoreo estuvo conformada por mayormente por invertebrados marinos de los grupos taxonómicos Mollusca y Crustacea, mientras que los taxa restantes fueron macroalgas bentónicas perteneciente a los grupos Rhodophyta y Chlorophyta dominantes en estos sistemas litorales (Hoffmann y Santelices, 1997). La riqueza de especies fue más alta en la transecta CG-R1, donde se registró un total de 5 especies sésiles y 2 especies móviles, a diferencia de lo registrado en la transecta CG-TS, donde solo se observó la presencia del crustáceo Jehlius cirratus. En cuanto a la abundancia de la macrobiota, se observó en la transecta CG-R1 un número comparativamente mayor de ejemplares, dominando la especie Littorina peruviana. Cabe señalar que es normal la presencia de gasterópodos litorínidos es propia de zonas de intermareal rocoso, particularmente de los sectores supra y mediolittoral del intermareal, según se ha descrito en la literatura científica (Rojas et al. 2000). A diferencia, en la transecta CG-TS, no se registraron especies móviles, por lo que la abundancia fue igual cero.

En 2017 La prospección del submareal rocoso del sector de la península de Gualcolda arrojó una homogeneidad media a alta en la distribución de las especies dentro del área estudiada entre invertebrados y algas. La composición faunística porcentual mostró una clara dominancia del número de especies de moluscos, que estuvieron representados por 40% del total de taxa registrados. El grupo con la segunda mayor riqueza de taxa correspondió a los crustáceos, con 18% del total de taxa. Por su parte, las algas rojas y cnidarios aportaron el % restante. En términos cuantitativos, las principales especies registradas correspondieron a los crustáceos Pagurus sp. y Rhyncocynetes typus, así como también a los moluscos Turritella cingulata y Nassarius dentifer, cuyas densidades promedio representaron el 72% de los recuentos realizados en el submareal. Las estimaciones de cobertura promedio por especie indicaron que la comunidad de organismos sésiles y sedentarios coloniales estuvo dominada por complejo algas rojas coralináceas Mesophyllum-Lithophyllum y, secundariamente, por algas rojas ceramiales. Destacan también como especies de coberturas promedio importantes los recursos Austromegabalanus psittacus y Lessonia trabeculata. En base a criterios de Preston & Preston (1975), las condiciones registradas para las transectas SR1, SR2, SR3 y SR6, se encontrarían bajo el actuar de un ambiente favorable de forma constante o temporal, mientras que SR4 y SR5 se encontrarían bajo un ambiente desfavorable no pronosticable.

Durante 2018, se identificó 8 grupos taxonómicos. De estos, Mollusca abarcó el 33% del total de la comunidad, seguido de Algae con un 28%, Arthropoda con un 15% y Echinodermata con un 10%. Por su parte, cada uno de los grupos restantes tuvo una representación inferior al 7%. El intermareal rocoso estuvo conformado invertebrados marinos de los grupos taxonómicos Mollusca y Crustacea (50%), y 50% de macroalgas bentónicas perteneciente a los grupos Rhodophyta, Chlorophyta


y Heterokontophyta dominantes en estos sistemas litorales (Hoffmann y Santelices, 1997). El grupo Mollusca fue el más representativo con un 38% del total especies registradas, mientras que los menores aportes correspondieron a los grupos Phaephyta (8%) y crustacea (8%), respectivamente En 2019 la epibiota intermareal estuvo compuesta por taxas mayoritariamente de macroalgas y moluscos. Mientras que estos dos grupos se mantuvieron como los principales componentes de la riqueza específica de Guacolda, los crustáceos anotaron la mayor disminución porcentual de una temporada a otra, no observándose además ni cordados ni briozoos en invierno. En términos globales, esto equivalió a un 28 % menos de especies entre campañas de invierno y verano 2019. El 95 % de los organismos móviles registrados fueron moluscos gasterópodos, destacando particularmente los caracoles litorínidos Echinolittorina peruviana y Austrolittorina araucana. Por otro lado, las especies sésiles y sedentarias coloniales registraron una cobertura promedio por transecta que osciló entre 23 y 79 %, destacando el cirripedio Chthamalus cirratus en el intermareal superior, y las algas rojas Hildenbrandia lecannellieri y Gelidium chilense hacia los estratos inferiores, con leves variaciones estacionales.

En 2020 La epibiota intermareal estuvo compuesta por taxas mayoritariamente de macroalgas y moluscos siguiendo el patrón de años anteriores. Aproximadamente el 93 % de todos los organismos móviles registrados fueron moluscos gasterópodos, destacando particularmente las densas agregaciones del caracol litorínido Echinolittorina peruviana en las franjas superiores del intermareal. Por otro lado, las especies sésiles y sedentarias coloniales registraron una cobertura promedio por transecta que osciló entre un 9 y un 41 %, destacando los parches de cirripedios y pequeños mitílidos en el intermareal medio-superior, y algas como la lechuguilla (Ulva lactuca) o de naturaleza costrosas, como Hildenbrandia lecannellieri, en las franjas inferiores. Cabe agregar que tanto las especies sésiles como móviles mantuvieron, respectivamente, niveles similares de abundancia y cobertura a los documentados en campañas de invierno y verano.

En 2021 siguió el mismo patrón. En las campañas de invierno y verano, los caracoles litorínidos, la lechuguilla (Ulva lactuca), y la chasca (Gelidium sp.) se mantuvieron como algunas de las especies más comúnmente halladas en el litoral costero en torno a la Península Guacolda. Aproximadamente el 86 % de todos los organismos móviles registrados fueron moluscos gasterópodos, destacando nuevamente las densas agregaciones de Echinolittorina peruviana en las franjas superiores del intermareal. En cuanto a las especies sésiles, el sustrato estuvo ocupado de forma prevalente por distintas taxa según la localidad, destacando especialmente la densa cobertura de algas foliosas en el intermareal inferior, y los parches de cirripedios (Chthamalus cirratus) y chorito maico (Perumytilus purpuratus) en la franja intermedia. El patrón de zonación costera fue bastante estable en este sentido, aun cuando la zona media y superior se apreciaron un poco más entrelazadas que en otras oportunidades debido a que pequeños grupos de caracoles litorínidos se observaron bajando hacia estaciones sumergidas en busca de alimento (generalmente, láminas de Ulva lactuca).

Los análisis de los años 2013 a 2021 coinciden con lo señalado en la línea base, R.C.A 56/2006".

Descripción del medio de prueba: Fluctuación temporal de la temperatura (°C) en la columna de agua histórico según PVA Central Termoeléctrica Guacolda.

					stación de muest	reo			
	UNIDAD/RCA	CG-H1	CG-G1 descarga	CG-F3	CG-L	CG-V	CG-5-1	CG-5-2	CG-K
Diferencial térmico (°C) PVA 16 Trimestral (03 febrero 2021)	1,2,3,4,y 5	-0,226	-0,138	-0,013					control
Categoría Clase de Calidad PVA Trimestral 16	44	1	1	1					control
Diferencial térmico (°C) PVA 15 Semestral (17 Marzo 2021)	1,2,3,4,y 5	0,045	4,172	-0,167	0,533	0,013	0,456	0,261	control
Categoría Clase de Calidad PVA Semestral 15	44	1	3	1	1	1	1	1	control
Diferencial térmico (°C) PVA 17 Trimestral (17 Abril 2021)	1,2,3,4,y 5	0,217	1,363	-0,465					control
Categoría Clase de Calidad PVA Trimestral 17	44	1	1	1					control
Diferencial térmico (°C) PVA 18 Trimestral (28 Julio 2021)	1,2,3,4,y 5	0.542	1,455	0,505					control
Categoría Clase de Calidad PVA Trimestral 18	44	1	1	1					control
Diferencial térmico (°C) PVA 16 Semestral (01 Septiembre	1,2,3,4,y 5	0,36	1,887	0,235	0,169	0,025	-0,085	0,001	control
Categoría Clase de Calidad PVA Semestral 16	44	1	1	1	1	1	1	1	control
Diferencial térmico (°C) PVA anual (22 Diciembre 2021)	5			solo m	onitoreo de	e carbon			
Categoría Clase de Calidad PVA Anual	191								

Nota

Clase 1: D2: La variación no debe ser mayor a 2 °C (temperatura promedio mensual 2 °C);

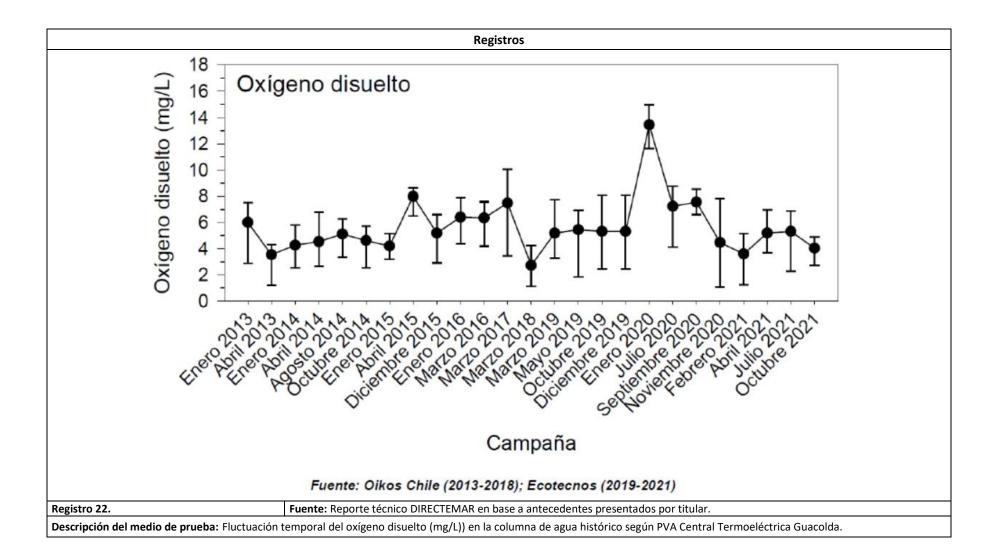
Clase 2: D3: La variación no debe ser mayor a 3 °C (temperatura promedio mensual □3 °C);

Clase 3: D5: La variación no debe ser mayor a 5 °C (temperatura promedio mensual 🗆5 °C).

2: La norma se establece en función de la salinidad del agua, medida como PSU.

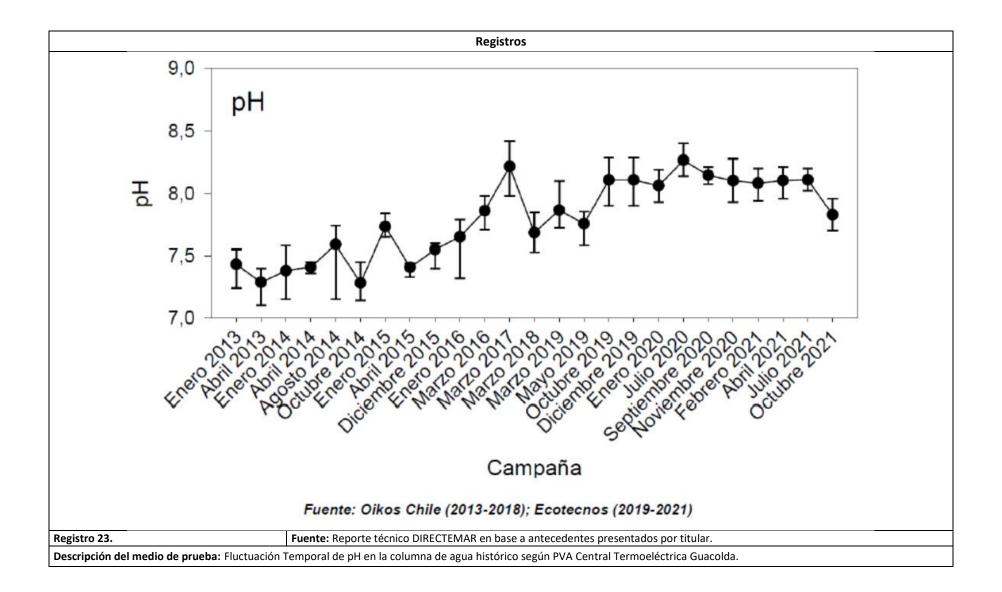
Clase 1: Muy buena calidad. Indica agua apta para la conservación de comunidades acuáticas, para la desalinización de agua para consumo humano y demás usos definidos, cuyos requerimientos de calidad sean inferiores a esta Clase.

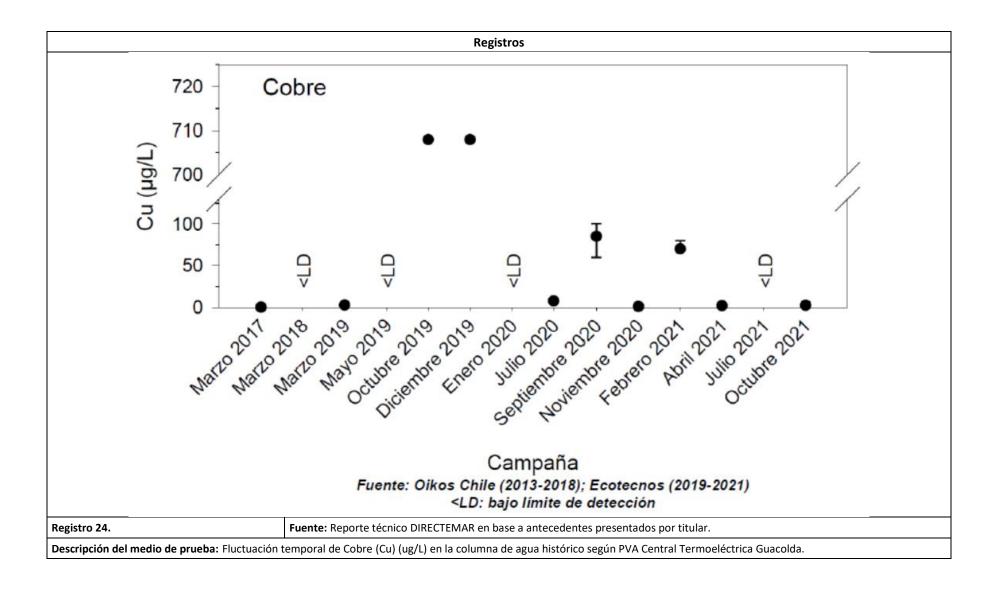
Clase 2: Buena calidad. Indica un agua apta para el desarrollo de la acuicultura y actividades pesqueras extractivas y para los usos comprendidos en la Clase 3.


Clase 3: Regular calidad. Indica un agua apta para actividades portuarias, navegación u otros usos de menor requerimiento en calidad de agua.

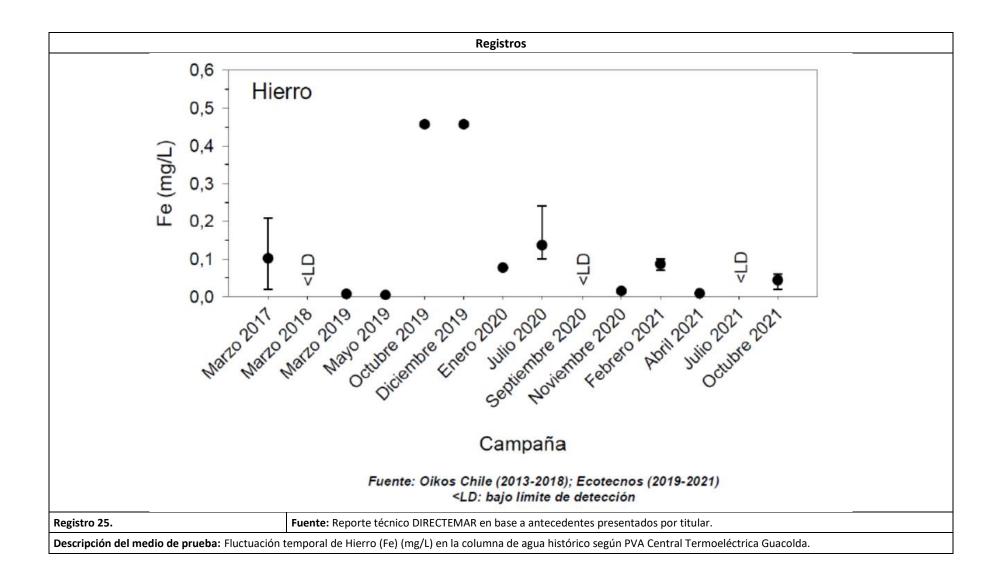
Fuente: Elaboración propia.

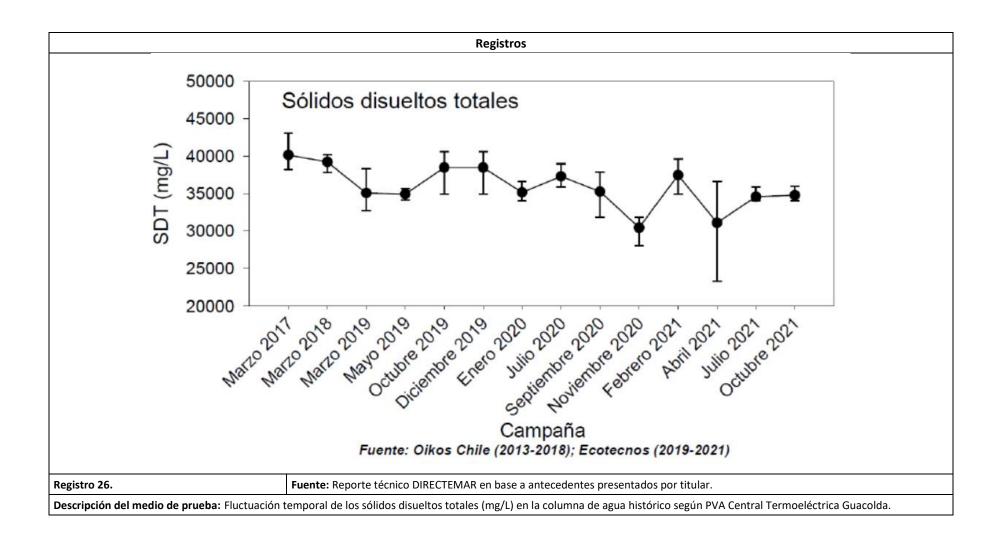
Registro 21. Fuente: Reporte técnico DIRECTEMAR en base a antecedentes presentados por titular.

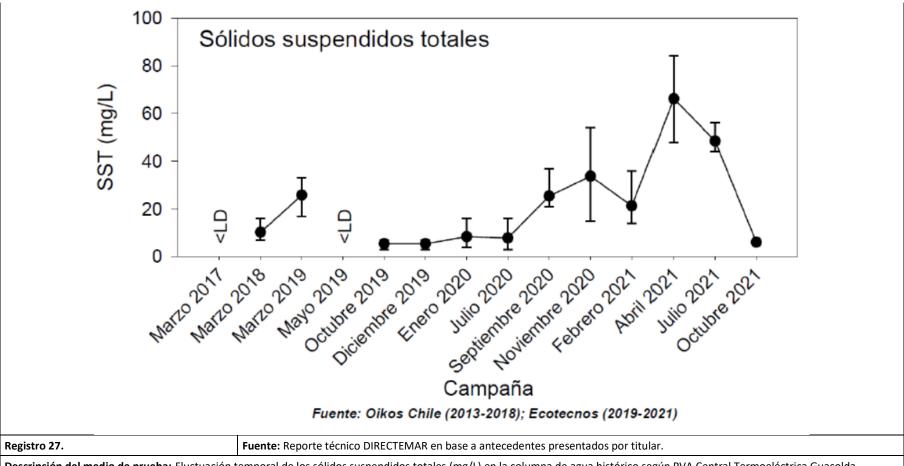

Descripción del medio de prueba: Comparación de diferencial térmico superficial por estación de muestreo en relación a lo establecido en la norma secundaria de calidad propuesta. Monitoreo 2021.

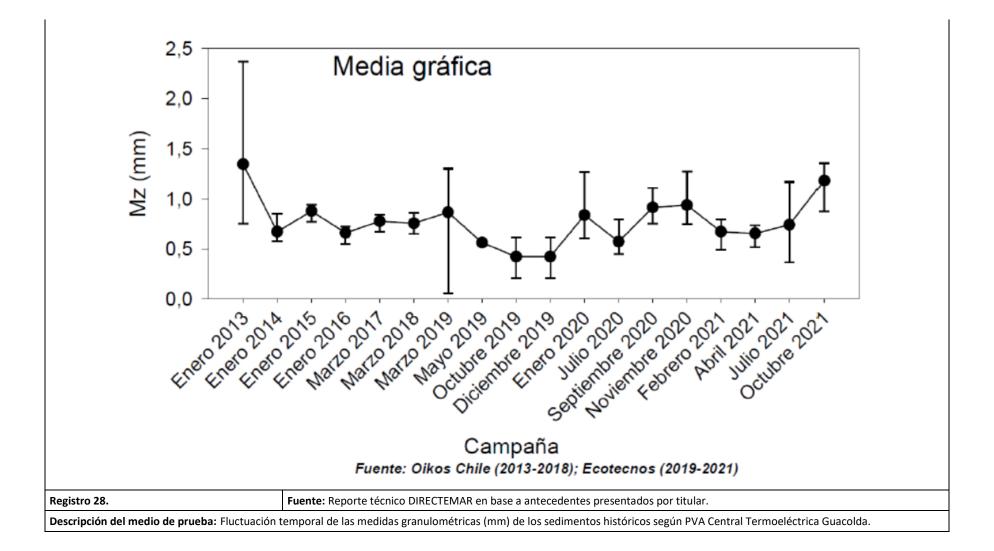


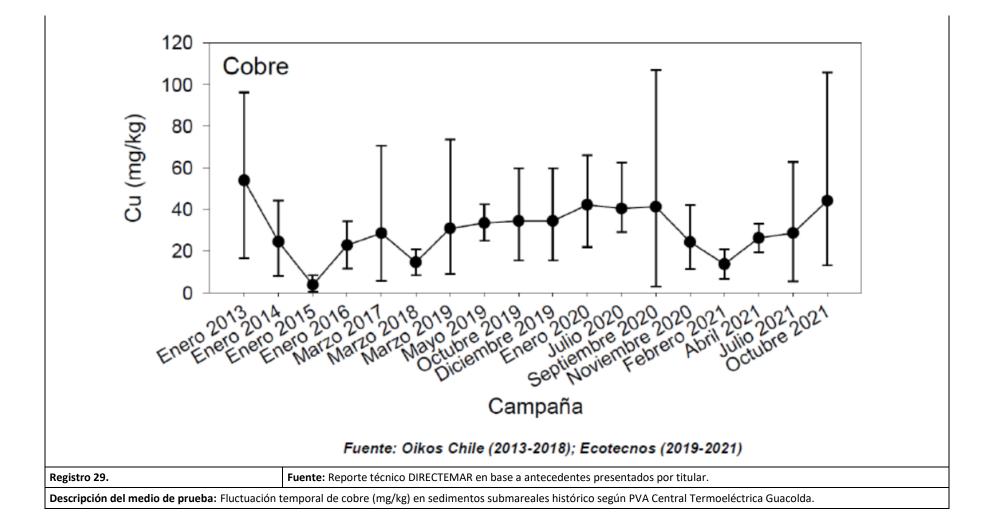
Superintendencia del Medio Ambiente – Gobierno de Chile Teatinos 280, pisos 8 y 9, Santiago / <u>www.sma.gob.cl</u>



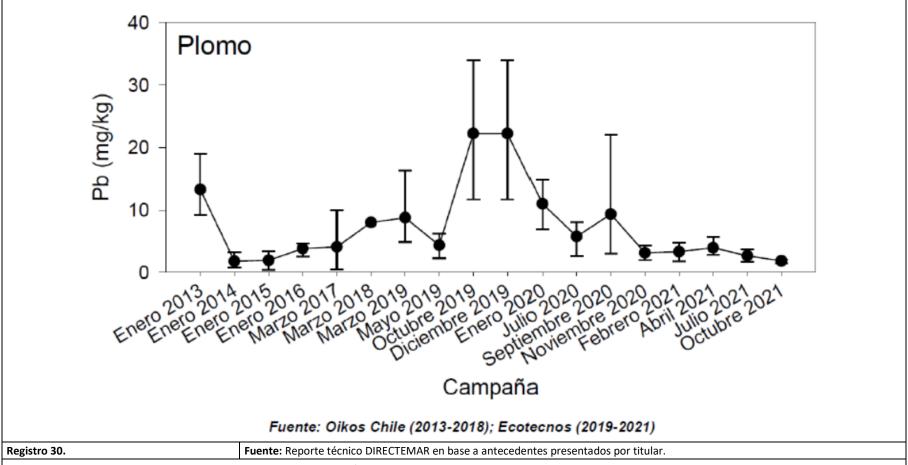








Descripción del medio de prueba: Fluctuación temporal de los sólidos suspendidos totales (mg/L) en la columna de agua histórico según PVA Central Termoeléctrica Guacolda.



Descripción del medio de prueba: Fluctuación temporal de plomo (mg/kg) en sedimentos submareales histórico según PVA Central Termoeléctrica Guacolda.

Tabla 11.- Concentración de parámetros químicos indicadores de la calidad de sedimentos. Monitoreo № 11 PVA del medio marino. Unidad 3. Agosto, 2014.

Estación	C.O.T.	Hidrocarburos totales	Hierro	Cadmio	Cobre	Cromo	Níquel	Plomo	Vanadio
	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CG-F3		-		-	3,63		0,80	0,802	4,65
CG-G1				-	28,4	-	2,94	<0,239	21,1
CG-L		-	-	-	20,7	-	4,21	2,53	56
CG-K		-		-	3,34	-	1,00	<0,248	2,99
CG-H1	0,2	<5,0	124100 (12 %)	<0,025	36,9	12,1	17,9	2,98	127
ST-G3	0,69	<5,0	18012	0,074	6,95	7,85		1,37	
ST-G4	0,44	<5,0	80666 (8,6 %)	<0,023	15,3	5,26	-	2,62	-
ST-G6	1,55	<5,0	267168 (26 %)	0,140	105	7,50	-	13,1	-
Promedio	0,72	<0,5	122486 (12,1%)	0,065	27,5	8,18	5,37	3,0	42,3
CG-GC control	1,12	<5,0	12568 (1,2 %)	0,089	2,76	11,2	3,05	<0,249	17,2
Promedio PVA N° 10	9,44	<5,0	48886	<0,023	23,48	3,31	1,09	14,18	14,32
Promedio PVA N° 9	4,61	<5,0	24982	0,067	14,3	14,1	4,5	<0,236	16,2
	No	ormativa canadie:	nse de calic	iad para se	edimentos	marinos (SQG, 200	2)	
ISQG	1%	-	2%	0,7	18,7	52,3	-	30,2	-
PEL	10%	-	4%	4,2	108	160	-	112	-

Fuente: elaboración del consultor en base a los resultados emitidos por el laboratorio Hidrolab. (ISQG = interim marine sediment quality quidelines; PEL = probable effect levels)

Tabla 11.- Concentración de parámetros químicos indicadores de la calidad de sedimentos. Monitoreo Nº 9 PVA del medio marino. Unidad IV. Agosto, 2014.

Estación	C.O.T.	Hidrocarburos totales	Hierro	Cadmio	Cobre	Cromo	Níquel	Plomo	Vanadi
	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg
CG-F3	-	-	-	-	3,63	-	0,80	0,802	4,65
CG-G1		-			28,4	-	2,94	<0,239	21,1
CG-L	-	-	-	12	20,7	-	4,21	2,53	56
CG-H1	0,2	<5,0	124100 (12 %)	<0,025	36,9	12,1	17,9	2,98	127
ST-G3	0,69	<5,0	18012 (1,8 %)	0,074	6,95	7,85		1,37	
ST-G4	0,44	<5,0	80666 (8,6 %)	<0,023	15,3	5,26		2,62	•
ST-G6	1,55	<5,0	267168 (26 %)	0,140	105	7,50	-	13,1	
Promedio	0,72	<5,0	122486 (12,1%)	0,065	30,98	8,18	6,46	3,38	52,19
CG-K Control	7842	<5,0	2952 (0,2 %)	0,101	3,34	1,85	1,00	<0,248	2,99
Promedio PVA N° 8	9,62	<5,0	25413 (2,5 %)	<0,023	19,3	3,30	1,13	1,86	12,20
Promedio PVA N° 7	4,61	<5,0	24982 (2,4 %)	0,07	16,02	11,80	5,25	<0,236	16,69
	Norm	ativa canadiense	e de calid	ad para s	edimento	s marino	(ISQG, 2	002)	
ISQG	1%	•	2%	0,7	18,7	52,3		30,2	*
PEL	10%		4%	4,2	108	160	-	112	-

Fuente: elaboración del consultor en base a los resultados emitidos por el laboratorio Hidrolab. (ISQG = interim marine sediment quality guidelines; PEL = probable effect levels)

** no había acceso a la zona de muestreo, debido a las amarras de un barco de carga.

Registro 31.

Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: PVAs año 2014 para Unidad 3 (imagen izquierda) y Unidad IV (imagen derecha). Se observa que en cuanto a calidad de sedimentos, para el parámetro Hierro, en la estación CG-H1 se registró 12,1 % de hierro, en estación ST-G4 8,6 % hierro y en estación ST-G6 26% de hierro, valores sobre la normativa canadiense, que indicaría un efecto severo sobre la biota marina (sobre 4%). Respecto al valor de Carbono Orgánico Total (COT) solo la estación ST-G6 superó el límite de efecto probable sobre la biota marina (1%), con un valor de 1.55%.

Figura 1-1. Localización espacial de las estaciones de medición de calidad del agua de mar y sedimentos marinos, macrofauna bentónica de fondos blandos y transectos de cuantificación de macrofauna del intermareal rocoso.

Registro 32.

Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: Localización espacial de estaciones de medición de calidad de agua de mar y sedimentos.

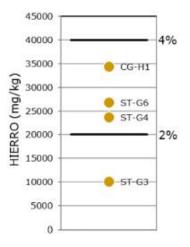


Figura 5.21. Comparación entre las mediciones de hierro en el área de monitoreo y la guía de protección y calidad de los sedimentos acuáticos de Ontario.

Registro 33.

Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: PVA Año 2016, unidad IV. Concentración de hierro (mg/kg) en sedimentos de estaciones de monitoreo ST-G3, ST-G4, ST-G6, CG-H1 en cercanías de muelle Guacolda I y relación con valores de calidad de normativa de Canadá. Se observa que estaciones ST-G4, ST-G6, CG-H1 se encuentran sobre 2% el cual es el límite de efectos potenciales para la biota, pero están bajo el límite de efectos severos sobre la biota marina (4%).

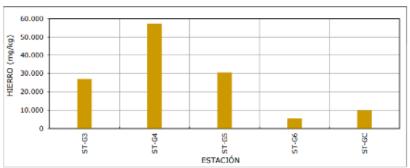


Figura 4.5. Contenido de hierro en sedimentos submareales.

Tabla 4.86. Contenido de hierro en sedimentos submareales

ESTACIÓN	HIERRO (mg/kg)
CG-H1-M	13.585
CG-H1-R	13.102
CG-G1-M	13.401
CG-G1-R	14.099
CG-F3-M	1.575
CG-F3-R	1.984
CG-K-M	6.039
CG-K-R	7.101
CG5-2-M	13.782
CG5-2-R	14.814
ST-G5-M	3.831
ST-G5-R	4.369
ST-G3	5.666
ST-G4	9.445
ST-G6	6.805
ST-GC	3.382

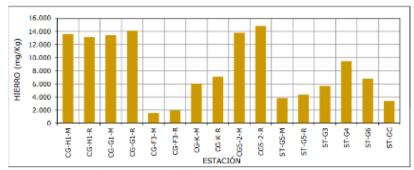


Figura 4.39. Contenido de hierro en sedimentos submareales.

Registro 34.

Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: PVA Año 2017, Muelle Guacolda I. Se observa que la concentración de hierro en sedimentos en todas las estaciones muestreadas está bajo los 20.000 mg/kg (2%), por lo tanto bajo el límite de efectos potenciales para la biota.

4.1.1.5. HIERRO

Tabla 4.5. Contenido de hierro en sedimentos submareales.

ESTACIÓN	HIERRO (mg/kg)
ST-G3	59.101
ST-G4	S.M
ST-G5	65.483
ST-G6	62.185
ST-GC	8.652

SM: Sin muestra

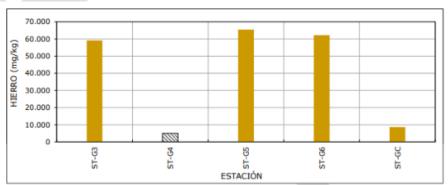


Figura 4.5. Contenido de hierro en sedimentos submareales, ST-G4: Sin muestra.

Registro 35. Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: PVA Año 2018, Muelle Guacolda I. Se observa que la concentración de hierro en sedimentos en todas las estaciones muestreadas están sobre los 40.000 mg/kg, es decir sobre 4% lo cual corresponde a valores sobre el límite de efectos severos para la biota marina (4%). Cabe señalar que estación ST-GC es el control.

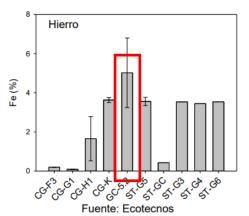


Figura 6.24. Distribución de los valores de concentración de cadmio, cromo y hierro en sedimentos submareales. PVA Semestral N°11 Central Termoeléctrica Guacolda. Huasco, primer semestre 2019.

Tabla 5.17. Estadísticos de la concentración de metales y materia orgánica total (MOT) er los sedimentos submareales. PVA Semestral Nº 11 Central Termoeléctrica Guacolda. Huasco, primer semestre 2019.

Parámetro	Unidad	P	DS	CV
pН		7,549	0,143	1,9
P.E. (Eh)	mV	189,3	130,6	69,0
Arsénico	mg/kg	4,87	3,70	75,9
Cadmio	mg/kg	0,7	0,4	62,9
Cinc	mg/kg	61,8	51,0	82,5
Cobre	mg/kg	43,7	32,3	73,8
Cromo	mg/kg	19,2	5,2	26,9
Hierro	%	2,451	1,956	79,8
Níquel	mg/kg	17,9	11,8	66,3
Plomo	mg/kg	10,2	7,3	71,4
Vanadio	mg/kg	58,08	40,00	68,9
Fósforo Total	mg/kg	89	76	85,3
Nitrógeno Kjeldahl	mg/kg	1.457	1.186	81,4
Carbono orgánico total	%	2,39	2,08	87,1
Azufre en digestión ácida	mg/kg	3105	1.902	61,3
Nitrógeno Total	mg/kg	1.466	1.188	81,1
Sulfato	mg/kg	527	179	34,1
Carbono particulado	%	0,0163	0,0290	178,5
•	Fuente: E	cotecnos		

P.E. (Eh): Potencial Electroquímico con respecto al electrodo estándar de hidrógeno.

Registro 36.

Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: PVA Año 2019 Semestral Unidades 1, 2, 3, 4 y 5. Se observa que en cuanto a la concentración de hierro en sedimentos solo la estación GC 5-2 supera el 4% de concentración, por lo cual está sobre el límite de efectos severos sobre la biota. Por otra parte las estaciones CG-K, ST-G5, ST-G4 y ST-G6 se encuentran sobre el 2%, es decir, sobre el límite de efectos potenciales a la biota. En tabla se observa que el promedio de hierro en las estaciones muestreadas es 2,451%.

Tabla 5.8. Resultados cuantitativos del análisis químico en los sedimentos submareales. PVA Semestral N° 13 Central Termoeléctrica Guacolda. Huasco, Primer semestre 2020.

Parámetro	Unidad	CG	-F3	CG	-G1	CG	-H1	CG-K	
Parametro	Unidad	A	В	A	В	Α	В	Α	В
	Metales y metaloides								
Arsénico	mg/kg	<1,2	<1,2	<1,2	<1,2	<1,2	<1,2	<1,2	<1,2
Cadmio	mg/kg	0,71	0,62	0,5	< 0,43	< 0,43	< 0,43	0,78	0,64
Cinc	mg/kg	33,3	36,26	17.5	16,78	9,28	11,57	26,68	22,79
Cobre	mg/kg	25,45	22,71	139,64	84,19	17,08	18,31	32,95	39,04
Cromo	mg/kg	5,57	5,58	6,75	6,2	4,05	3,74	6,41	8,79
Cromo (VI)	mg/kg	<30	<30	<30	<30	<30	<30	<30	<30
Hierro	mg/kg	15073	21902	43425	28926	14257	15022	23033	23488
Níquel	mg/kg	< 4,06	< 4,06	12,2	11,06	10,96	10,51	7,34	7,82
Plomo	mg/kg	10,61	8,78	< 4,85	< 4,85	< 4,85	< 4,85	7,15	17,42
Vanadio	mg/kg	< 7,42	< 7,42	80,94	56,3	< 7,42	< 7,42	57.58	< 7,42
	Nutrientes								
Fósforo	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
NK	g/kg	0,78	0,7	0,49	0,52	0,28	0,35	0,47	0,83
NT	g/kg	0,78	0,7	0,49	0,52	0,28	0,35	0,47	0,83
				Hidrocart					
HV C5-C10	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
HF C34-C50	mg/kg	<25	<25	<25	<25	<25	<25	<25	<25
HT	mg/kg	<25	<25	<25	<25	<25	<25	<25	<25
				npuestos					
COT	%	17,7	16,5	21,1	11,8	3,5	1,4	17,8	19,5
CP	%	< 0,0001	o,0001	0,00277	0,0001	0,0172	0,00732	0,00138	0,00247
				Anion					
Azufre	mg/kg	6851	6521	5219	3518	1861	1926	6527	6377
Sulfato	mg/kg	327	262	345	268	227	175	260	320
S (-II)	mg/kg	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0
				lediciones					
pΗ		7,916	8,005	8,159	8,103	7,77	7,805	8,195	8,2
ORP	mV	350,4	354,6	387,8	388,5	481,3	478,7	351,5	350,8

Fuente: Ecotecnos

P.E. (Eh): Potencial Electroquímico con respecto al electrodo estándar de hidrógeno; NK: Nitrógeno Kjeldahl;

COT: Carbono Orgánico Total; HV: Hidrocarburos Volátiles; HF: Hidrocarburos Fijos; HT: Hidrocarburos

Totales; NT: Nitrógeno Total; S: Sulfuro; CP: Carbono Mineral Particulado

Tabla 5.8. Resultados cuantitativos del análisis químico en los sedimentos submareales. PVA Semestral Nº 13 Central Termoeléctrica Guacolda. Huasco, Primer semestre 2020.

Dorámetro	Unidad	CG	.5.2	ST	-G5	CG-L	ST-GC	ST-G3	ST-G4	ST-G6
Parámetro	Unidad	A	В	A	В		31-60	51-63	51-64	31-06
Metales y metaloides										
Arsénico	mg/kg	6,59	5,73	<1,2	<1,2	-	<1,2	-	-	-
Cadmio	mg/kg	1,09	<0,43	0,72	0,73	0,5	0,55	< 0,43	0,69	0,64
Cinc	mg/kg	72,59	77,38	56,45	84,82		20,85		-	-
Cobre	mg/kg	49,55	51,84	82,1	124,52	13,16	15,71	-	-	-
Cromo	mg/kg	6,38	6,09	8,53	7,07	5,36	-	10,13	6,16	9,62
Cromo (VI)	mg/kg	<30	<30	<30	<30	-	<30	-		-
Hierro	mg/kg	23622	24868	34333	55237	2264	8914	19049	43592	23963
Niquel	mg/kg	17,01	18,62	9,45	13,18	4,06	4,99	-	-	-
Plomo	mg/kg	11,42	11,49	120,23	63,85	6,06	5,67	-	-	-
Vanadio	mg/kg	58,35	58,77	102,83	191,49	< 7,42	< 7,42	-	-	-
Parámetro	Unidad	CG	.5.2	ST	-G5	CG-L	ST-GC	ST-G3	ST-G4	ST-G6
rarametro	Ullidad	A	В	A	В	CG-L	31-00	31-03	31-64	31-00
				Nutrie	entes					
Fósforo	mg/kg	<1	<1	<1	<1	-	<1	-	-	-
NK	g/kg	1,45	1,31	1,21	1,12		0,34		-	-
NT	g/kg	1,45	1,31	1,21	1,12	-	0,34	-	-	-
				Hidroca						
HV C5-C10	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
HF C34-C50	mg/kg	<25	<25	<25	<25	<25	<25	<25	<25	<25
HT	mg/kg	<25	<25	<25	<25	<25	<25	<25	<25	<25
				ompuest		0				
COT	%	3,1	3,6	23,3	11,6	-	25,6	11,7	12,1	17,1
CP	%	0,00704	0,02801	8,82	6,13	-	0,0003	-	-	-
Aniones										
Azufre	mg/kg	4877	4867	1143	1126	-	5219	-	-	-
Sulfato	mg/kg	112	112	203	250		382		-	-
S (-II)	mg/kg	<2,0	<2,0	<2,0	<2,0		<2,0		-	-
Mediciones in situ										
pН		7,7	7,93	8,078	8,1		8,07		-	-
ORP	mV	159,3	113,5	-163,4	-151,6	-	8,2		-	-
				Fuente: E	cotecnos					

P.E. (Eh): Potencial Electroquímico con respecto al electrodo estándar de hidrógeno; NK: Nitrógeno Kjeldahl; COT: Carbono Orgánico Total; HV: Hidrocarburos Volátiles; HF: Hidrocarburos Fijos; HT: Hidrocarburos Totales: NT: Nitrógeno Total: S: Sulfuro: CP: Carbono Mineral Particulado

Registro 37. Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: PVA Año 2020. Se observa que estación CG-G1 presenta 43.435 mg/kg de hierro en sedimento, estación ST-G5 presenta 55.237 mg/kg de hierro y estación ST-G4 presenta 43.592 mg/kg, por lo tanto estas 3 estaciones tienen valores de hierro en sedimento sobre el límite de efectos severos para la biota (sobre 40.000 mg/kg o 4%). Además se observa que para el parámetro Cobre, en estación CG-G1 se registró 139,64 mg/kg, valor sobre el límite PEL (108 mg/kg), es decir, sobre límite de efectos severos para biota. Así mismo respecto a Níquel, es posible señalar que en estación CG-5.2 los valores se encuentran levemente superando el rango inferior basado en estudios de toxicidad crónica (15,9 ppm), pero estos valores no generarían efectos sobre la biota de acuerdo a McDonald (1996). Respecto a Vanadio se observa que en estaciones CG-G1, CG-5.2 y ST-G5 los valores superan lo indicado en línea base (<10 mg/kg). Así mismo en estación ST-G5 se supera el rango de concentración de Vanadio típico en sedimentos marinos (rango de 20 – 150 mg/kg). Respecto al Carbono Orgánico Total (COT) las estaciones CG-F3, CG-G1, CG-K, ST-G5, ST-GC, ST-G3, ST-G4 y ST-G6 superan el límite de efecto severo sobre la biota marina (sobre 10%).

Tabla 5.13. Resultados cuantitativos de los análisis químicos e in situ en los sedimentos submareales (CG5-2 a ST-G6). PVA Semestral Nº 16 Central Termoelèctrica Guacolda. Huasco, segundo semestre 2021.

		CG	5.0	eT.	-G5					
Parámetro	Unidad	A	o-z B	A A	-GS B	CG-L	ST-GC	ST-G3	ST-G4	ST-G6
ļ '		^			les v metalo	idoc	' '		l	'
Arsénico	mg/kg	13.970	12.834	5,438	3,838	iues .	15,230			
Cadmio	mg/kg	0.973	1.008	0.091	0.091	0.131	0.78	0.130	0,113	0.140
Cobre	mg/kg	59.368	58.306	166.6	95.642	6.015	73,8	0,100	0,110	0,140
Cromo	mg/kg	25.889	23,211	4.447	2.775	2.012	10,0	14.077	10.763	8.118
Cromo (VI)	mg/kg	<30	<30	<30	<30	2,012	<30	14,077	10,700	0,110
Hierro	mg/kg		25446.398	35726.6	29272.325	768.5	29199,116	8929,149	20280.805	30293,811
Niguel	mg/kg	21,450	19,556	7,054	7,364	0,706	30,945	0020,140	-	-
Parametro	Unidad		5-2	- 1	-G5	CG-L	ST-GC	ST-G3	ST-G4	ST-G6
Plomo	mg/kg	11.25	10.35	22.04	24.12	1,88	12,78	-	-	-
Vanadio	mg/kg	69.437	59.501	172,100	162,601	2.854	68.8			
Zinc	mg/kg	113,769	106.551	157,708	84,993	-	120,740			
					Nutrientes					
Fósforo	mg/kg	97,2	99,3	201,8	210,1	-	514.7			-
NT	mg/g	3,3	2.4	3.1	1.2		4.2			
		- 1	-,,	H	lidrocarburo	5				
HF C34-C50	mg/kg	<25	<25	<25	<25	<25	<25	<25	<25	<25
HV C5-C10	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
HT	mg/kg	<25	<25	<25	<25	<25	<25	<25	<25	<25
				Comp	uestos orga	nicos				
COT	%	4	,0	7	,0		4,0	8,0	7,0	17,0
CP	%	0,0175	0,0203	5,3761	6,8551		0,0072	-	-	
					Aniones					
Azufre	mg/kg	13704	14362	3968	3776		2722		-	-
Sulfato	mg/kg	30	3	11	92		4892			-
S (-II)	mg/kg	<2	<2	<2	<2	-	<2	-	-	-
	Mediciones in situ									
pН	-	7,27	7,4	7,6	7,58	-	7,23	-	-	-
ORP	mV	103,8	-54,8	83,9	85,7	-	74	-	-	-
				FL	iente: Ecotecn	06				

NT: Nitrógeno Total; HP: Hidrocarburos Fijos; HV: Hidrocarburos Volátiles; HT: Hidrocarburos Totales; COT: Carbono Orgánico Total; CP: Carbono Mineral Particulado; S: Sulfum; ORP: Potendial óxido-reducción.

Tabla 5.12. Resultados cuantitativos de los análisis químicos e in situ en los sedimentos submareales (CG-F3 a CG-K). PVA Semestral Nº 16 Central Termoeléctrica Guacolda. Huasco, segundo semestre 2021.

200		CG	-F3	CG	-G1	CG	-H1	CC	3-K
Parámetro	Unidad	Α		Α	В		В	A	В
				Metales y	metaloides				
Arsénico	mg/kg	2,272	2,236	5,044	3,722	4,699	3,805	2,926	3,867
Cadmio	mg/kg	<0,088	<0,088	0,113	0,092	0,095	<0,088	0,116	0,128
Cobre	mg/kg	9,099	14,302	53,303	91,592	23,771	22,939	21,144	36,625
Cromo	mg/kg	2,829	3,196	10,111	8,886	13,884	14,211	8,119	7,315
Cromo (VI)	mg/kg	<30	<30	<30	<30	<30	<30	<30	<30
Hierro	mg/kg	4187,823	4466,248	16083,576	11435,602	15083,206	19482,009	6888,642	9358,967
Niquel	mg/kg	1,166	1,694	9,566	7,800	9,346	26,396	7,996	4,070
Plomo	mg/kg	2,37	11,50	1,65	2,18	2,19	1,95	3,46	3,80
Vanadio	mg/kg	6,038	6,659	26,401	21,675	28,730	34,805	15,192	16,716
Zinc	mg/kg	33,651	33,837	23,952	28,140	25,842	25,748	30,863	39,185
				Nutri	entes				
Fósforo	mg/kg	39,3	41,9	5,5	5,7	<0,5	<0,5	70,3	74,8
NT	mg/g	2,4	0,7	0,7	0,5	0,8	0,9	1,8	1,4
	Hidrocarburos								
HF C34-C50	mg/kg	<25	<25	<25	<25	<25	<25	<25	<25
HV C5-C10	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
		CG	-F3	CG-G1		CG-H1		CG-K	
Parámetro	Unidad	Α	В	A	В	Α	В	Α	В
HT	mg/kg	<25	<25	<25	<25	<25	<25	<25	<25
				Compuesto	s orgánicos				
COT	%	13	3.0	7	.0	6	.0	13	3,0
CP	%	0,0048	0,0039	0,0185	0,0344	0,0115	0,0144	0,0211	0,0156
				Ani	ones				
Azufre	mg/kg	5386	5405	4112	4538	4000	1887	5760	5440
Sulfato	mg/kg	12	37	90	03	5	08	11	98
S (-II)	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2
				Medicion	nes in situ				
pH	-	7,80	7,82	7,755	7,737	7,5	7,6	8,0	7,7
ORP	mV	183,9	178,5	128,1	128,8	-35,5	196,2	203,7	201,6
				Fuente: 8	Ecotecnos				

NT: Nitrogeno Total; HF: Hidrocarburos Fijos; HV: Hidrocarburos Volátiles; HT: Hidrocarburos Totales; COT: Carbono Orgânico Total; CP: Carbono Mineral Particulado: S: Sulfuno: ORP: Potencial dixido-reducción.

Registro 38.

Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: PVA Año 2021, segundo semestre. Se observa que estaciones CG- 5-2, ST-G5, ST-G4 y ST-G6 se obtuvo valores sobre 20.000 mg/kg de hierro en sedimento, valores sobre el límite de efectos potenciales para la biota (sobre 20.000 mg/kg o 2%). Además se observa que para el parámetro Cobre en estación ST-G5 se registró 166,66 mg/kg, valor sobre el límite PEL (108 mg/kg), es decir, sobre límite de efectos severos para biota. Respecto al Níquel, en estaciones CG-5.2, ST-GC (control) y CG-H1 se registraron valores sobre el límite probable de efectos (15,9 ppm= 15,9 mg/kg), aunque estos valores no indican una certeza de que ocurran efectos sobre la biota. Respecto a Vanadio se observa que en estaciones CG-5.2, ST-G5, ST-GC, CG-G1, CG-H1 y CG-K los valores superan lo indicado en línea base (<10 mg/kg). Así mismo en estación ST-G5 se supera el rango de concentración de Vanadio típico en sedimentos marinos (rango de 20 – 150 mg/kg). Respecto al Carbono Orgánico Total (COT) las estaciones ST-G6, CG-F3 y CG-K superan el límite de efecto severo sobre la biota marina (sobre 10%).

Tabla 11.- Concentración de parámetros químicos indicadores de la calidad de sedimentos.

Monitoreo Nº 12 PVA del medio marino, Unidad 3, Enero, 2015.

Estación	C.O.T.	Hidrocarburos totales	Hierro	Cadmio	Cobre	Cromo	Niquel	Piomo	Vanadio
	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CG-F3	-		-	-	-		0,22	<0,22	2,19
CG-G1	-	-	-	-			1,21	0,44	8,31
CG-L		-	-	*		*	<0,11	0,44	12,4
CG-K			-	-			2,27	3,42	12,4
CG-H1	0,24	<5,0	11607 (1,1 %)	<0,025	31,5	17	19,2	2,05	94,8
ST-G3	0,73	<5,0	12036 (1,2 %)	<0,025	3,7	10,1	(**)	1,85	*
ST-G4	0,63	<5,0	6908 (0,6 %)	<0,025	18,1	9,9	\$ * 21	48,9	2
ST-G6	2,34	<5,0	9735 (0,9 %)	<0,025	209	10,4		226	-
Promedio	0,99	<5,0	10071 (1	<0,025	65,58	11,85	4,60	35,42	26,02
CG-GC control	0,5	<5,0	17133	<0,025	0,832	15,9	4,33	0,53	21,3
Promedio PVA N° 11	0,72	<0,5	122486 (12,1%)	0,065	27,5	8,18	5,37	3,0	42,3
Promedio PVA Nº 10	9,44	<5,0	48886	<0,023	23,48	3,31	1,09	14,18	14,32
Promedio PVA N° 9	4,61	<5,0	24982	0,067	14,3	14,1	4,5	<0,236	16,2
		Normativa canad	iense de cali	dad para s	edimentos r	marinos (150	QG, 2002)		
ISQG	1%	-	296	0,7	18,7	52,3	-	30,2	20
PEL	10%		496	4,2	108	160		112	

Fuente: elaboración del consultor en base a los resultados emitidos por el laboratorio Hidrolab. (ISQG = interim marine sediment quality guidelines; PEL = probable effect levels)

Registro 39.

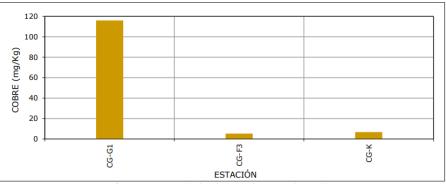
Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

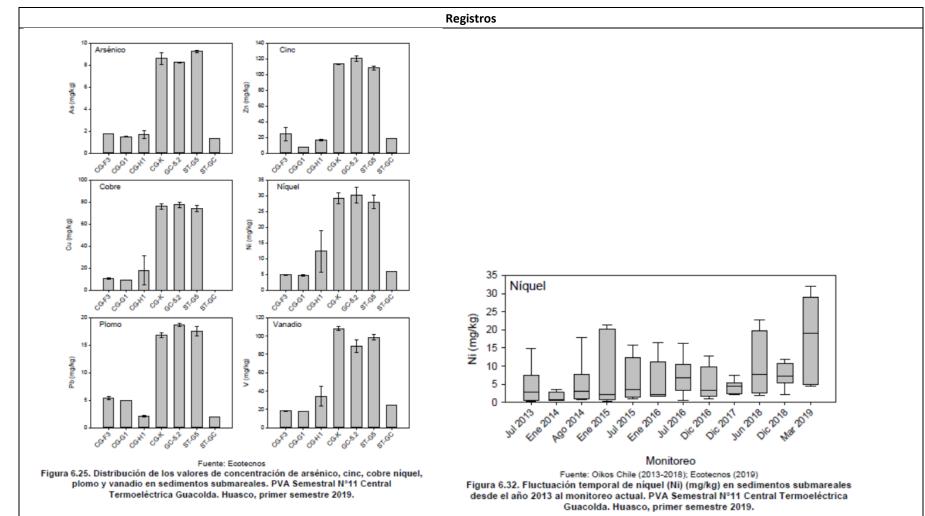
Descripción del medio de prueba: PVA Año 2015. Se observa que en sedimento la concentración de Cobre en la estación ST-G6 fue de 209 mg/kg valor que supera en 101 mg/kg el valor de la normativa canadiense, es decir, esta sobre el límite que indicaría efectos severos para biota.

4.1.3.2. COBRE

Tabla 4.11. Contenido de cobre en sedimentos submareales.

ESTACIÓN	COBRE (mg/kg)
CG-G1	116,00
CG-F3	5,24
CG-K	6,74




Figura 4.9. Contenido de cobre en sedimentos submareales.

Registro 40.

Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: PVA Año 2017. Unidades 1, 2, 3, 4 y 5. Se observa que estación CG-G1 (descarga), registró valores de Cobre en sedimento sobre el límite PEL, es decir, sobre los efectos severos para biota (sobre 108 mg/kg).

Registro 41. Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: PVA Año 2019. Se observa que concentración de níquel es mayor al control (ST-GC) en estación CG-H1 (cercano a CAP), y en 3 estaciones (CG-K, GC-5.2 y ST-G5 (cercano a muelle) de acuerdo a McDonald (1996), todas las estaciones se encuentran sobre límite que produciría ciertos efectos a la biota (15,9 ppm) pero bajo el límite de efecto medio según toxicidad aguda. Pese a que valores no permiten establecer si se generarían efectos de toxicidad sobre biota marina, cabe señalar que como se ve en grafico a la derecha los niveles de níquel han aumentado considerablemente en comparación a otros años en el sedimento marino.

Estación	Parámetro	Valor línea base RCA 56/2006 y RCA 44/2014 (mg/kg)	Valor 2019*	Valor 2020 *	Valor 2021*
CG-F3	Níquel	5,9	5	<4,06	1,694
CG-G1	Níquel	18,1	5	12,2	9,566
CG-H1	Níquel	27,3	19	10,96	26,396
CG-K	Níquel	15,9	<mark>30,9</mark>	7,82	7,996
CG-L	Níquel	10,3		<4,06	2,275

*Valor mayor registrado en PVA correspondiente.

Registro 42. Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: Valores de Níquel en sedimento marino registrados en línea base de medio marino Proyecto Central Guacolda Unidad 3 y Proyecto Adaptación de Unidades a la Nueva Norma de Emisión Para Centrales Termoeléctricas (Adenda 1), y en años 2019, 2020 y 2021. Se observa que solo en año 2019 en estación CG-K se registró un valor superior a lo registrado en la misma estación en línea base.

Tabla 11.- Concentración de parámetros químicos indicadores de la calidad de sedimentos. Monitoreo № 12 PVA del medio marino. Unidad 3. Enero, 2015.

Estación	C.O.T.	Hidrocarburos totales	Hierro	Cadmio	Cobre	Cromo	Niquel	Plomo	Vanadio
	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CG-F3	-		-	-	-	-	0,22	<0,22	2,19
CG-G1			-	-	-	-	1,21	0,44	8,31
CG-L		-	-	-	-	-	<0,11	0,44	12,4
CG-K				-	-	-	2,27	3,42	12,4
CG-H1	0,24	<5,0	11607 (1,1 %)	<0,025	31,5	17	19,2	2,05	94,8
ST-G3	0,73	<5,0	12036 (1,2 %)	<0,025	3,7	10,1	-	1,85	-
ST-G4	0,63	<5,0	6908 (0,6 %)	<0,025	18,1	9,9		48,9	-
ST-G6	2,34	<5,0	9735 (0,9 %)	<0,025	209	10,4		226	-
Promedio	0,99	<5,0	10071 (1 %)	<0,025	65,58	11,85	4,60	35,42	26,02
CG-GC control	0,5	<5,0	17133 (1,7%)	<0,025	0,832	15,9	4,33	0,53	21,3
Promedio PVA N° 11	0,72	<0,5	122486 (12,1%)	0,065	27,5	8,18	5,37	3,0	42,3
Promedio PVA N° 10	9,44	<5,0	48886	<0,023	23,48	3,31	1,09	14,18	14,32
Promedio PVA N° 9	4,61	<5,0	24982	0,067	14,3	14,1	4,5	<0,236	16,2
		Normativa canad	iense de cali	dad para se	edimentos r	narinos (ISC	QG, 2002)		
ISQG PEL	1% 10%		2% 4%	0,7 4,2	18,7 108	52,3 160		30,2 112	

Fuente: elaboración del consultor en base a los resultados emitidos por el laboratorio Hidrolab. (ISQG = interim marine sediment quality guidelines; PEL = probable effect levels)

Tabla 10.- Concentración de parámetros químicos indicadores de la calidad de sedimentos.

Estación	C.O.T.	Hidrocarburos totales	Hierro	Cadmio	Cobre	Cromo	Niquel	Plomo	Vanadio
	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CG-F3	(20)	100	-		11,7	15.5%	2,01	1,24	26,6
CG-G1	-	(2)	-	7/24	134	12	8,66	0,46	95,9
CG-L					11,9	-	3,46	1,57	42,0
CG-H1	0,16	<0,5	71178 (7,1%)	<0,024	26	16,3	15,9	1,11	68,6
ST-G3	0,20	<0,5	81451 (8,1%)	<0,024	60,1	10,7	2	2,11	-
ST-G4	0,24	<0,5	71450 (7,1%)	0,081	15,8	8,91	-	3,34	
ST-G6	0,31	<0,5	20291 (2,0%)	0,080	43,3	2,89	-	67,5	100
Promedio	0,23	<0,5	61093 (6,1%)	0,05	43,26	9,70	7,51	11,05	58,28
CG-K Control	0,07	<0,5	5345 (0,5%)	0,081	1,45	1,48	1,06	0,66	4,64
Promedio PVA Nº 10	0,99	<5,0	10071 (1%)	<0,025	38,40	11,85	5,19	39,99	29,43
Promedio PVA Nº 9	0,72	<5,0	122486 (12,1%)	0,065	30,98	8,18	6,46	3,38	52,19
Promedio PVA N° 8	9,62	<5,0	25413 (2,5 %)	<0,023	19,3	3,30	1,13	1,86	12,20
Promedio PVA N* 7	4,61	<5,0	24982 (2,4 %)	0,07	16,02	11,80	5,25	<0,236	16,69
		Normativa cana	diense de cal	dad para s	dimentos r	narinos (ISC	QG, 2002)		
ISQG	1%		2%	0,7	18,7	52,3	-	30,2	
PEL	10%	-	4%	4,2	108	160	-	112	-

Fuente: elaboración del consultor en base a los resultados emitidos por el laboratorio Hidrolab.

(ISQG = interim marine sediment quality guidelines; PEL = probable effect levels)

Registro 43.

Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: Imagen izquierda: PVA enero 2015. Imagen derecha: PVA julio 2015. Se observa que promedio de Plomo (Pb) en PVA de enero de 2015 fue de 35,42 mg/kg superando el límite de efectos potenciales sobre la biota (ISQG, 2002) y en el caso de estación ST-G6 cercano a muelle el valor es de 226 mg/kg, incluso supera al doble el límite de efectos severos sobre la biota (límite 112 mg/kg). En el caso del PVA de julio 2015 si bien el promedio de plomo (Pb) registrado en sedimento fue menor a la normativa canadiense, en el caso de estación ST-G6 el valor fue de 67,5 mg/kg superior al límite de efectos potenciales sobre la biota.

Tabla 5.8. Resultados de los análisis químicos considerados en el monitoreo de calidad de sedimento submareal. PVA Trimestral Nº 11 Central Tormoeléctrica Guacolda. Huasco, cuato trimestre 2119

Parámetro	Unidad	CG-F3	CG-G1	CG-K
Cobre	mg/kg	28	60	15,6
Plomo	mg/kg	21	11,7	34

Tabla 5.16. Resultados cuantitativos del análisis de metales y materia orgánica total (MOT) en los sedimentos submareales. PVA

		0.0	i-F3	00	-G1	CG	-H1	CC	3-K
Parámetro	Unidad	A	B	A	В	A	В	A	В.
рH	-	7.681	7.665	7.723	7.72	7.649	7.662	7,422	7.432
P.E. (Eh)	mV	304.2	306.4	324.5	309.9	338.3	334,1	19.9	24.7
Arsénico		1,76	1,76	1,52	1,49		2,08	9,1	8,06
	mg/kg					1,3			
Cadmio	mg/kg	0,2	0,2	0,3	0,3	0,1	<0,1	1,2	1,1
Cinc	mg/kg	16	33	8	8	18	16	113	114
Cobre	mg/kg	10	11,1	9,2	9	5	31	73,6	78,4
Cromo	mg/kg	12,9	12,9	12,9	13,4	16,1	14	23,9	24,6
Cromo (VI)	mg/kg	<30	-	<30		<30		<30	
Hierro	mg/kg	2.056	1.917	925	897	5.218	27.816	37.536	35.036
Níquel	mg/kg	4,7	5	4,5	5	5,7	19	27,3	30,9
Plomo	mg/kg	5,1	5,6	4,9	4,9	2	2,3	16,3	17,2
Vanadio	mg/kg	18	18,6	17,8	17,3	23,6	45	110	105,9
Fósforo	mg/kg	<30	30	97	45	<30	<30	147	230
NK	mg/kg	458	734	677,9	854,1	303,3	464,6	2073	3.051
COT	%	6,91		4,51		1,12		1,13	
Azufre	mg/kg	1.761	1.939	2.288	2.243	894	724	5254	5504
HV C5-C10	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
HF C34-C50	mg/kg	<25	<25	<25	26	<25	<25	<25	<25
HT	mg/kg	<25	<25	<25	26	<25	<25	<25	<25
NT	mg/kg	461	738	681	858	305	469	2.083	3.062
Sulfato	mg/kg	704	-	813		406		338	-
S (-II)	mg/kg	<2.0	<2.0	<2,0	<2.0	<2.0	<2,0	<2.0	<2.0
CP	%	< 0.0002	0.00010		0.00030	0.05550	0.07020	0.00030	0.00110

Tabla 5.16. Continuación

h): Potencial Electroquímico con respecto al electrodo estándar de hidrógeno; NK: Nitrógeno Kjeldahl; COT: Carbono Orgánico Total; HV:

P.E. (Eh): Potencial Electroquímico con respecto al electrodo estándar de hidrógeno; NK: Nitrógeno Kjeldahl; COT: Carbono Orgánico Total; HV Hidrocarburos Volátiles; HF: Hidrocarburos Fijos; HT: Hidrocarburos Totales; NT: Nitrógeno Total; S: Sulfuro; CP: Carbono Mineral Particulado.

Tabla 5.7. Resultados cuantitativos del análisis de metales y materia orgánica total (MOT) en los sedimentos submareales. PVA Semestral Nº 12 Central Termoeléctrica Guacolda. Huasco, segundo semestre 2019.

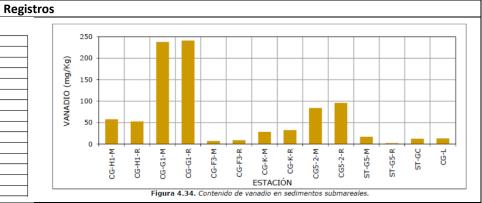
· ·										
B		CG	-F3	CG	-G1	CG	-H1	CC	S-K	
Parámetro	Unidad	Α	В	Α	В	Α	В	Α	В	
pН		7,826	7,941	7,625	7,851	7,648	7,854	7,532	7,784	
P.E. (Eh)	mV	297,8	271,6	310,3	299,7	327,1	315,8	74,1	83,4	
Arsénico	mg/kg	1,87	1,65	1,63	0,8	4,25	3,09	6,04	4,19	
Cadmio	mg/kg	0,1	0,2	0,2	0,3	<0,1	<0,1	0,5	0,3	
Cinc	mg/kg	23	15	10	8	20	15	43	26	
Cobre	mg/kg	11,7	9,4	10,8	8,9	31,5	21,7	31,8	20,6	
Cromo	mg/kg	7,6	8,1	6,6	7,7	11,2	10,5	16,6	16,5	
Cromo (VI)	mg/kg	<30	<30	<30	<30	<30	<30	<30	<30	
Hierro	mg/kg	5324	3524	2201	1271	44321	25061	26229	15669	
Níauel	ma/ka	1.8	<1.5	<1.5	<1.5	18.9	13.5	10.1	5.1	
Plomo	mg/kg	5,5	6	3,9	2,3	3,3	4,1	8,9	6,1	
Vanadio	ma/ka	28.2	24.5	21.2	22	83	55	82.8	51.7	
Fósforo	mg/kg	15	11,9	5,5	4	9,7	8,4	44,4	5,6	
NK	mg/kg	296	486,5	381,6	425,5	37,7	89,8	965,5	433,3	
COT	%	3,9	-	5,59	-	0,78	-	2,36	-	
Azufre	mg/kg	2419	2532	2371	2251	763	770	2270	2249	
HV C5-C10	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	
HF C34-C50	mg/kg	<25	<25	<25	<25	<25	<25	<25	<25	
HT	mg/kg	<25	<25	<25	<25	<25	<25	<25	<25	
NT	mg/kg	296	486,5	381,6	425,5	37,7	89,8	965,5	433,3	
Sulfato	mg/kg	1050	641	1104	1048	597	505	670	742	
S (-II)	mg/kg	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	
CP	%	0.0738	0.0083	0.0066	< 0.0002	0.2631	0.1021	0.0026	0.0023	

P.E. (Eh): Potencial Electroquímico con respecto al electrodo estándar de hidrógeno; NK: Nitrógeno Kjeldahl; COT: Carbono Orgánico Total; HV: Hidrocarburos Volátiles; HF: Hidrocarburos Fijos; HT: Hidrocarburos Totales; NT: Nitrógeno Total; S: Sulfuro; CP: Carbono Mineral Particulado.

Tabla 5.7. Resultados cuantitativos del análisis de metales y materia orgánica total (MOT) en los sedimentos submareales. PVA Semestral N° 12 Central Termoeléctrica Guacolda. Huasco, segundo semestre 2019.

Parámetro	Unidad		-5,2	91	-G5	ST-GC	ST C2	T-G3 ST-G4	ST-G
		Α	В	Α	В	31-60	31-63	31-04	31-00
pН		7,671	7,592	7,945	7,836	7,884			
P.E. (Eh)	mV	152,6	164,7	99,2	89,7	147,1			
Arsénico	mg/kg	8,49	9,91	2,27	2,59	2,1			
Cadmio	mg/kg	1,1	1,1	0,1	0,2	0,3	0,2	0,1	0,5
Cinc	mg/kg	100	105	26	30	6			
Cobre	mg/kg	69,4	75	15,5	15,9	9,7			
Cromo	mg/kg	17,9	18,5	11,6	12		10,1	11,7	16,6
Cromo (VI)	mg/kg	<30	<30	<30	<30	<30			
Hierro	mg/kg	38749	41265	19921	21592	1907	12718	21965	39449
Níquel	mg/kg	24,1	24,4	5,9	6,1	1,8			
Plomo	mg/kg	13,4	14,6	4,3	4,5	4,3			
Vanadio	mg/kg	109,9	115,6	62,9	64,1	24,7			
Fósforo	mg/kg	75,8	13,8	5,7	10,2	2,4			
NK	mg/kg	292,7	1136	186,4	231,8	110,4			
COT	%	1,18	-	2,12	-	2,95	2,15	2,13	0,86
Azufre	mg/kg	3054	4583	1197	1263	2297			
HV C5-C10	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
HF C34-C50	mg/kg	58	48	<25	<25	<25	<25	<25	<25
HT	mg/kg	58	48	<25	<25	<25	<25	<25	<25
NT	mg/kg	292,7	1136	186,4	231,8	110,4			
Sulfato	mg/kg	296	393	529	583	531			
S (-II)	mg/kg	<2,0	<2,0	<2,0	<2,0	<2,0			
CP	%	0,0269	0,0058	0,0227	0,0034	<0,0002			

P.E. (Eh): Potencial Electroquímico con respecto al electrodo estándar de hidrógeno; NK: Nitrógeno Kjeldahi; COT: Carbono Orgánico Total; HV: Hidrocarburos Volátiles; HF: Hidrocarburos Fijos; HT: Hidrocarburos Totale; RY: Ritrógeno Totale; S: Suffuro; CP: Carbono Mineral Particulario.


Registro 44.

Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: Valores de concentración de metales en sedimentos submareales en 2019. Se observa que en PVA, 4° trimestre, la estación CG-G1 registró 11,7 mg/kg de Plomo (Pb), estación CG-F3 21 mg/kg y estación CG-FK 34 mg/kg. Este último supera el límite de efectos potenciales sobre la biota (30,2 mg/kg). En resultados semestrales se observan valores entre 2 y 18,9 mg/kg para el primer semestre y valores entre 2,3 mg/kg y 14,6 mg/kg en segundo semestre, todos valores bajo el límite de efectos probables para la biota. En cuanto a Vanadio los resultados semestrales presentan valores entre 17,3 y 110 mg/kg para el primer semestre y valores entre 21,2 y 115,6 mg/kg en segundo semestre, todos valores bajo el límite de rango habitual de vanadio en sedimentos marinos según Moore (1991) el cual sería entre 20 y 150 mg/kg.

		Regi
Tabla 4	4.80. Contenido de vanadio en sedimentos submareales.	
ESTACIÓN	VANADIO (mg/kg)	
CG-H1-M	57,60	
CG-H1-R	52,70	
CG-G1-M	238,00	
CG-G1-R	241,00	
CG-F3-M	7,03	
CG-F3-R	8,82	
CG-K-M	28,50	
CG-K-R	32,40	
CG5-2-M	83,90	
CG5-2-R	95,70	
ST-G5-M	16,80	
ST-G5-R	2,16	
ST-GC	12,70	
CG-L	13,10	

Registro 45. Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: Valores de concentración de Vanadio en sedimentos submareales, junio 2017. Se observa que estaciones CG-G1-M y CG-G1-R presenta valores de 238 mg/kg y 241 mg/kg lo cual supera con creces el rango habitual de vanadio en sedimento marino según Moore (1991) el cual sería entre 20 y 150 mg/kg.

4.1.7.6. VANADIO Tabla 4.80. Contenido de vanadio en sedimentos submareales VANADIO (mg/kg) **ESTACIÓN** CG-H1-M CG-H1-R 109,0 CG-G1-M 22,2 CG-G1-R 21,3 CG-F3-M 31,3 CG-F3-R 33,1 CG-K-M 106,5 CG-K-R 122,4 CG5-2-M 125,9 CG5-2-R 128,7 ST-G5-M S.M S.M

27,1

20,2

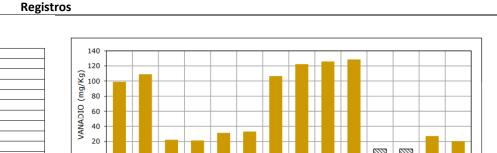


Figura 4.38. Contenido de vanadio en sedimentos submareales. ST-G5: Sin muestra.

ST-G5-R

Registro 46.

SM: Sin muestra

ST-G5-R

ST-GC CG-L

Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

CG-G1-M CG-G1-R

Descripción del medio de prueba: Valores de concentración de Vanadio en sedimentos submareales, junio 2018. Los valores se encuentran entre 20,2 mg/kg y 128,7 mg/kg dentro del rango habitual de Vanadio en sedimento marino según Moore (1991) el cual sería entre 20 y 150 mg/kg.

Registros

Tabla MM-5 Concentración de Vanadio (µg/g) en los sedimentos submareales, de las estaciones caracterizadas.

Estación	Concentración de V
CG-F3	< 10
CG-G1	< 10
CG-H1	< 10
CG-K	< 10
CG-L	< 10

Registro 47.

Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: Valores de concentración de Vanadio en sedimentos submareales, línea base proyecto Central Guacolda Unidad 3, RCA 56/2006.

		Re	gistros				
Estación	Parámetro	Valor línea base RCA 56/2006 y RCA 44/2014 (mg/kg)	Valor 2017*	Valor 2018*	Valor 2019 *	Valor 2020*	Valor 2021*
CG-F3	Vanadio	<10	8,82	<mark>33,1</mark>	<mark>28,2</mark>	<7,42	6,659
CG-G1	Vanadio	<10	<mark>241</mark>	<mark>22,2</mark>	<mark>22</mark>	<mark>80,94</mark>	<mark>26,401</mark>
CG-H1	Vanadio	<10	<mark>57,6</mark>	<mark>109</mark>	<mark>83</mark>	<7,42	<mark>34,805</mark>
CG-K	Vanadio	<10	<mark>32,4</mark>	<mark>122,4</mark>	<mark>110</mark>	<mark>57,58</mark>	<mark>16,716</mark>
CG-L	Vanadio	<10	<mark>13,10</mark>	<mark>20,2</mark>		<7,42	2,854

*Valor mayor registrado en PVA correspondiente.

Registro 48.Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: Valores de vanadio en sedimento marino registrados en línea base de medio marino Proyecto Central Guacolda Unidad 3 y en años 2017, 2018, 2019, 2020 y 2021. Para año 2017 CG-G1, CG-H1, CG-K y CG-L registraron valores superiores a lo registrado en la misma estación en línea base, destacando que en CG-G1 el valor fue de 241 mg/kg y superó el rango máximo habitual en sedimentos marinos según Moore (1991) el cual sería entre 20 y 150 mg/kg. Moore (1991). Todas las estaciones registradas en año 2018 y 2019 registraron valores superiores a lo registrado en la misma estación en línea base. Para año 2021 estaciones CG-G1, CG-H1 y CG-K registraron valores superiores a lo registrado en la misma estación en línea base.

TABLA III-3. Concentración de parámetros químicos indicadores de la calidad de sedimentos. Monitoreo Nº 9 PVA del medio marino. Unidad 3. Julio, 2013.

Estación	C.O.T.	Hidrocarburos totales		Cadmio		Cromo	Níquel	Plomo	Vanadio
	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CG-F3	-	-	-	-	3,07	-	0,371	<0,227	4,46
CG-G1	-	-	-	-	40,4	-	5,08	<0,226	42,1
CG-K	-	-	-	-	9,29	-	1,61	<0,236	14,7
CG-L	-	-	-	-	4,6	-	0,757	<0,230	3,51
CG-H1	0,38	<5,0	39311	<0,023	-	13,2	14,8	-	-
ST-G3	0,54	<5,0	19470	0,126	-	18,3	-	-	-
ST-G4	6,05	<5,0	20199	<0,024	-	10,9	-	-	-
ST-G6	11,48	<5,0	20949	0,104	-	4,81	-	-	-
Promedio	4,61	<5,0	24982	0,067	14,3	14,1	4,5	<0,236	16,2
CG-GC control	-	-	-	-	1,97	-	4,14	<0,228	17,8
	Norm	ativa canadiense	e de calida	ad para se	edimento	s marinos	(ISQG, 2	002)	
ISQG	1%	-	2%	0,7	18,7	52,3	-	30,2	-
PEL	10%	-	4%	4,2	108	160	-	112	-

Fuente: elaboración del consultor en base a los resultados emitidos por el laboratorio Hidrolab. (ISQG = interim marine sediment quality guidelines; PEL = probable effect levels)

Registro 49.

Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: Valores porcentuales de carbono orgánico total (COT) en sedimento marino registrados en julio 2013, Unidad 3. Se observa que las estaciones CG-H1 y ST-G3 presentan un valor de Carbono Orgánico Total (COT) menor a 1%, excepto SST-G4 y ST-G6 que presenta 6,05 y 11,48% respectivamente. La estación ST-G6 supera el límite de efecto severo sobre la biota marina (10%).

Tabla 3.- Concentración de parámetros químicos indicadores de la calidad de sedimentos. PVA N°48 medio marino del Muelle I.

Estación	C.O.T.	Hidrocarburos totales	Hierro	Cadmio	Cobre	Cromo	Plomo
	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
ST-G3	0,73	<5,0	12036 (1,20 %)	<0,025	3,74	10,10	1,85
ST-G4	0,63	<5,0	6908 (0,69 %)	<0,025	18,10	9,97	48,90
ST-GS	0,69	<5,0	21389 (2,13 %)	<0,023	216	1,24	28,50
ST-G6	2,33	<5,0	9735 (0,97 %)	<0,023	209	10,40	226
Promedio	1,09	<5,0	12517 (1,25 %)	<0,024	111,71	7,93	76,31
cg-gc	0,50	<5,0	17133 (1,71 %)	<0,023	0,832	15,9	0,529
Promedio PVA N* 47°	=	10	80136 (8,0 %)	<0,024	136,4	10,55	27,53

Estación	C.O.T.	Hidrocarburos totales	Hierro	Cadmio	Cobre	Cromo	Plomo
	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Promedio PVA N* 46 ^s	0,89	<5,0	121948 (12 %)	0,08	42,42	6,87	5,70
Promedio PVA N* 45 ^s	- 29	1985	24275 (2,4 %)	0,11	140	8,76	24,94
Promedio PVA N* 44*	13,36	<5,0	48133 (4,8 %)	<0,023	35,0	2,99	44,86
Promedio PVA Nº 43 ³	F .	155%	23103 (2,3 %)	0,35	30,29	4,35	39,61
Promedio PVA N° 42 ³	5,35	< 5,0	19900 (1,9 %)	0,084	26,8	9,65	16,48
Promedio PVA N° 41 ¹	29	100	38051 (3,8 %)	0,055	28,43	4,96	14,45
	Norma	tiva Canadiense d	e calidad p	ara sedimer	ntos marino	35	
ISQG	1%	-	2%	0,7	18,7	52,3	30,2
PEL	10%	Secretary Secretary	4%	4,2	108	160	112

Notas: estación CG-GC: control. ISQG = interior marine sediment quality guidelines; PEL = probabile effect levels.

1 PVA trimestral Enero 2013. 2 PVA semestral Julio 2013. 3 PVA trimestral Octubre 2013. 4 PVA semestral Enero 2014. 9 PVA trimestral Octubre 2014. 9 PVA semestral Enero 2014. 9 Fuente: elaboración del consultor en base a los resultados emitidos por el laboratorio Hidrofab.

Registro 50.

Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: Valores porcentuales de carbono orgánico total (COT) en sedimento marino registrados en enero 2015, Muelle Guacolda Se observa que todas las estaciones registradas presentan un valor de Carbono Orgánico Total (COT) menor a 1%, excepto ST-G6 que presenta 2,33% superando el límite de efecto potencial sobre la biota marina.

Tabla 4.15. Contenido de carbono orgánico total en sedimentos submareales.

ESTACIÓN	COT %
CG-H1	0,0642
ST-G3	0,1018
ST-G4	0,1523
ST-G6	0,3354

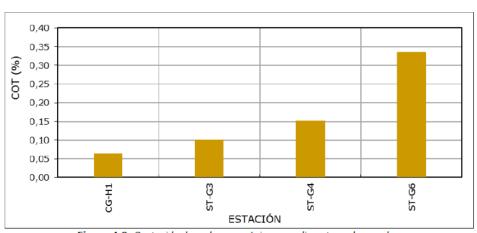


Figura 4.8. Contenido de carbono orgánico en sedimentos submareales.

Registro 51. Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: Valores porcentuales de carbono orgánico total (COT) en sedimento marino registrados en enero 2016. Se observa que todas las estaciones registradas presentan un valor de Carbono Orgánico Total (COT) menor a 1% que es el límite de efecto potencial sobre la biota marina.

4.1.6.11. CARBONO ORGÁNICO TOTAL

Tabla 4.84. Contenido de carbono orgánico total en sedimentos submareales.

ESTACIÓN	CARBONO ORGÁNICO TOTAL (%)				
CG-H1	3,29				
CG-G1	6,39				
CG-F3	17,37				
CG-K	14,24				
CG5-2	2,98				
ST-G5	41,55				
ST-G3	3,86				
ST-G4	12,95				
ST-G6	16,98				
ST-GC	3,40				

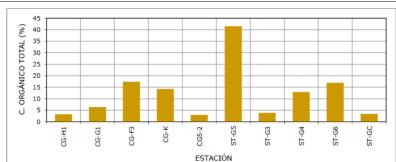


Figura 4.37. Contenido de carbono orgánico total (COT) en sedimentos submareales.

Registro 52. Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: Valores porcentuales de carbono orgánico total (COT) en sedimento marino registrados el primer semestre del año 2017. Se observa que todas las estaciones presentan valores sobre 1% que es el límite de efecto potencial para la biota y las estaciones CG-F3, CG-K, ST-G5, ST-G4 y ST-G6 presentan un valor sobre 10% superando así el límite de efecto severo para la biota (10%). Destaca la estación ST-G5 cercano al muelle, con un valor de 41,55%, cuatro veces superior al límite de efecto severo sobre la biota marina.

Tabla 4.84. Contenido de carbono orgánico total en sedimentos submareales.

ESTACIÓN	CARBONO ORGÁNICO TOTAL (%)				
CG-H1	1,9				
CG-G1	10,7				
CG-F3	8,9				
CG-K	9,6				
CG5-2	2,8				
ST-G5	S.M				
ST-G3	5,5				
ST-G4	S.M				
ST-G6	9,2				
ST-GC	4,8				

SM: Sin muestra

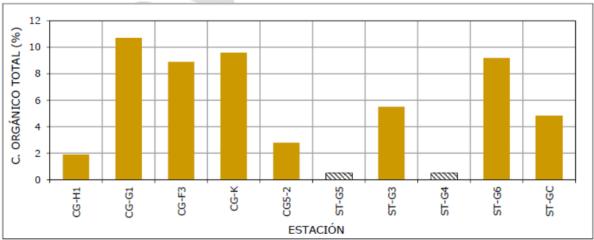


Figura 4.41. Contenido de carbono orgánico total (COT) en sedimentos submareales. ST-G4 y ST-G5: Sin muestra.

Registro 53.

Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: Valores porcentuales de carbono orgánico total (COT) en sedimento marino registrados el primer semestre del año 2018. Se observa que todas las estaciones presentan valores sobre 1% que es el límite de efecto potencial para la biota y la estación CG-G1 presenta un valor de 10,7%, superando el límite de efecto severo para la biota (10%).

	Registros					
	Datos de la campaña de muestreo					
Fecha campaña de monitoreo	Nombre de la estación autorizada en el PVA	¿Corresponde a estación de control?	Nivel transecta (alto, medio, bajo)	Carbono Orgánico Total- COT	Límite establecido	
19-03-2019	CG-F3-A	No		6,91	N/A	
19-03-2019	CG-G1-A	No		4,51	N/A	
19-03-2019	CG-H1-A	Sí		1,12	N/A	
19-03-2019	CG-K-A	No		1,13	N/A	
19-03-2019	CG-5,2-A	No		1,36	N/A	
19-03-2019	ST-G5-A	No		1,03	N/A	
19-03-2019	ST-GC-A	No		1,1	N/A	
19-03-2019	CG-F3-B	No		551	N/A	
19-03-2019	CG-G1-B	No		241	N/A	
19-03-2019	CG-H1-B	Sí		1221	N/A	
19-03-2019	CG-K-B	No			N/A	
19-03-2019	CG-5,2-B	No		1241	N/A	
19-03-2019	ST-G5-B	No		(2.5)	N/A	
19-03-2019	ST-GC-B	No			N/A	
19-03-2019	ST-G3	No		1,05	N/A	
19-03-2019	ST-G4	No		1,42	N/A	
19-03-2019	ST-G6	No		4,25	N/A	
19-03-2019	CG-L	No			N/A	

Registro 54. Fuente: Elaboración propia en base a antecedentes de Reporte técnico DIRECTEMAR y Seguimientos ambientales.

Descripción del medio de prueba: Valores porcentuales de carbono orgánico total (COT) en sedimento marino registrados primer semestre de 2019. Se observa que todas las estaciones presentan valores sobre 1% que es el límite de efecto potencial para la biota, pero bajo el límite de efectos severos sobre la biota.

6 CONCLUSIONES

Los resultados de las actividades de fiscalización, asociados los Instrumentos de Carácter Ambiental indicados en el punto 3, permitieron identificar ciertos hallazgos que se describen a continuación:

N° Hecho	Materia específica objeto de la	Exigencia asociada	Hallazgo
constatado	fiscalización ambiental.		

Considerando 1.7.6 RCA 44/2014.

Aditivos químicos Para la operación de las plantas desalinizadoras se necesitará 600 kg/mes de anti-incrustante ID-206.

Pregunta 21 Adenda 1, Proyecto Adaptación de Unidades a la Nueva Norma de Emisión Para Centrales Termoeléctricas en relación a "Planta Desalinizadoras"

21) Se solicita al Proponente indicar de forma detallada toda la información sobre el sistema de aplicación de los aditivos químicos que se utilizarán en el tratamiento de agua de mar en las plantas desalinizadoras, indicando cantidad y además, indicar que proceso utilizará para neutralizar dichos aditivos, de forma de evitar efectos sobre la biota marina del sector, ya que según lo señalado en el Anexo C2-1 Hoja de Seguridad de Aditivos Químicos de la DIA, el Hipoclorito de Calcio se define como "Muy Tóxico para organismos acuáticos". Respuesta:

Sistema de captación y tratamiento de agua de /Sistema tratamiento de Riles. obras y autorizaciones asociadas

2

En la siguiente tabla se presenta el único aditivo químico a utilizar en las plantas desalinizadoras (Antiincrustante ID-206), indicando la cantidad a utilizar, su forma de aplicación y la función que cumple el mismo.

Tabla AD-13 Aditivos químicos utilizados en las plantas desalinizadoras del proyecto

Addition daminous attributes of the biantas accommization as broyests						
Aditivo químico	Cantidad	Forma de aplicación y función				
Antiincrustante ID- 206	600 kg/mes	Se utiliza para prevenir la incrustaciones de sales al interior de las plantas desaladoras, producto de la destilación de agua de mar. Estas sales reaccionan con el reactivo y la mezcla se comporta como coloide y se evacua por la descarga de salmuera en una concentración menor a 12 ppm sin afectar la biota circundante.				

Cabe destacar que el proyecto no considera el uso de hipoclorito de calcio en las plantas desaladoras.

Pregunta 2. Adenda 2 Proyecto Adaptación de Unidades a la Nueva Norma de Emisión Para Centrales Termoeléctricas

Se solicita al Proponente sustentar con toda la información disponible, que el Antiincrustante ID-206, no afectará la biota marina circundante, esto es a través de hojas de seguridad, o cualquier medio que estime confiable, etc.

Respuesta:

- El titular da cuenta del uso de una cantidad mayor de antiincrustante a lo señalado en RCA N°44/2014 (600 kg/mes), en todos los meses del año 2021 con valores entre 640 l/mes (en febrero) a 1320 l/mes (en agosto), excepto en el mes de noviembre con 580 litros/mes.

Cabe señalar que en la evaluación ambiental (Adenda 1) se definió una cantidad de antiincrustante a utilizar (600 kg/mes), de manera de no afectar a la biota, por lo cual valores superiores a lo estipulado podrían eventualmente afectar a los organismos marinos.

		información entregada en la DIA y Adenda 1, se adjunta en Anexo AD2- 1 el estudio "Evaluación de la toxicidad aguda del aditivo antiincrustante ID-206" realizado por la Universidad de Valparaíso, en el cual se determina la toxicidad aguda del producto. Este estudio	
		considera la determinación de la concentración letal al 50% o LC50 a través de la realización de bioensayos en el microcrustáceo Daphnia pulex (en el caso de agua dulce) y en el copépodo intermareal Harpacticus littoralis (en el caso de agua de mar), siguiendo lo	
		establecido por la Nch. 2083 Of. 1999, norma vigente para evaluar la toxicidad aguda de productos químicos. Cabe recordar que la concentración letal al 50% o LC50 se define como la concentración del producto a la cual el 50% de los organismos	
		la concentración del producto a la cual el 50% de los organismos utilizados en los ensayos sobrevive en un tiempo determinado (24 o 48 horas) Las principales conclusiones del estudio realizado son: - Tanto el LC50 - 48 h como el LC50 - 96 h resultó ser superior en la	
		especie de agua dulce Daphnia pulex respecto a la especie de agua marina Harpacticus littoralis. - Para D. pulex el LC50-48 h fue de 1.602,09 mg/l, mientras que para H.	
		littoralis fue de 1.299,78 mg/l. Estos resultados son coherentes con el uso de este producto en el proyecto, dado que la concentración del ID-206 en el efluente de salida	
		del pozo de sello del Complejo será menor a 12 mg/l, concentración que se encuentra muy por debajo del rango del LC50 – 48 h hallado usando ambas especies (1.299,78 – 1.602,09 mg/l) y al rango LC50 – 96 h (436,87 - 989,16 mg/l).	
		De lo anterior se concluye que el uso del producto, que será realizado considerando las concentraciones recomendadas por el fabricante, no afectará la biota marina circundante al sector de descarga. Cabe	
		señalar que la no afectación por uso de este aditivo podrá ser verificada, por cuanto el titular cuenta con un Plan de seguimiento ambiental del medio marino, que permite monitorear la cualvajón an el tiempo de indicadores conférieses de comunidades	
		evolución en el tiempo de indicadores ecológicos de comunidades bentónicas y planctónicas.	
3	Calidad de agua de columna de agua, sedimentos marinos y	Considerando 4.4.4 f) f.1) RCA N° 56/2006 en relación a "Evaluación de los Impactos; Sedimentos Submareales" Alteración de la calidad química de los sedimentos submareales El efecto de la descarga de agua de enfriamiento de la Central podría	- Respecto a concentraciones de hierro en sedimentos submareales en el año 2014 se registraron valores sobre la normativa canadiense que indicaría un efecto severo sobre la biota

comunidades bentónicas / Pérdida o Alteración de hábitat acuático potencialmente, luego de un fenómeno de sedimentación o depositación en el fondo de la columna de aqua, alterar la calidad química de los sedimentos que actúan como receptores de este material. Otro fenómeno que puede provocar cierta alteración en las características químicas de los sedimentos del área de influencia del proyecto es la potencial sedimentación de partículas de carbón y/ o coque de petróleo producto del proceso de combustión, dada la volatilidad del componente combustionado, este podría depositarse en un área amplia de la Bahía. Cabe destacar que este carbón o coque de petróleo poseen concentraciones variables de Níquel y Vanadio, material que potencialmente podría modificar las características químicas de los sedimentos. Los sedimentos del área de influencia del proyecto no presentan características singulares, están habitados por muy pocos organismos, los que se encuentran, además, en toda la Bahía, fuera del área de influencia del proyecto. Es importante destacar, tal como lo señala la descripción de Línea Base, que los sedimentos del área son de granulometría gruesa lo que dificultará la asimilación de elementos.

Línea base, literal b RCA N° 56/2006 en relación a "Sedimentos" b.1 Granulometría.

Los resultados del análisis granulométrico evaluado en el programa de vigilancia ambiental, en las estaciones CG-F3, CG-G1 y CG-K, muestran la variación natural entre las fracciones más gruesas de la escala granulométrica. En general, la fracción granulométrica ha mostrado la presencia de arenas muy gruesas (AMG), arena gruesa (AG) y cascajo muy fino (CMF). Los resultados serían producto de un sistema de gran dinámica oceanográfica lo que no permite la presencia de material fino en el área.

b.2 Cobre

El contenido de cobre en los sedimentos de las tres estaciones monitoreadas históricamente han mostrado una gran variabilidad (0 a 300 mg/kg en promedio), presentando un peak de concentración promedio en el monitoreo de julio de 2004. Este aumento respondería básicamente a las altas concentraciones determinadas en la estación CG-F3 (600 mg/kg). Espacialmente, la estación más cercana a la descarga actual de la Central (CG-G 1) presenta valores relativamente

marina (sobre 4%), en estaciones CG-H1 (cercana a CAP) un valor de 12,1 % de hierro, en estación ST-G4 (cercana a muelle) 8,6 % de hierro y en estación ST-G6 (cercana a muelle) un 26% de hierro.

En el año 2018 se registraron valores sobre la normativa canadiense que indicaría un efecto severo sobre la biota marina (sobre 4%) en todas las estaciones muestreadas (ST-G3, ST-G4, ST-G5, ST-G6).

En el año 2019 la estación GC 5-2 supera el 4% de concentración, por lo cual está sobre el límite de efectos severos sobre la biota.

En el año 2020 tres estaciones presentaron valores de hierro en sedimento sobre el límite de efectos severos para la biota (sobre 40.000 mg/kg o 4%), siendo estas la estación CG-G1 con 43.435 mg/kg de hierro en sedimento, estación ST-G5 con 55.237 mg/kg de hierro y estación ST-G4 con 43.592 mg/kg.

Cabe señalar que los altos valores de hierro en sedimento registrados dan cuenta de una sedimentación de partículas de carbón, lo cual podría modificar las características químicas de los sedimentos afectando el desarrollo de la biota marina asociada a los sedimentos.

- Respecto a concentraciones de cobre en sedimentos submareales en el año 2015 la concentración de este metal en la estación ST-G6 fue de 209 mg/kg valor que supera en 101 mg/kg el valor de la normativa canadiense, es decir, esta sobre el límite que indicaría efectos severos para biota (límite de 108 mg/kg).

En el año 2017 la estación CG-G1 (descarga), registró valores de Cobre en sedimento sobre el límite PEL (116 mg/kg), es decir, sobre los efectos severos para biota (sobre 108 mg/kg).

bajos en comparación al resto de las estaciones caracterizadas, denotando que las altas concentraciones detectadas en la estación CG-F3 no serían producto de la descarga. b.3 Níquel

Debido a la ausencia de límites normados para níquel o cualquier otro metal en la matriz sedimentaria, los resultados obtenidos fueron contrastados con valores reportados en la literatura científica. En este sentido, los valores obtenidos, en general, son inferiores a los límites máximos propuestos por distintas directrices extranjeras (concentraciones que varían entre 15,9 y 51,6 (μ g/g)) b.4 Vanadio

Al igual que para el caso de Níquel en cada una de las estaciones muestreadas fue evaluada la concentración de vanadio en los sedimentos marinos. El método analítico empleado fue el "SM 3500-V 3113D" cuyo límite de detección es de 10 (μg/g). En cuanto a los resultados, es posible señalar que todas las muestras analizadas presentaron valores bajo el límite de detección del método analítico utilizado. De la misma forma que en el caso de Níquel, la ausencia de límites normados para vanadio o cualquier otro metal en la matriz sedimentaria, obliga a contrastar las concentraciones obtenidas con valores reportados en la literatura científica. En este sentido, los valores obtenidos son inferiores a los límites máximos propuestos por directrices extranjeras revisadas (57 μg/q).

Considerando 4.4.4 e) e.1) RCA N°56/2006 en relación a "Evaluación de los Impactos; Comunidades Bióticas; Alteración de las comunidades submareales"

El efecto de la descarga de agua de enfriamiento de la Central podría potencialmente, luego de un fenómeno de sedimentación o depositación en el fondo de la columna de agua, ser asimilado (mediante procesos filtración, absorción o adsorción) por los distintos organismos que habiten los sustratos que actúan como receptores del material depositado. Cabe destacar que esta descarga será muy similar a la composición del agua que será succionada por la central para su proceso de enfriamiento, la diferencia más relevante será el diferencial de temperatura entre una y otra. Otro fenómeno que puede provocar cierta alteración en las comunidades biológicas submareales es la potencial sedimentación de partículas de carbón o coque de petróleo producto del proceso de combustión, dada la volatilidad del

En el año 2020 la estación CG-G1 registró 139,64 mg/kg, valor sobre el límite PEL (108 mg/kg), es decir, sobre límite de efectos severos para biota. Finalmente en año 2021 en la estación ST-G5 se registró 166,66 mg/kg, valor sobre el límite PEL (108 mg/kg), es decir, sobre límite de efectos severos para biota.

- Respecto a concentraciones de níquel en sedimentos submareales, y de acuerdo a la línea base de medio marino de Proyecto Central Guacolda Unidad 3 y Proyecto Adaptación de Unidades a la Nueva Norma de Emisión Para Centrales Termoeléctricas (Adenda 1) en el año 2019 la estación CG-K registró un valor superior a lo registrado en la misma estación en línea base para el parámetro níquel.
- Respecto a concentraciones de plomo en sedimentos submareales en el año 2015 en la estación ST-G6 cercano a muelle el valor de plomo fue de 226 mg/kg, superando el doble del límite de efectos severos sobre la biota (límite 112 mg/kg).
- Respecto a concentraciones de vanadio en sedimentos submareales, en el año 2017 las estaciones CG-G1-M y CG-G1-R presentan valores de 238 mg/kg y 241 mg/kg lo cual supera con creces el rango habitual de vanadio en sedimento marino según Moore (1991) el cual sería entre 20 y 150 mg/kg.

En cuanto a los valores de vanadio en sedimento marino registrados en línea base de medio marino Proyecto Central Guacolda Unidad 3 para el año 2017 las estaciones CG-G1, CG-H1, CG-K y CG-L registraron valores superiores a lo registrado en la misma estación en línea base, destacando que en

componente combustionado, este podría depositarse en un área amplia de la Bahía. Cabe destacar que este carbón o coque de petróleo posee concentraciones variables de Níquel y Vanadio, material que podría ser asimilado por los organismos marinos.

Punto 4.5 Línea base RCA N°56/2006 en relación a "Macrofauna Sublitoral"

La macrofauna sublitoral del área de interés ha sido caracterizada como parte del Plan de Vigilancia Ambiental que ha implementado Guacolda desde 1996. Esta caracterización ha sido realizad en las mismas tres estaciones en que ha sido evaluado las características sedimentológicas (CG-3, CG-G1 y CG-K). En cuanto a los resultados obtenidos hasta la fecha, es posible señalar que la composición de la macrofauna está dominada por la presencia de poliquetos (aproximadamente el 45% de la composición porcentual del número de especies) y moluscos (aproximadamente el 30% de la composición porcentual del número de especies). Entre sí aportan aproximadamente dos tercios de las categorías específicas y supraespecíficas identificadas. En cuanto al número de especies, las tres estaciones se han presentado más o menos homogéneas. En la primera época de monitoreo (1996-2003) el número de especies promedio del área fue un tanto fluctuante (entre 11 y 35 especies), a partir de esta fecha el número de especies promedio se ha homogeneizado variando entre 11 y 20 especies. De la misma forma, el número de individuos promedio en el área de estudio, en la primera época (1996-2003), fue variable (entre 100 y 2800 individuos), a partir de esta fecha el número promedio de individuos se ha homogeneizado fluctuando entre 50 y 500 individuos). Ambas fluctuaciones corresponden a variaciones esperadas debido a las épocas del año en la que se han realizado los muestreos. De los índices ecológicos analizados a lo largo del Programa de Vigilancia Ambiental que ha desarrollado Guacolda, la diversidad específica ha sido el más estable, fluctuando sólo entre 1 y 2 bit/ind., aunque en algunas campañas se ha superado el límite máximo de este rango. De acuerdo a lo esperado, el comportamiento de los índices ecológicos estaría sujetos a un patrón estacional. De manera específica, tanto la Diversidad como la Uniformidad muestran valores similares (cercanos a 2 en el caso de la diversidad y a 0,8 en el caso de la uniformidad) en las estaciones CG-F3 y CG-G1 ambas ubicadas al NO de la Península

CG-G1 el valor fue de 241 mg/kg y superó el rango máximo habitual en sedimentos marinos según Moore (1991) el cual sería entre 20 y 150 mg/kg. Moore (1991).

Así mismo, todas las estaciones registradas en año 2018 y 2019 registraron valores superiores a lo registrado en la misma estación en línea base. En año 2020 estación CG-G1 y CG-K registraron valores superiores a lo registrado en la misma estación en línea base.

Para año 2021 estaciones CG-G1, CG-H1 y CG-K registraron valores superiores a lo registrado en la misma estación en línea base.

Cabe señalar que en concentraciones altas, el vanadio puede ser considerado como un contaminante tóxico, generando efectos adversos en el desarrollo de la biota marina al encontrarse en magnitudes superiores a 57 mg/kg (referente AET, Buchman 2008), lo que se observa en base a los resultados expuestos en los años 2017 al 2021, ya que sobrepasan los límites de efectos severos en estaciones cercanas al muelle y la descarga.

- Respecto a concentración de carbono orgánico total (C.O.T.) en sedimentos submareales en el año 2013 la estación ST-G6, cercana a muelle supera el límite de efecto severo sobre la biota marina (10%).

En el año 2017 las estaciones CG-F3, CG-K, ST-G5, ST-G4 y ST-G6 presentan un valor de COT sobre 10% superando así el límite de efecto severo para la biota (10%). Destaca la estación ST-G5 cercano al muelle, con un valor de 41,55%, cuatro veces superior al límite de efecto severo sobre la biota marina

En año 2018 la estación CG-G1 presenta un valor de 10,7% de COT, superando el límite de efecto severo para la biota (10%).

Guacolda, en cambio la estación CG-K, ubicada al NE de la península, utilizada como estación de referencia muestra valores levemente inferiores 1,2 en el caso de la diversidad y 0,4 en el caso de la Uniformidad). En cuanto a los dendogramas de clasificación y ordenamiento de escalamiento multidimensional, estos confirman los resultados de los índices comunitarios en el sentido de mostrar una mayor similitud, aunque baja, entre las estaciones CG-G1 y CG-F3, ambas separadas de la estación CG-K. Todos los resultados obtenidos para la macrofauna submareal, evidencian que las condiciones ambientales del área son relativamente diferentes para cada estación. Esto estaría explicado por las variables naturales (exposición al olegie, ubicación en la bahía, entre otros) y no por influencia externas como por ejemplo la descarga de la actual Central. • Como parte de la caracterización de Línea de Base para la Unidad 3 de la Central, se diseñó la evaluación de las concentraciones de Níquel y Vanadio en los tejidos blandos de alguna especie de molusco filtrador presente en el área de estudio. No obstante, un extenso recorrido de los fondos submareales efectuado durante la campaña de muestreo (mayo 2005), no arrojó resultados positivos sobre la presencia de bivalvos en los alrededores de la península, recolectando una cantidad insuficiente de material lo que no permitió realizar los análisis requeridos.

Sin embargo, esto permitió confirmar los resultados históricos obtenidos recolectando pequeños moluscos gasterópodos (caracoles), poliquetos y crustáceos.

Tabla MM- 5 Linea base de medio marino Proyecto Central Guacolda Unidad 3, RCA 56/2006.

Tabla MM-5
Concentración de Vanadio (µg/g) en los sedimentos submareales, de las estaciones caracterizadas.

Estación	Concentración de V < 10			
CG-F3				
CG-G1	< 10			
CG-H1	< 10			
CG-K	< 10			
CG-L	< 10			
	7877			

Tabla MM- 8 Linea base de medio marino proyecto Central Guacolda Unidad 3 y proyecto Adaptación de Unidades a la Nueva Norma de Emisión Para Centrales Termoeléctricas, RCA N° 44/2014.

En el año 2020 las estaciones CG-F3, CG-G1, CG-K, ST-G5, ST-GC, ST-G3, ST-G4 y ST-G6 superan el límite de efecto severo sobre la biota marina (sobre 10%).

Finalmente en el año 2021 las estaciones ST-G6, CG-F3 y CG-K superan el límite de efecto severo sobre la biota marina (sobre 10%).

Es así que los años 2013, 2017, 2018, 2020 y 2021 se evidenciaron contenidos de COT superiores al 10% los que se asocian con condiciones que afectan el desarrollo de comunidades submareales sedimentarias. Además una sobreabundancia puede causar reducciones en la riqueza de especies, abundancia y biomasa, debido al agotamiento de oxígeno y la acumulación de subproductos tóxicos como amoniaco y sulfuros (Hyland et al. 2005).

	ración de Níq	bla MM-8 uel (µg/g) en los sediment estaciones caracterizada:
E	Estación	Concentración de Níquel
	CG-F3	5,9
	CG-G1	18,1
	CG-H1	27,3
	CG-K	15,9
	CG-L	10,3

7 ANEXOS

N° Anexo	Nombre Anexo			
1	Acta de inspección ambiental del día 03 de mayo de 2022.			
2	Carta GCG – 2022/048 del 23 de mayo de 2022 de Guacolda Energía S.A., entrega antecedentes solicitados en acta de inspección.			
3	ORD. O.R.A N° 53 del 25 de mayo de 2022 de SMA, solicita a DIRECTEMAR revisión de antecedentes presentados por el titular.			
4	Oficio G.M. CAL Ord. N° 12.600/461 del 28 de julio de 2022 de DIRECTEMAR, remite repor técnico antecedentes acta de inspección.			
5	ORD. O.R.A. N° 45 del 10 de mayo de 2022 de SMA, encomienda seguimientos ambientales a DIRECTEMAR.			
6	ORD. O.R.A. Nº 31 de fecha 05 de abril de 2022 de SMA, encomienda seguimientos ambientales a DIRECTEMAR.			
7	Oficio G.M. CAL Ord. N° 12.600/367 del 15 de junio de 2022, remite reporte técnico seguimientos ambientales.			

