EN LO PRINCIPAL: PRESENTA PROGRAMA DE CUMPLIMIENTO. PRIMER OTROSÍ: ACOMPAÑA DOCUMENTOS.

SUPERINTENDENCIA DE MEDIO AMBIENTE

FELIPE ARÉVALO CORDERO, en representación de **EMPRESA ELÉCTRICA DE MAGALLANES S.A.**, Rol Único Tributario N° 88.221.200-9, ambos domiciliados para estos efectos en calle El Golf N° 40 Piso 20, Las Condes, Santiago, en el marco del procedimiento sancionatorio Rol **F-007-2020** para determinar eventuales responsabilidades y sanciones en contra de mi representada, al Fiscal Instructor de la División de Sanción y Cumplimiento Sr. Daniel Garcés, respetuosamente digo:

Que actuando dentro de plazo de conformidad a los señalado en el artículo 42 de la Ley Orgánica de la Superintendencia del Medio Ambiente (en adelante "LOSMA"), vengo en presentar un Programa de Cumplimiento en relación a los cargos formulados en el Resuelvo I de la Resolución Exenta N°1/ Rol F-007-2020 de fecha 3 de marzo de 2020 (en adelante indistintamente "Res. Ex. N°1").

El Programa de Cumplimiento que se presenta ha sido elaborado en cumplimiento de la LOSMA, del Decreto Supremo N° 30, de 2012, del Ministerio de Medio Ambiente, que aprueba el Reglamento sobre Programas de Cumplimiento, Autodenuncia y Planes de Reparación (en adelante "**D.S. N**°30/2012"), y tomando en consideración los criterios contenidos en la Guía para la Presentación de Programas de Cumplimiento por Infracciones a Instrumentos de Carácter Ambiental, dictada en el mes de julio de 2018 por parte de esta Superintendencia.

I. Antecedentes del procedimiento sancionatorio

Mediante Res. Ex. N° 1, de fecha 3 de marzo de 2020, la Superintendencia del Medio Ambiente (en adelante "SMA" o "Superintendencia"), formuló cargos en contra de la Empresa Eléctrica de Magallanes S.A. (en adelante "EDELMAG" o la "Empresa"), otorgando un plazo de 10 días hábiles para presentar un Programa de Cumplimiento y de 15 días hábiles para formular descargos.

Con fecha 16 de marzo de 2020, EDELMAG solicitó ampliación de los plazos concedidos. Mediante Resolución Exenta N° 2/Rol F-007-2020, de fecha 17 de marzo de 2020, la SMA

otorgó una ampliación de plazo de 7 días para la presentación de descargos y de 5 días para la presentación de un Programa de Cumplimiento.

Por su parte, con motivo de la emergencia sanitaria generada por la pandemia de COVID-19, por medio de la Resolución Exenta Nº 518, de fecha 23 de marzo de 2020, esta Superintendencia decretó la suspensión de los procedimientos administrativos sancionatorios seguidos ante esta autoridad a contar del 23 de marzo de 2020 y hasta el 31 de marzo de 2020 ambos inclusive. Dicha suspensión fue extendida inicialmente hasta el día 7 de abril por medio de la Res, Ex. Nº 548 (de fecha 30 de marzo de 2020), y luego hasta el día 30 de abril inclusive por medio de la Res. Ex Nº 575 (de fecha 7 de abril de 2020).

II. Cargos formulados por la Superintendencia en contra de EDELMAG

De acuerdo a lo señalado en el Resuelvo I de la Res. Ex. Nº1, la SMA formuló los siguientes cargos en contra de EDELMAG:

N°	Hechos que se estiman	Normativa que se considera infringida
	constitutivos de infracción	
1	constitutivos de infracción Incumplimiento del requerimiento de información respecto a la presentación de los antecedentes que permitieran evaluar cumplimiento de la norma de emisión durante el año 2016 por parte de la Unidad de Generación Eléctrica Hitachi TG de la Central Tres Puentes	Res. Ex. Nº 180, de 13 de marzo de 2017, de la Superintendencia del Medio Ambiente "RESUELVO: I. REQUIÉRASE. Cargar los reportes de monitoreo continuo de emisiones, año calendario 2016 del art. 12 D.S. Nº 13/2011 del Ministerio del Medio Ambiente, ajustados en base a los criterios que indica, para la unidad de generación eléctricas Nº 1 de la Central Tres Puentes". Decreto Supremo Nº 13/2011 del Ministerio del Medio Ambiente, Establece Norma de Emisión Para Centrales Termoeléctricas, Artículo 12 "Los titulares de las fuentes emisoras presentarán a la Superintendencia un reporte del monitoreo continuo de emisiones, trimestralmente, durante un año calendario, el que considerará a lo menos la siguiente información: a) Parámetros () b) Horas de encendido, en régimen y detenciones
2	Superación de la norma de emisión para Centrales Termoeléctricas en el año 2017 por parte de la Unidad de Generación Eléctrica Hitachi TG de la Central Tres Puentes en el parámetro NOx	programadas y no programadas, identificando el tipo de falla. ()" Decreto Supremo Nº 13/2011 del Ministerio del Medio Ambiente, Establece Norma de Emisión para Centrales Termoeléctricas, Artículo 4º "Los límites máximos de emisión se indican a continuación: Tabla Nº 1: Límites de emisión para fuentes emisoras existentes (mg/Nm³):

Combustible	Material Particulado (MP)	Dióxido de Azufre (SO ₂)	Óxidos de Nitrógeno (NO _x)	
Sólido	50	400	500	
Líquido	30	30	200	
Gas	n.a.	n.a.	50	

n.a.: no aplica.

[...]

Los valores límites de emisión para fuentes emisoras existentes de la Tabla Nº 1, para óxidos de Nitrógeno (Nox) se evaluarán sobre la base de promedios horarios y se deberán cumplir durante el 70% de las horas de funcionamiento".

Circular Nº 1/2015 Ministerio del Medio Ambiente

- "5. Criterios de evaluación de cumplimiento de la norma:
- A) Cumplimiento de norma:
- a) Para el caso de la norma de emisión de MP, SO₂ y NO_x se debe determinar el promedio horario de cada hora de funcionamiento, durante un año calendario. El promedio horario obtenido (o sustituido) en cada hora de funcionamiento debe compararse con el límite de emisión aplicable y determinar para cada una de esas horas de funcionamiento [...] ii. Para la evaluación del límite anual de óxidos de nitrógeno, las horas de inconformidad no deben justificarse, pero estas no pueden exceder el 30% de las horas de funcionamiento durante un año calendario".

3 Superación de la norma de emisión para Centrales Termoeléctricas en el año 2018 por parte de la Unidad de Generación Eléctrica Hitachi TG de la Central Tres Puentes en el parámetro NOx

Decreto Supremo Nº 13/2011 del Ministerio del Medio Ambiente, Establece Norma de Emisión para Centrales Termoeléctricas, Artículo 4º

"Los límites máximos de emisión se indican a continuación: Tabla N^o 1: Límites de emisión para fuentes emisoras existentes (mg/ Nm^3):

Combustible	Material Particulado (MP)	Dióxido de Azufre (SO₂)	Óxidos de Nitrógeno (NO _x)	
Sólido	50	400	500	
Líquido	30	30	200	
Gas	n.a.	n.a.	50	

n.a.: no aplica.

 $[\ldots]$

Los valores límites de emisión para fuentes emisoras existentes de la Tabla Nº 1, para óxidos de Nitrógeno (Nox) se evaluarán sobre la base de promedios horarios y se deberán cumplir durante el 70% de las horas de funcionamiento".

Circular Nº 1/2015 Ministerio del Medio Ambiente

- "5. Criterios de evaluación de cumplimiento de la norma:
- A) Cumplimiento de norma:

a) Para el caso de la norma de emisión de MP, SO₂ y NO_x se debe determinar el promedio horario de cada hora de funcionamiento, durante un año calendario. El promedio horario obtenido (o sustituido) en cada hora de funcionamiento debe compararse con el límite de emisión aplicable y determinar para cada una de esas horas de funcionamiento [...] ii. Para la evaluación del límite anual de óxidos de nitrógeno, las horas de inconformidad no deben justificarse, pero estas no pueden exceder el 30% de las horas de funcionamiento durante un año calendario".

III. Procedencia del instrumento Programa de Cumplimiento en el presente proceso

a. Presentación dentro de plazo

Respecto al plazo para la presentación del Programa de Cumplimiento, cabe señalar que la Res. Ex. N°1 fue notificada personalmente a EDELMAG con fecha 4 de marzo, concediéndose el plazo de 10 días hábiles para la presentación de un Programa de Cumplimiento. Considerando que dicho plazo fue ampliado en 5 días, mediante Res. Ex. N°2/Rol F-007-2020, y que los procedimientos sancionatorios tramitados ante la SMA fueron suspendidos desde el día 23 de marzo hasta el día 30 de abril ambos inclusive, el plazo para la presentación del Programa de Cumplimiento vencería el día 5 de mayo de 2020, por lo que la presentación del presente Programa de Cumplimiento se realiza dentro de plazo.

b. Cumplimiento de los requisitos de forma y fondo establecidos para los Programas de Cumplimiento

Respecto a los requisitos de forma y fondo, el artículo 7° del D.S. N° 30/2012 establece los contenidos mínimos con que debe contar un programa de cumplimiento:

- i) una breve descripción de los hechos, actos u omisiones que constituyen la infracción en que se ha incurrido, así como de sus efectos;
- ii) el plan de acciones y metas que se implementarán;
- el plan de seguimiento, que incorpora el cronograma de acciones y metas, así como los correspondientes indicadores de cumplimiento, y la entrega de informes periódicos sobre la implementación de cada una de ellas, además la entrega del reporte final correspondiente;
- iv) la información técnica de respaldo en los casos que procede, y los costos estimados para dar cumplimiento al citado programa, los cuales permiten acreditar su eficacia y verificabilidad.

El Programa de Cumplimiento que se presenta para su aprobación contiene todos los puntos previamente mencionados, por lo que cumple con lo establecido en el referido artículo 7°.

Por su parte, dando cumplimiento a lo dispuesto en el artículo 9° del D.S. N° 30/2012, las acciones, metas y seguimiento indicadas, y desarrolladas en el presente Programa de Cumplimiento, se hacen cargo de todos y cada uno de los cargos indicados en la Res. Ex. N°1 así como los efectos negativos que se pudieran haber producido, y permiten asegurar el cumplimiento de las disposiciones identificadas por la autoridad. Además, el presente Programa de Cumplimiento establece los mecanismos necesarios para acreditar el íntegro y oportuno cumplimiento del mismo.

c. Análisis de las causales de improcedencia o imposibilidad de presentar programas de cumplimiento

De acuerdo a lo establecido en el artículo 42 de la LOSMA, y en el artículo 6° del D.S. N° 30/2012, no podrán presentar programas de cumplimiento:

- "a) Los infractores que se hubiesen acogido a programas de gradualidad en el cumplimiento de la normativa ambiental.
- b) Los infractores que hubiesen sido objeto con anterioridad de la aplicación de una sanción por parte de la Superintendencia por infracciones gravísimas.
- c) Los infractores que hubiesen presentado con anterioridad un programa de cumplimiento, salvo que se hubiese tratado de infracciones leves."

El presente programa de cumplimiento no se enmarca en ninguna de las tres hipótesis recién citadas por lo que sí procede su presentación, situación que se demuestra a continuación.

i. <u>Haberse acogido a programas de gradualidad en el cumplimiento de la normativa ambiental</u>

Los programas de gradualidad en el cumplimiento de la normativa ambiental (en adelante "programa de gradualidad") solo fueron incorporados en la normativa nacional con la promulgación de la LOSMA el año 2010, la que en su artículo 42 los menciona dentro de las hipótesis en las que los titulares sometidos a un proceso sancionatorio no podrían acogerse a la presentación de un programa de cumplimiento.

El mencionado artículo 42 es la única referencia que existe a nivel legal respecto a los programas de gradualidad, sin que exista una conceptualización o mayor desarrollo respecto de dichos instrumentos.

Por su parte, revisada la historia de la Ley N° 20.417 tampoco existe mayor desarrollo o explicación sobre estos programas de gradualidad, los que fueron incorporados en el mensaje del ejecutivo y no sufrieron modificación en ninguno de los trámites legislativos, plasmándose en definitiva en la ley promulgada exactamente en los términos planteados en el mensaje.

Solo a nivel reglamentario, el D.S. Nº 30/2012 contempla una definición respecto a los programas de gradualidad, la que tampoco entrega muchas luces respecto al contenido y naturaleza de éstos. Dicho reglamento solamente indica que los referidos programas son una modalidad de cumplimiento progresivo de exigencias establecidas en la normativa ambiental (artículo 2º letra h).

En el presente proceso sancionatorio, las infracciones imputadas a mi representada recaerían en dos *normas* que se consideran infringidas: la Res. Ex. Nº 180, de 13 de marzo de 2017, de la Superintendencia del Medio Ambiente y el D.S. Nº 13/2011, <u>ninguna de las cuales corresponde a un programa de gradualidad.</u>

En el caso del D.S. Nº 13/2011, existen múltiples argumentos para (i) descartar que esta norma de emisión corresponda a un programa de gradualidad, y (ii) aunque fuera considerada como tal, no resultaría aplicable al caso concreto.

1. El programa de gradualidad corresponde a un instrumento independiente de la normativa ambiental vigente

Pese a la falta de definición y claridad en la normativa respecto a la naturaleza jurídica de los programas de gradualidad, la más destacada doctrina nacional se ha inclinado a conceptualizarlos como un instrumento de gestión ambiental.

En dicho orden de ideas, el profesor Bermúdez¹, conceptualiza los programas de gradualidad como un "instrumento coadyuvante de la fiscalización ambiental" en conjunto con la autodenuncia y el programa de cumplimiento. Así, se inclina por considerarlo un instrumento de gestión ambiental autónomo que debe ser aprobado por un órgano de la administración del Estado.

Por su parte, el profesor Soto Delgado², describiendo las facultades de la SMA para imponer medidas no sancionatorias, incluye la de "<u>aprobar el programa de gradualidad</u>, que consiste en una modalidad de cumplimiento progresivo de las exigencias establecidas en la normativa ambiental" (énfasis agregado).

Pese a que estos dos autores difieren sobre la competencia que tendría la SMA para aprobar los programas de gradualidad, ambos están contestes en que corresponde a un <u>instrumento de gestión ambiental administrativo independiente y autónomo de la normativa ambiental</u>, que debe contar con una aprobación administración específica.

¹ Bermúdez, Jorge, Fundamentos de Derecho Ambiental, Segunda Edición, 2014 (Valparaíso, Ediciones Universitarias de Valparaíso), p. 465.

² SOTO DELGADO, PABLO. (2016). Sanciones administrativas como medidas de cumplimiento del Derecho: un enfoque funcional y responsivo aplicado al régimen sancionatorio ambiental. *Ius et Praxis*, 22(2), 189-226. https://dx.doi.org/10.4067/S0718-00122016000200007

Sin ir más lejos, esta misma Superintendencia ya ha aprobado programas de cumplimiento respecto de infracciones al D.S. Nº 13/2011. Así, en el proceso sancionatorio rol F-20-2015, esta SMA aprobó un programa de cumplimiento presentado por un infractor al que le resultaba aplicable el D.S. Nº 13/2011 en condición de fuente emisora existente, idéntica situación que la del presente caso. De esta manera, solo quedaría aplicar el mismo criterio.

De esta forma, el D.S. Nº 13/2011 (así como cualquier otra normativa ambiental) no puede ser considerado un programa de gradualidad y, por tanto, no resulta aplicable la primera de las limitaciones a la procedencia del programa de cumplimiento a aquellos sujetos regulados por la referida norma de emisión.

2. Requisito de voluntariedad

Sin perjuicio que la argumentación recién desarrollada es más que suficiente para descartar que el D.S. Nº 13/2011 corresponde a un programa de gradualidad, conviene tener a la vista un fundamento adicional para sostener la hipótesis planteada.

Dispone el artículo 42 de la LOSMA que no podrán presentar programas de cumplimiento aquellos infractores que <u>se hubiese acogido</u> a programas de gradualidad en el cumplimiento de la normativa vigente (énfasis agregado).

El concepto de "haberse acogido" a algo, supone un grado de voluntariedad en la persona que decide someterse o beneficiarse de una situación determinada, es decir, debe mediar alguna solicitud o manifestación de voluntad por parte del regulado en orden a acceder a un programa de gradualidad, hipótesis que no se cumple en el caso del D.S. Nº 13/2011.

La referida norma de emisión definió dos tipos de fuentes emisoras: (i) las existentes, correspondientes a aquellas unidades de generación eléctrica que se encontraban operando o declaradas en construcción al momento de entrar en vigencia el D.S. Nº 13/2011 y; (ii) las nuevas, correspondientes a aquellas que no se encontraban en funcionamiento ni en construcción a esa fecha.

Como se puede apreciar, la calificación de fuentes existentes y nuevas <u>descansa en un hecho</u> <u>objetivo (la temporalidad de su puesta en operación o construcción)</u>, el que no permite a ningún sujeto regulado decidir la categorización de su unidad de generación. Así, malamente puede considerarse que el dueño o titular de una unidad de generación clasificada por el D.S. Nº 13/2011 como existente <u>decidió o eligió dicha condición</u> y, por tanto, <u>que haya optado</u> por algún tipo de gradualidad en el cumplimiento de la norma de emisión.

Coherente con lo señalado, en la misma Res. Ex. Nº1, en su considerando 5º se señala que "[...] de acuerdo con la definición del artículo 3º, letra c) del D.S. Nº 13/2011, la UGE Hitachi TG de la Central Tres Puentes corresponde a una fuente emisora existente". Así, resulta evidente que la calificación de fuente emisora existente descansa exclusivamente en un hecho objetivo establecido en el D.S. Nº 13/2011, no existiendo por parte del titular o dueño de dicho tipo de instalaciones ningún tipo de voluntariedad respecto al régimen jurídico que le resultaba aplicable.

Dicha fórmula de calificación objetiva resulta recurrente entre las normas de emisión dictadas hasta la fecha, en las cuales se utiliza exactamente el mismo mecanismo, vale decir, se distingue entre fuentes existentes y nuevas, otorgándose, por la propia norma, un plazo para adecuarse a las nuevas exigencias y limitaciones. Más aún, respecto a infracciones a dichas normas, esta Superintendencia ha expresamente aprobado programas de cumplimiento³.

ii. Haber sido objeto de la aplicación de una sanción por infracciones gravísimas

Según consta en el registro público de sanciones, del Sistema Nacional de Información de Fiscalización Ambiental, EDELMAG no ha sido objeto de sanciones por parte de esta Superintendencia del Medio Ambiente, motivo por el cual, puede descartarse la procedencia de esta limitación a la presentación de un Programa de Cumplimiento.

iii. <u>Haber presentado con anterioridad un programa de cumplimiento por infracciones graves o gravísimas</u>

Según consta en el registro de Procedimientos Sancionatorios del Sistema Nacional de Información de Fiscalización Ambiental la Unidad Fiscalizable "Central Tres Puentes – EDELMAG S.A." no ha presentado con anterioridad programas de cumplimiento por infracciones graves o gravísimas.

Es del caso señalar que mi representada presentó un programa de cumplimiento en el marco del proceso sancionatorio rol F-012-2015 (actualmente en ejecución), proceso en el que solo se formularon cargos por infracciones calificadas como leves. Así, esta hipótesis de limitación a la presentación de un programa de cumplimiento tampoco resulta aplicable en el presente proceso.

De esta forma, el Programa de Cumplimiento que se presenta en este acto cumple con todos los requisitos legales establecidos tanto en la LOSMA como en el D.S. N° 30/2012, además de seguir los criterios establecidos en la Guía para la Presentación de Programas de Cumplimiento por Infracciones a Instrumentos de Carácter Ambiental de julio de 2018.

8

³ Particularmente con respecto al DS N 38/2011 del MMA, que establece la Norma De Emisión De Ruidos Generados Por Fuentes Que Indica.

POR TANTO; en virtud de lo expuesto y lo establecido en el artículo 42 de la LOSMA y las demás disposiciones aplicables, solicito a usted tener por presentado el Programa de Cumplimiento que se acompaña, aprobarlo en todas sus partes, decretando la suspensión del procedimiento sancionatorio Rol F-007-2020 y, en definitiva, tras su ejecución satisfactoria, poner término al presente procedimiento administrativo sancionatorio.

PRIMER OTROSÍ: Sírvase tener por acompañados los siguientes documentos en formato digital:

- Programa de Cumplimiento proceso sancionatorio Rol F-007-2020
- Anexo 1 "Informe Ejecutivo de la Calidad del Aire en la ciudad de Punta Arenas"
 - a. Apéndice 1: Informe de resultados de calidad de aire Central Tres Puentes –
 Edelmag (Diciembre 2015 Enero 2016).
 - b. Apéndice 2: Informe de resultados de calidad de aire Central Tres Puentes –
 Edelmag (Diciembre 2017- Enero 2018).
 - c. Apéndice 3: Informe de resultados de calidad de aire Central Tres Puentes –
 Edelmag (Abril2019 Mayo2019).
- Anexo 2 "Disminución de Horas de Operación Anual TG1 Hitachi

1. DESCRIPCIÓN DEL HECHO QUE CONSTITUYE LA INFRACCIÓN Y SUS EFECTOS

IDENTIFICADOR DEL HECHO	Hecho constitutivo de infracción N°1
DESCRIPCIÓN DE LOS HECHOS, ACTOS Y OMISIONES QUE CONSTITUYEN LA INFRACCIÓN	Incumplimiento del requerimiento de información respecto a la presentación de los antecedentes que permitieran evaluar el cumplimiento de la norma de emisión durante el año 2016 por parte de la Unidad de Generación Eléctrica Hitachi TG de la Central Tres Puentes.
NORMATIVA PERTINENTE	DS N°13/2011, del Ministerio del Medio Ambiente, Establece Norma de Emisión para Centrales Termoeléctricas (en adelante DS Nº 13/2011), artículo 12°.
DESCRIPCIÓN DE LOS EFECTOS NEGATIVOS PRODUCIDOS POR LA INFRACCIÓN O FUNDAMENTACIÓN DE LA INEXISTENCIA DE EFECTOS NEGATIVOS	Durante el periodo que va entre los meses de abril y diciembre de 2016, la Empresa Eléctrica de Magallanes (en adelante EDELMAG) no remitió los reportes trimestrales de monitoreo continuo de emisiones requeridos en el DS N°13/2011, artículo 12°. Tal hecho implicó que, en la oportunidad requerida, la División de Fiscalización de la Superintendencia del Medio Ambiente (en adelante SMA) no pudiera efectuar el análisis de los registros. Respecto de los eventuales efectos negativos producidos por la infracción antes señalada, es importante considerar los antecedentes que se presentan en el Anexo 1 . En dicho documento, se analiza la información de calidad del aire respecto de dos estaciones de monitoreo: (i) estación EDELMAG, y (ii) estación Punta Arenas (MMA). En la estación EDELMAG ubicada al interior del área de influencia del proyecto en un sector considerado como representativo de las zonas pobladas más cercanas, se registraron concentraciones muy por debajo de los 400 [µg/m³N] establecidos como máximo permitido en el DS. N°114/2002, Ministerio Secretaría General de la Presidencia, Establece Norma Primaria de Calidad de Aire para Dióxido de Nitrógeno (NO2). Por su parte en la estación Punta Arenas, el indicador público validado para determinar la calidad del aire corresponde a la estación de monitoreo del Ministerio del Medio Ambiente que mide material particulado fino MP 2,5, se registraron concentraciones muy por debajo de los límites tanto para la métrica promedio 24 horas,

[µg/m³N] para el periodo en cuestión. Lo anterior según lo indicado en el D.S. N°12/2011, del Ministerio del Medio Ambiente, que Establece Norma Primaria De Calidad Ambiental Para Material Particulado Fino Respirable MP2,5.

Asimismo, las concentraciones de monóxido de carbono CO registraron concentraciones por debajo de los límites máximos establecidos en su respectiva norma primarias de calidad del aire, contenida en el D.S. N°115/2002 Ministerio Secretaría General de la Presidencia, Establece Norma Primaria de Calidad de Aire para Monóxido de Carbono (CO).

Con el objeto de reforzar lo recién señalado, es preciso señalar que el comportamiento indicado anteriormente para el año 2016 se repite para los años posteriores 2017, 2018 y 2019, donde no se sobrepasan los límites máximos establecidos en las normas primarias de calidad del aire para los contaminantes NO₂, CO y MP2,5 en la estación de monitoreo de EDELMAG, ni en la del MMA en lo que se refiere a MP 2,5.

Adicionalmente, la ciudad de Punta Arenas y, por lo tanto, su población se emplaza en una zona con condiciones geográficas y meteorológicas que favorecen la ventilación y por ende la rápida dispersión de contaminantes atmosféricos. En efecto, datos publicados en el Sistema Nacional de Información Ambiental (SINIA) respecto de calidad del aire califican a la ciudad de Punta Arenas como una de las ciudades que mantiene los mejores índices de calidad a nivel país.

En consecuencia, y a la vista de los antecedentes expuestos y que se adjuntan en el **Anexo 1** del presente documento, se puede establecer la inexistencia de efectos negativos ya sea afectación o riesgo a la salud de la población de la ciudad de Punta Arenas o las comunidades más cercanas a la Central Tres Puentes de EDELMAG, producto de los hechos constitutivos de infracción señalados por la autoridad.

FORMA EN QUE SE ELIMINAN O
CONTIENEN Y REDUCEN LOS EFECTOS
Y FUNDAMENTACIÓN EN CASO EN
QUE NO PUEDAN SER ELIMINADOS

En consideración de los antecedentes presentados en el **Anexo 1** de este documento, dentro de los cuales se muestra que no se excedieron las normas primarias de calidad del aire en dos estaciones de monitoreo (en el caso de la estación Punta Arenas del MMA solo respecto del MP 2,5), una ubicada en forma contigua a la Central Termoeléctrica Eléctrica Tres Puentes y la otra del Ministerio del Medio Ambiente ubicada en la ciudad de Punta Arenas, se puede establecer que el hecho sujeto a infracción no originó efectos ambientales negativos que eliminar, contener ni reducir.

2. PLAN DE ACCIONES Y METAS PARA CUMPLIR CON LA NORMATIVA, Y ELIMINAR O CONTENER Y REDUCIR LOS EFECTOS NEGATIVOS GENERADOS

2.1 METAS

• Dar cumplimiento a lo instruido por SMA en la Res. Ex. № 180, de 13 de marzo de 2017 cargando en el Sistema Centrales Termoeléctricas (en adelante SICTEC), el 100% de los registros de emisiones requeridas correspondientes al periodo abril – diciembre de 2016, de acuerdo a lo establecido en el artículo 12 del DS №13/2011

2.2 PLAN DE ACCIONES

2.2.1 ACCIONES EJECUTADAS

Incluir todas las acciones cuya ejecución ya finalizó o finalizará antes de la aprobación del Programa.

	N° IDENTI	DESCRIPCIÓN	FECHA DE IMPLEMENTA CIÓN	INDICADORES DE CUMPLIMIENTO	MEDIOS DE VERIFICACIÓN	COSTOS INCURRIDOS	
	FICAD OR	(describir los aspectos fundamentales de la acción y forma de implementación, incorporando mayores detalles en anexos si es necesario)	(fechas precisas de inicio y de término)	(datos, antecedentes o variables que se utilizarán para valorar, ponderar o cuantificar el cumplimiento de las acciones y metas definidas)	(a informar en Reporte Inicial)	(en miles de \$)	
		Acción			Reporte Inicial		
	1	Seleccionar servicio de asesoría para realizar la carga de los reportes trimestrales correspondientes al año 2016.	Inicio: 17.3.2020	Realizar la carga de los reportes trimestrales a través de una empresa consultora		No aplica.	
	1	Forma de Implementación	Término:	especializada en la materia.	Orden de Compra por servicio de reporte a JHG.		
		Se solicitó propuesta económica a empresa consultora con experiencia en la materia, requiriendo la ejecución de la acción descrita.	31.3.2020	especianzada en la materia.	scrivicio de reporte a sira.		
		Acción			Reporte Inicial		
	2	Levantamiento y preparación de la información a ser reportada en la plataforma SICTER.	Inicio: 25.3.2020	Datos preparados y formateados para	Correo electrónico EDELMAG remite datos crudos a JHG Ingeniería	\$5200	
	4	Forma de Implementación	Término:	reporte.		\$5200	
		Se descargaron datos crudos del período abril – diciembre de 2016 y se remitieron a JHG Ingeniería, quienes	15.4.2020		Correo electrónico JHG informa a EDELMAG que		

	los analizaron, procesaron y prepararon para cargarlos en plataforma SICTER.			datos están aptos para reportar		
3	Acción Habilitación plataforma SICTER para efectuar reporte trimestres 2016. Forma de Implementación Se envió carta a SMA solicitando que se habilite modo editable de plataforma SICTER, para efectuar el reporte.	Inicio: 02.4.2020 Término: 30.4.2020	Copia de respuesta SMA que confirma habilitación modo editable de plataforma SICTER.		No aplica.	

2.2.2 ACCIONES EN EJECUCIÓN

Incluir todas las acciones que han iniciado su ejecución o se iniciarán antes de la aprobación del Programa.

N°	DESCRIPCIÓN	FECHA DE INICIO Y PLAZO DE EJECUCIÓN	INDICADORES DE CUMPLIMIENTO	MEDIOS DE VERIFICACIÓN	COSTOS ESTIMADOS	IMPEDIMENTOS EVENTUALES
IDENTI FICAD OR	(describir los aspectos fundamentales de la acción y forma de implementación, incorporando mayores detalles en anexos si es necesario)	(fecha precisa de inicio para acciones ya iniciadas y fecha estimada para las próximas a iniciarse, y plazo de ejecución)	(datos, antecedentes o variables que se utilizarán para valorar, ponderar o cuantificar el avance y cumplimiento de las acciones y metas definidas)	(a informar en Reporte Inicial, Reportes de Avance y Reporte Final respectivamente)	(en miles de \$)	(indicar según corresponda: acción alternativa que se ejecutará y su identificador, implicancias que tendría el impedimento y gestiones a realizar en caso de su ocurrencia)
	Acción			Reporte Inicial		Impedimentos
	No aplica.		No aplica.	No aplica.		No aplica.
No aplica.	Forma de Implementación	No aplica.		Reportes de avance	No aplica.	Acción alternativa, implicancias y gestiones asociadas al impedimento
	No aplica.			No aplica.		
				Reporte final		No aplica.
				No aplica.		

2.2.3 ACCIONES PRINCIPALES POR EJECUTAR

THEIC			r ejecutar a partir de la ap	Tobacion del Frogra					
	DESCRIPCIÓN	PLAZO DE EJECUCIÓN	INDICADORES DE CUMPLIMIENTO	MEDIOS DE VERIFICACIÓN	COSTOS ESTIMADOS	IMPEDIMENTOS EVENTUALES			
N° IDENTI FICAD OR	(describir los aspectos fundamentales de la acción y forma de implementación, incorporando mayores detalles en anexos si es necesario)	(periodo único a partir de la notificación de la aprobación del PDC, definido con un inicio y término de forma independiente de otras acciones)	(datos, antecedentes o variables que se utilizarán para valorar, ponderar o cuantificar el avance y cumplimiento de las acciones y metas definidas)	(a informar en Reportes de Avance y Reporte Final respectivamente)	(en miles de \$)	(indicar según corresponda: acción alternativa que se ejecutará y su identificador, implicancias que tendría el impedimento y gestiones a realizar en caso de su ocurrencia)			
	Acción			Reportes de avance		Impedimentos			
	Actualización del protocolo interno de preparación y envío reportes a la SMA.			En el primer reporte de avance se remitirá el Protocolo actualizado de preparación y envío de reportes a la SMA.		No hay.			
4	Forma de Implementación	Inicio: 1 mes a partir de la notificación de	1 mes a partir de la notificación de	1 mes a partir de la notificación de	1 mes a partir de		Reporte final		Acción alternativa, implicancias y gestiones asociadas al impedimento
	El protocolo actualizado deberá estar firmado por el Gerente de Operaciones de la Central y deberá contener al menos las siguientes materias: i) Tipos de reportes a ser entregados a la SMA; ii) Plazos de entrega para cada uno de los reportes; iii) Forma que se utilizará para reportar, y iv) Trabajadores de la empresa que serán responsables de reportar a la SMA.	Programa de Cumplimiento. Término: 1 mes después del inicio de la acción.	Protocolo interno de preparación y envío reportes a la SMA actualizado.	En el reporte final se entregará el Protocolo actualizado de preparación y envío de reportes a la SMA.	No aplica.	No aplica.			
	Acción	La		Reportes de avance		Impedimentos			
5	Implementación de protocolo interno actualizado de preparación y envío reportes a la SMA.	implementación del protocolo se realizará a partir	Registro de Capacitaciones realizadas a personal responsable.	Registro de capacitaciones al personal responsable sobre protocolo interno de	No aplica.	No hay.			

	Forma de Implementación	del mes siguiente desde la elaboración del protocolo con capacitaciones cada tres meses y de forma		preparación y envío reportes a la SMA. Las capacitaciones se efectuarán cada 3 meses. Reporte final		Acción alternativa, implicancias y gestiones asociadas al impedimento											
	Se realizarán capacitaciones trimestrales al personal responsable sobre protocolo interno de preparación y envío reportes a la SMA.	permanente durante la ejecución del Programa de Cumplimiento.		En el reporte final se entregará un consolidado de las capacitaciones del protocolo interno de preparación y envío reportes a la SMA, realizadas durante la ejecución del Programa de Cumplimiento.		No aplica.											
	Acción	Inicio:		Reportes de avance		Impedimentos											
	Carga de registros de emisiones correspondientes al periodo abril – diciembre 2016, en plataforma SICTER.	1 día hábil a partir de la notificación de la aprobación del Programa de Cumplimiento. Término: 5 días hábiles desde el inicio de la acción.	partir de la notificación de la	partir de la notificación de la	partir de la notificación de la	partir de la notificación de la	partir de la notificación de la	partir de la notificación de la	partir de la notificación de la	partir de la notificación de la aprobación del	partir de la notificación de la	partir de la notificación de la	partir de la notificación de la		Copia de orden de compra por servicio de reporte.		No hay.
6	Forma de Implementación		Copia de certificado de recepción del reporte entregado por SICTER.	Reporte final	No aplica.	Acción alternativa, implicancias y gestiones asociadas al impedimento											
	EDELMAG ingresará datos procesados y formateados en SICTER.		desde el inicio de	desde el inicio de	desde el inicio de	desde el inicio de		Certificado de recepción del reporte entregado por SICTER.		No aplica.							

2.2.4 ACCIONES ALTERNATIVAS

Incluir todas las acciones que deban ser realizadas en caso de ocurrencia de un impedimento que imposibilite la ejecución de una acción principal.

N° IDENTI	DESCRIPCIÓN	ACCIÓN PRINCIPAL ASOCIADA	PLAZO DE EJECUCIÓN	INDICADORES DE CUMPLIMIENTO	MEDIOS DE VERIFICACIÓN	COSTOS ESTIMADOS	
--------------	-------------	---------------------------------	-----------------------	--------------------------------	------------------------	---------------------	--

FICAD OR	(describir los aspectos fundamentales de la acción y forma de implementación, incorporando mayores detalles en anexos si es necesario)	(N° Identificador)	(a partir de la ocurrencia del impedimento)	(datos, antecedentes o variables que se utilizarán para valorar, ponderar o cuantificar el avance y cumplimiento de las acciones y metas definidas)	(a informar en Reportes de Avance y Reporte Final respectivamente)	(en miles de \$)	
	Acción	No aplica.	No aplica.	No aplica.	Reportes de avance	No aplica.	
No aplica.	No aplica.				No aplica.		
арпса.	Forma de implementación				Reporte final		
	No aplica.				No aplica.		

2. DESCRIPCIÓN DEL HECHO QUE CONSTITUYE LA INFRACCIÓN Y SUS EFECTOS

IDENTIFICADOR DEL HECHO	Hecho constitutivo de infracción N°2
DESCRIPCIÓN DE LOS HECHOS, ACTOS Y OMISIONES QUE CONSTITUYEN LA INFRACCIÓN	Superación de la norma de emisión para Centrales Termoeléctricas en el año 2017 por parte de la Unidad de Generación Eléctrica Hitachi TG de la Central Tres Puentes, en el parámetro NOx.
NORMATIVA PERTINENTE	DS N°13/2011, del Ministerio del Medio Ambiente, Establece Norma de Emisión para Centrales Termoeléctricas, artículo 4°.
	Conforme a la información reportada por EDELMAG en los informes trimestrales del año 2017, se constató que de un total de 2.550 horas de funcionamiento de la fuente emisora, se reportaron 2.508 horas de incumplimiento del límite de 50 mg/Nm³ de NO _x establecido en la Tabla N°1 del artículo 4 del D.S. N°13/2011, con 42 horas de conformidad. Esto fue equivalente a 98,35% de horas de funcionamiento en incumplimiento de la norma de emisión. Respecto de los eventuales efectos negativos producidos por la infracción antes señalada, es importante
DESCRIPCIÓN DE LOS EFECTOS NEGATIVOS PRODUCIDOS POR LA INFRACCIÓN O FUNDAMENTACIÓN DE LA INEXISTENCIA DE EFECTOS NEGATIVOS	considerar los antecedentes que se presentan en el Anexo 1 . En dicho documento, se analiza la información de calidad del aire respecto de dos estaciones de monitoreo: (i) estación EDELMAG, y (ii) estación Punta Arenas (MMA). En la estación EDELMAG ubicada al interior del área de influencia del proyecto en un sector considerado como representativo de las zonas pobladas más cercanas, se registraron concentraciones muy por debajo de los 400 [μg/m³N] establecido como máximo permitido en el DS. N°114/2002, Ministerio Secretaría General de la Presidencia, Establece Norma Primaria de Calidad de Aire para Dióxido de Nitrógeno (NO ₂).
	Por su parte en la estación Punta Arenas, el indicador público validado para determinar la calidad del aire corresponde a la estación de monitoreo del Ministerio del Medio Ambiente que mide material particulado fino MP 2,5, se registraron concentraciones muy por debajo de los límites tanto para la métrica promedio 24 horas, que establece un límite máximo de 50 [μg/m³N] como para la métrica anual que tiene un límite máximo de 20

[µg/m³N] para el periodo en cuestión. Lo anterior según lo indicado en el D.S. N°12/2011, del Ministerio del Medio Ambiente, que Establece Norma Primaria De Calidad Ambiental Para Material Particulado Fino Respirable MP2,5.

Asimismo, las concentraciones de monóxido de carbono CO registraron concentraciones por debajo de los límites máximos establecidos en su respectiva norma primarias de calidad del aire, contenida en el D.S. N°115/2002 Ministerio Secretaría General de la Presidencia, Establece Norma Primaria de Calidad de Aire para Monóxido de Carbono (CO).

Con el objeto de reforzar lo recién señalado, es preciso señalar que el comportamiento indicado anteriormente para el año 2016 se repite para los años posteriores 2017, 2018 y 2019, donde no se sobrepasan los límites máximos establecidos en las normas primarias de calidad del aire para los contaminantes NO₂, CO y MP2,5 en la estación de monitoreo de EDELMAG, ni en la del MMA en lo que se refiere a MP 2,5.

Adicionalmente, la ciudad de Punta Arenas y por lo tanto su población se emplaza en una zona con condiciones geográficas y meteorológicas que favorecen la ventilación y por ende la rápida dispersión de contaminantes atmosféricos. En efecto, datos publicados en el Sistema Nacional de Información Ambiental (SINIA) respecto de calidad del aire a la ciudad de Punta Arenas como una de las ciudades que mantiene los mejores índices de calidad a nivel país.

En consecuencia, y a la vista de los antecedentes expuestos y que se adjuntan en el **Anexo 1** del presente documento, se puede establecer la inexistencia de efectos negativos ya sea afectación o riesgo a la salud de la población de la ciudad de Punta Arenas o las comunidades más cercanas a la Central Termoeléctrica Tres Puentes de EDELMAG, producto de los hechos constitutivos de infracción señalados por la autoridad.

FORMA EN QUE SE ELIMINAN O CONTIENEN Y REDUCEN LOS EFECTOS Y FUNDAMENTACIÓN EN CASO EN QUE NO PUEDAN SER ELIMINADOS

En consideración de los antecedentes presentados en el **Anexo 1** de este documento, dentro de los cuales se muestra que no se excedieron las normas primarias de calidad del aire en dos estaciones de monitoreo (en el caso de la estación Punta Arenas del MMA solo respecto del MP 2,5), una ubicada en forma contigua a la Central Termoeléctrica Eléctrica Tres Puentes y la otra del Ministerio del Medio Ambiente ubicada en la ciudad de Punta Arenas, se puede establecer que el hecho sujeto a infracción no originó efectos ambientales negativos que eliminar, contener ni reducir.

2. PLAN DE ACCIONES Y METAS PARA CUMPLIR CON LA NORMATIVA, Y ELIMINAR O CONTENER Y REDUCIR LOS EFECTOS NEGATIVOS GENERADOS

2.2 METAS

• Cumplir con las disposiciones establecidas en el DS N°13/2011, del Ministerio del Medio Ambiente, Establece Norma de Emisión para Centrales Termoeléctricas, especialmente las que dicen relación con los límites máximos permitidos para emisiones atmosféricas indicados en su artículo 4°.

2.2 PLAN DE ACCIONES

2.2.1 ACCIONES EJECUTADAS

Incluir todas las acciones cuya ejecución ya finalizó o finalizará antes de la aprobación del Programa.

N° IDENTI	DESCRIPCIÓN	FECHA DE IMPLEMENTA CIÓN	INDICADORES DE CUMPLIMIENTO	MEDIOS DE VERIFICACIÓN	COSTOS INCURRIDOS
FICAD OR	(describir los aspectos fundamentales de la acción y forma de implementación, incorporando mayores detalles en anexos si es necesario)	(fechas precisas de inicio y de término)	(datos, antecedentes o variables que se utilizarán para valorar, ponderar o cuantificar el cumplimiento de las acciones y metas definidas)	(a informar en Reporte Inicial)	(en miles de \$)
	Acción			Reporte Inicial	
No	No aplica.	No aplica.	No aplica.		No aplica.
aplica.	Forma de Implementación	ivo aplica.	No aprica.	No aplica.	ivo aplica.
	No aplica.	1			

2.2.2 ACCIONES EN EJECUCIÓN

Incluir todas las acciones que han iniciado su ejecución o se iniciarán antes de la aprobación del Programa.

N°	DESCRIPCIÓN	FECHA DE INICIO Y PLAZO DE EJECUCIÓN	INDICADORES DE CUMPLIMIENTO	MEDIOS DE VERIFICACIÓN	COSTOS ESTIMADOS	IMPEDIMENTOS EVENTUALES
IDENTI FICAD OR		(fecha precisa de inicio para acciones ya iniciadas y fecha estimada para las próximas a iniciarse, y plazo de ejecución)	(datos, antecedentes o variables que se utilizarán para valorar, ponderar o cuantificar el avance y cumplimiento de las acciones y metas definidas)	(a informar en Reporte Inicial, Reportes de Avance y Reporte Final respectivamente)	(en miles de \$)	(indicar según corresponda: acción alternativa que se ejecutará y su identificador, implicancias que tendría el impedimento y gestiones a realizar en caso de su ocurrencia)
7	Acción			Reporte Inicial	\$6.000	Impedimentos

Disminución de horas de operación anual TG HITACHI.			En el reporte inicial se remitirá el segundo reporte trimestral CEMS TG HITACHI (abril - junio 2020). Reportes de avance	No hay.
Forma de Implementación			En los reportes de avance se remitirán los reportes trimestrales CEMS TG HITACHI elaborados dentro	Acción alternativa, implicancias y gestio asociadas al impedimento
Para que el TG HITACHI no opere más de 876 horas en el año 2020, sin que ello afecte la confiabilidad de la operación de las unidades base de la Central Tres Puentes, se optimizó el programa de mantenimiento y proyectos asociados en la Central Tres Puentes, que considera realizar inspecciones internas de los principales componentes de la turbina, evitando el armado y desarmado de componentes que no son críticos.	Desde abril de 2020 de forma permanente durante hasta el cese de funcionamiento de la UGE Hitachi TG.	Horas acumuladas de funcionamiento del TG HITACHI.	del periodo. Reporte final	
Esto disminuye los tiempos de indisponibilidad de las unidades en mantención en un 48%, reduciendo así las horas que el TG HITACHI debe operar como respaldo ante esas indisponibilidades.			En el reporte final se remitirá un consolidado de los informes trimestrales CEMS TG HITACHI del año.	No aplica.
Además, estas inspecciones permiten desplazar mantenimientos mayores hasta que se ponga en servicio el bloque de potencia que reemplazará al TG HITACHI, según lo indicado en Acción N°11. (para información más detallada referirse al Anexo 2 , Tabla 2).				

Compleme	ntari	am	ente a	lo a	ant	erior,
EDELMAG	COI	mp	artirá	los	(datos
recogidos	por	el	CEMS	de	la	
Hitachi TG	en lí	nea	con la	SM	Α.	

2.2.3 ACCIONES PRINCIPALES POR EJECUTAR

Incluir todas las acciones no iniciadas por ejecutar a partir de la aprobación del Programa.

Incit	iir todas ias acciones no	iniciadas po	r ejecutar a partir de la ap	robacion dei Progra	dilla.	
N° IDENTI	DESCRIPCIÓN	PLAZO DE EJECUCIÓN	INDICADORES DE CUMPLIMIENTO	MEDIOS DE VERIFICACIÓN	COSTOS ESTIMADOS	IMPEDIMENTOS EVENTUALES
FICAD OR	(describir los aspectos fundamentales de la acción y forma de implementación, incorporando mayores detalles en anexos si es necesario)	(periodo único a partir de la notificación de la aprobación del PDC, definido con un inicio y término de forma independiente de otras acciones)	(datos, antecedentes o variables que se utilizarán para valorar, ponderar o cuantificar el avance y cumplimiento de las acciones y metas definidas)	(a informar en Reportes de Avance y Reporte Final respectivamente)	(en miles de \$)	(indicar según corresponda: acción alternativa que se ejecutará y su identificador, implicancias que tendría el impedimento y gestiones a realizar en caso de su ocurrencia)
	Acción			Reportes de avance		Impedimentos
8	Elaboración de un Estudio Técnico de Compensación de Emisiones de NOx en base a las emisiones producidas por la UGE Hitachi TG por sobre la norma de emisión D.S. N°13/2011.	Inicio: 2 días hábiles a partir de la notificación de la aprobación del Programa de Cumplimiento.	Estudio Técnico de Compensación de	En el primer reporte de avance se adjuntará un registro de las actividades realizadas en el marco de la elaboración del estudio técnico de compensación de emisiones.	\$14.000.	No hay.
	Forma de implementación	Término: 2 meses a partir de la notificación de la aprobación	Emisiones de NOx elaborado.	Reporte final		Acción alternativa, implicancias y gestiones asociadas al impedimento
	Se desarrollará un estudio para la determinación de medidas y/o acciones factibles de ser implementadas, para compensar las	del Programa de Cumplimiento.		Informe final del estudio técnico de compensación de emisiones de NOx.		No aplica.

	emisiones de NOx de la UGE Hitachi TG.					
	Acción			Reportes de avance		Impedimentos
9	Implementación del Estudio Técnico de Compensación de Emisiones de NOx en base a las emisiones producidas por la UGE Hitachi TG.	Inicio: 2 días hábiles a partir de la ejecución de la Acción 8. Término:	Implementación de las medidas y/o acciones del Estudio Técnico de	En los reportes de avance se adjuntará un registro de las actividades realizadas en el marco de la implementación del Estudio Técnico de Compensación de Emisiones.	\$160.000	No hay.
	Forma de implementación	14 meses a partir de la notificación de la aprobación del Programa de	Compensación de Emisiones de NOx.	Reporte final		Acción alternativa, implicancias y gestiones asociadas al impedimento
	Se implementarán las medidas y/o acciones del Estudio Técnico de Compensación de Emisiones de NOx.	Cumplimiento.		Copia informe final de cumplimiento del Estudio Técnico de Compensación de Emisiones de NOx.		No aplica.
	Acción			Reportes de avance		Impedimentos
10	Realizar consulta de pertinencia de ingreso al Servicio de Evaluación Ambiental (en adelante SEA), por cambio tecnológico en la capacidad de generación electrica instalada reemplazando la UGE TG HITACHI por otro tipo de UGE que asegure cumplimiento de la normativa vigente.	Inicio: 1 día hábil desde la aprobación del PdC Término: 60 días hábiles	Resolución exenta del SEA pronunciándose respecto de la consulta de pertinencia formulada	Copia carta consulta de pertinencia.	\$5.000	SEA resuelve que modificación consultada corresponde a un cambio de consideración y, por tanto, debe someterse al SEIA previo a su ejecución.
	Forma de implementación	desde la aprobación del PdC		Reporte final		Acción alternativa, implicancias y gestiones asociadas al impedimento
	Se formulará una consulta de pertinencia de ingreso al Sistema de			Resolución pronunciamiento del SEA.		Obtención de una Resolución de Calificación

	Evaluación de Impacto Ambiental (SEIA) al SEA, respecto a la implementación de un cambio de tecnología en la capacidad de generación actualmente autorizada, reemplazando la TG HITACHI por otra instalación similar que asegure el cumplimiento de la normativa ambiental aplicable, particularmente el D.S. № 13/2011, sin adicionar capacidad de generación nueva. Se preparará informe técnico, con fundamentos técnicos y jurídicos que justifique y acredite que el cambio de tecnología propuesto no corresponde a un cambio de consideración de acuerdo a los criterios establecidos en el artículo 2º letra g) del D.S. 40/2012 del Ministerio del Medio Ambiente que establece el Reglamento del SEIA.					Ambiental (RCA) favorable para el cambio de tecnología descrito en la Acción N°12.
11	Acción Cambio de tecnología en la capacidad de generación eléctrica actualmente instalada, reemplazando la TG HITACHI por otro tipo de turbina que permita dar cumplimiento a la normativa ambiental vigente. Forma de implementación	Inicio: 60 días hábiles desde la aprobación del PdC. Término: 190 días hábiles desde la aprobación del PdC.	Entrada en operación de la nueva tecnología en reemplazo de la UGE Hitachi TG.	Informes de estados de avance de las obras Copia estados de pago a proveedores. Reporte final	\$5.175.175	Impedimentos Atrasos no imputables al Titular del proyecto en provisión, internación y/o traslado de las unidades generadoras debido a fuerza mayor por contingencia sanitaria COVID-19, contingencia social, u otra situación similar. Acción alternativa, implicancias y gestiones asociadas al impedimento

Se propone instalar un bloque de potencia que reemplace la capacidad instalada actualmente de 10 MW (TG HITACHI).			Contrato con proveed considerará multas patrasos, para incentivo cumplimiento de plazos
 Esta acción se compone de una las siguientes etapas: Selección y adquisición de bloque de potencia compatible con la Central Tres Puente y con el Sistema eléctrico de Magallanes. Importación y traslado del bloque a la Central Tres Puentes. Instalación y operación de bloque de potencia. 		Copia notificación a la Superintendencia de Electricidad y Combustibles (SEC) de puesta en servicio del nuevo bloque de potencia reemplazando la TG Hitachi.	Contrato con proveed considerará seguimier de inspección técnica

2.2.4 ACCIONES ALTERNATIVAS

Incluir todas las acciones que deban ser realizadas en caso de ocurrencia de un impedimento que imposibilite la ejecución de una acción principal.

N° IDENT		ACCIÓN PRINCIPAL ASOCIADA	PLAZO DE EJECUCIÓN	INDICADORES DE CUMPLIMIENTO	MEDIOS DE VERIFICACIÓN	COSTOS ESTIMADOS	
FICAD OR	(describir los aspectos fundamentales de la acción y forma de implementación, incorporando mayores detalles en anexos si es necesario)	(N° Identificador)	(a partir de la ocurrencia del impedimento)	(datos, antecedentes o variables que se utilizarán para valorar, ponderar o cuantificar el avance y cumplimiento de las acciones y metas definidas)	(a informar en Reportes de Avance y Reporte Final respectivamente)	(en miles de \$)	
	Acción				Reportes de avance		
12	Obtención de RCA favorable para el proyecto descrito en la Acción N°11.	10	100 días hábiles.	Resolución de Calificación Ambiental favorable del proyecto.	Copia contrato consultora. Copia carta ingreso DIA al SEA. Copia RCA.	\$25.000	
	Forma de implementación				Reporte final		

Con asesoría de empresa consultora se elaborará y someterá a tramitación diligente del procedimiento de evaluación ambiental las actividades descritas en la Acción Nº 11, sin suspensiones voluntarias de parte de EDELMAG, (excepto por fuerza mayor) para la obtención de RCA		Copia comprobante de actualización antecedentes en el Sistema de RCA de la SMA.	
favorable.			

2. DESCRIPCIÓN DEL HECHO QUE CONSTITUYE LA INFRACCIÓN Y SUS EFECTOS

IDENTIFICADOR DEL HECHO	Hecho constitutivo de infracción N°3
DESCRIPCIÓN DE LOS HECHOS, ACTOS Y OMISIONES QUE CONSTITUYEN LA INFRACCIÓN	Superación de la norma de emisión para Centrales Termoeléctricas en el año 2018 por parte de la Unidad de Generación Eléctrica Hitachi TG de la Central Tres Puentes, en el parámetro NOx.
NORMATIVA PERTINENTE	DS N°13/2011, del Ministerio del Medio Ambiente, Establece Norma de Emisión para Centrales Termoeléctricas, artículo 4°
DESCRIPCIÓN DE LOS EFECTOS NEGATIVOS PRODUCIDOS POR LA INFRACCIÓN O FUNDAMENTACIÓN DE LA INEXISTENCIA DE EFECTOS NEGATIVOS	Conforme a la información reportada por EDELMAG en los informes trimestrales del año 2018, se constató que de un total de 1.823 horas de funcionamiento regular de la fuente emisora, se reportaron 1.738 horas de incumplimiento del límite de 50 mg/Nm³ de NO _X establecido en la Tabla N°1 del artículo 4 del D.S. N°13/2011, con 85 horas de conformidad. Esto fue equivalente a 95,34% de horas de funcionamiento en régimen en incumplimiento de la norma de emisión. Respecto de los eventuales efectos negativos producidos por la infracción antes señalada, es importante considerar los antecedentes que se presentan en el Anexo 1 . En dicho documento, se analiza la información de calidad del aire respecto de dos estaciones de monitoreo: (i) estación EDELMAG, y (ii) estación Punta Arenas (MMA). En la estación EDELMAG ubicada al interior del área de influencia del proyecto en un sector considerado como representativo de las zonas pobladas más cercanas, se registraron concentraciones muy por debajo de los 400 [µg/m³N] establecidos como máximo permitido en el DS. N°114/2002, Ministerio Secretaría General de la Presidencia, Establece Norma Primaria de Calidad de Aire para Dióxido de Nitrógeno (NO2). Por su parte en la estación Punta Arenas, el indicador público validado para determinar la calidad del aire corresponde a la estación de monitoreo del Ministerio del Medio Ambiente que mide material particulado fino MP 2,5, se registraron concentraciones muy por debajo de los límites tanto para la métrica promedio 24 horas, que establece un límite máximo de 50 [µg/m³N] como para la métrica anual que tiene un límite máximo de 20

[μg/m³N] para el periodo en cuestión. Lo anterior según lo indicado en el D.S. N°12/2011, del Ministerio del Medio Ambiente, que Establece Norma Primaria De Calidad Ambiental Para Material Particulado Fino Respirable MP2,5.

Asimismo, las concentraciones de monóxido de carbono CO registraron concentraciones por debajo de los límites máximos establecidos en su respectiva norma primarias de calidad del aire, contenida en el D.S. N°115/2002 Ministerio Secretaría General de la Presidencia, Establece Norma Primaria de Calidad de Aire para Monóxido de Carbono (CO).

Con el objeto de reforzar lo recién señalado, es preciso señalar que el comportamiento indicado anteriormente para el año 2016 se repite para los años posteriores 2017, 2018 y 2019, donde no se sobrepasan los límites máximos establecidos en las normas primarias de calidad del aire para los contaminantes NO₂, CO y MP2,5 en la estación de monitoreo de EDELMAG, ni en la del MMA en lo que se refiere a MP 2,5.

Adicionalmente, la ciudad de Punta Arenas y por lo tanto su población se emplaza en una zona con condiciones geográficas y meteorológicas que favorecen la ventilación y por ende la rápida dispersión de contaminantes atmosféricos. En efecto, datos publicados en el Sistema Nacional de Información Ambiental (SINIA) respecto de calidad del aire a la ciudad de Punta Arenas como una de las ciudades que mantiene los mejores índices de calidad a nivel país.

En consecuencia, y a la vista de los antecedentes expuestos y que se adjuntan en el **Anexo 1** del presente documento, se puede establecer la inexistencia de efectos negativos ya sea afectación o riesgo a la salud de la población de la ciudad de Punta Arenas o las comunidades más cercanas a la Central Termoeléctrica Tres Puentes de EDELMAG, producto de los hechos constitutivos de infracción señalados por la autoridad.

FORMA EN QUE SE ELIMINAN O CONTIENEN Y REDUCEN LOS EFECTOS Y FUNDAMENTACIÓN EN CASO EN QUE NO PUEDAN SER ELIMINADOS

En consideración de los antecedentes presentados en el **Anexo 1** de este documento, dentro de los cuales se muestra que no se excedieron las normas primarias de calidad del aire en dos estaciones de monitoreo (en el caso de la estación Punta Arenas del MMA solo respecto del MP 2,5), una ubicada en forma contigua a la Central Termoeléctrica Eléctrica Tres Puentes y la otra del Ministerio del Medio Ambiente ubicada en la ciudad de Punta Arenas, se puede establecer que el hecho sujeto a infracción no originó efectos ambientales negativos que eliminar, contener ni reducir.

2. PLAN DE ACCIONES Y METAS PARA CUMPLIR CON LA NORMATIVA, Y ELIMINAR O CONTENER Y REDUCIR LOS EFECTOS NEGATIVOS GENERADOS

2.3 METAS

• Cumplir con las disposiciones establecidas en el DS N°13/2011, del Ministerio del Medio Ambiente, Establece Norma de Emisión para Centrales Termoeléctricas, especialmente las que dicen relación con los límites máximos permitidos para emisiones atmosféricas indicados en el artículo 4°.

2.2 PLAN DE ACCIONES

2.2.1 ACCIONES EJECUTADAS

Incluir todas las acciones cuya ejecución ya finalizó o finalizará antes de la aprobación del Programa.

N° IDENTI	DESCRIPCIÓN	FECHA DE IMPLEMENTA CIÓN	INDICADORES DE CUMPLIMIENTO	MEDIOS DE VERIFICACIÓN	COSTOS INCURRIDOS
FICAD OR	(describir los aspectos fundamentales de la acción y forma de implementación, incorporando mayores detalles en anexos si es necesario)	(fechas precisas de inicio y de término)	(datos, antecedentes o variables que se utilizarán para valorar, ponderar o cuantificar el cumplimiento de las acciones y metas definidas)	(a informar en Reporte Inicial)	(en miles de \$)
	Acción			Reporte Inicial	
	No aplica.				
No	Forma de Implementación	No sultas	No colina		
aplica.	No aplica.	No aplica.	No aplica.	No aplica.	No aplica.

2.2.2 ACCIONES EN EJECUCIÓN

Incluir todas las acciones que han iniciado su ejecución o se iniciarán antes de la aprobación del Programa.

N°	DESCRIPCIÓN	FECHA DE INICIO Y PLAZO DE EJECUCIÓN	INDICADORES DE CUMPLIMIENTO	MEDIOS DE VERIFICACIÓN	COSTOS ESTIMADOS	IMPEDIMENTOS EVENTUALES
IDENTI FICAD OR	(describir los aspectos fundamentales de la acción y forma de implementación, incorporando mayores detalles en anexos si es necesario)	(fecha precisa de inicio para acciones ya iniciadas y fecha estimada para las próximas a iniciarse, y plazo de ejecución)	(datos, antecedentes o variables que se utilizarán para valorar, ponderar o cuantificar el avance y cumplimiento de las acciones y metas definidas)	(a informar en Reporte Inicial, Reportes de Avance y Reporte Final respectivamente)	(en miles de \$)	(indicar según corresponda: acción alternativa que se ejecutará y su identificador, implicancias que tendría el impedimento y gestiones a realizar en caso de su ocurrencia)

	Disminución de horas de operación anual TG HITACHI.			En el reporte inicial se remitirá el segundo reporte trimestral CEMS TG HITACHI (abril - junio 2020) Reportes de avance		No hay.
	Forma de Implementación			En los reportes de avance se remitirán los reportes trimestrales CEMS TG HITACHI elaborados dentro		Acción alternativa, implicancias y gestiones asociadas al impedimento
13	Para que el TG HITACHI no opere más de 876 horas en el año 2020, sin que ello afecte la confiabilidad de la operación de las unidades base de la Central Tres Puentes, se optimizó el programa de mantenimiento y proyectos asociados en la Central Tres Puentes, que considera realizar inspecciones internas de los principales componentes de la turbina, evitando armado y desarmado de componentes que no son críticos. Esto disminuye los tiempos de indisponibilidad de las unidades en mantención en un 48%, reduciendo así las horas que el TG HITACHI debe operar como respaldo ante esas indisponibilidades. Además, estas inspecciones permiten desplazar mantenimientos mayores hasta que se ponga en servicio el bloque de potencia que reemplazará al TG HITACHI, según lo indicado en	Desde abril de 2020 de forma permanente durante hasta el cese de funcionamiento de la UGE Hitachi TG.	Horas acumuladas de funcionamiento del TG HITACHI.		Ya indicados en Acción 7	
	Acción N°11. (para información más					

Reporte Inicial

Impedimentos

Acción

detallada referirse al Anexo 2 , Tabla 2).			
Complementariamente a lo anterior, EDELMAG compartirá los datos recogidos por el CEMS de la UGE Hitachi TG en línea con la SMA.			

2.2.3 ACCIONES PRINCIPALES POR EJECUTAR

Incluir todas las acciones no iniciadas por ejecutar a partir de la aprobación del Programa.

	N° DENTI	DESCRIPCIÓN	PLAZO DE EJECUCIÓN	INDICADORES DE CUMPLIMIENTO	MEDIOS DE VERIFICACIÓN	COSTOS ESTIMADOS	IMPEDIMENTOS EVENTUALES
	OR	(describir los aspectos fundamentales de la acción y forma de implementación, incorporando mayores detalles en anexos si es necesario)	(periodo único a partir de la notificación de la aprobación del PDC, definido con un inicio y término de forma independiente de otras acciones)	(datos, antecedentes o variables que se utilizarán para valorar, ponderar o cuantificar el avance y cumplimiento de las acciones y metas definidas)	(a informar en Reportes de Avance y Reporte Final respectivamente)	(en miles de \$)	(indicar según corresponda: acción alternativa que se ejecutará y su identificador, implicancias que tendría el impedimento y gestiones a realizar en caso de su ocurrencia)
		Acción	Inicio:		Reportes de avance		Impedimentos
	14	I nor la ll(=F Hitachi l(= nor sonre la	Estudio Técnico de Compensación de Emisiones de NOx elaborado.	En el primer reporte de avance se adjuntará un registro de las actividades realizadas en el marco de la elaboración del estudio técnico de compensación de emisiones.	Ya indicados en Acción 8	No hay.	
	Forma de implementación	Término: 2 meses a partir de la notificación		Reporte final		Acción alternativa, implicancias y gestiones asociadas al	

	Se desarrollará un estudio para la determinación de medidas y/o acciones factibles de ser implementadas, para compensar las emisiones de NOx de la UGE Hitachi TG.	del Programa de Cumplimiento.		Informe final del estudio técnico de compensación de emisiones de NOx.		No aplica.
	Acción			Reportes de avance		Impedimentos
15	Implementación del Estudio Técnico de Compensación de Emisiones de NOx en base a las emisiones producidas por la UGE Hitachi TG.		Implementación de las medidas y/o acciones del Estudio Técnico de Compensación de Emisiones de NOx.	En los reportes de avance se adjuntará un registro de las actividades realizadas en el marco de la implementación del Estudio Técnico de Compensación de Emisiones.	Ya indicados en Acción 9.	No hay.
	Forma de implementación			Reporte final		Acción alternativa, implicancias y gestiones asociadas al impedimento
	Se implementarán las medidas y/o acciones del Estudio Técnico de Compensación de Emisiones de NOx.	Cumplimiento.		Copia informe final de cumplimiento del Estudio Técnico de Compensación de Emisiones de NOx.		No aplica.
	Acción			Reportes de avance		Impedimentos
16	Realizar consulta de pertinencia de ingreso al Servicio de Evaluación Ambiental (SEA), por cambio tecnológico en la capacidad de generación electrica instalada reemplazando la UGE TG HITACHI por otro tipo de UGE que asegure cumplimiento de la normativa vigente.	Inicio: 1 día hábil desde la aprobación del PdC Término: 60 días hábiles desde la	Resolución exenta del SEA pronunciándose respecto de la consulta de pertinencia formulada	Copia carta consulta de pertinencia.	Ya indicados en Acción 10	SEA resuelve que modificación consultada corresponde a un cambio de consideración y, por tanto, debe someterse al SEIA previo a su ejecución.
	Forma de implementación	aprobación del PdC		Reporte final		Acción alternativa, implicancias y gestiones asociadas al impedimento

	Se formulará una consulta de pertinencia de ingreso al Sistema de Evaluación de Impacto Ambiental (SEIA) al SEA, respecto a la implementación de un cambio de tecnología en la capacidad de generación actualmente autorizada, reemplazando la TG HITACHI por otra instalación similar que asegure el cumplimiento de la normativa ambiental aplicable, particularmente el D.S. Nº 13/2011, sin adicionar capacidad de generación nueva. Se preparará informe técnico, con fundamentos técnicos y jurídicos que justifique y acredite que el cambio de tecnología propuesto no corresponde a un cambio de consideración de acuerdo a los criterios establecidos en el artículo 2º letra g) del D.S. 40/2012 del Ministerio del Medio Ambiente que establece el Reglamento del SEIA.			Resolución pronunciamiento del SEA.		Obtención de una Resolución de Calificación Ambiental (RCA) favorable para el cambio de tecnología descrito en la Acción N°12.
	Acción	Inicio:		Reportes de avance		Impedimentos
17	Cambio de tecnología en la capacidad de generación eléctrica actualmente instalada, reemplazando la TG HITACHI por otro tipo de turbina que permita dar cumplimiento a la normativa ambiental vigente.	60 días hábiles desde la aprobación del PdC. Término: 190 días hábiles desde la aprobación del PdC.	Entrada en operación de la nueva tecnología en reemplazo de la UGE Hitachi TG.	Informes de estados de avance de las obras Copia estados de pago a proveedores.	Ya indicado en Acción 11	Atrasos no imputables al Titular del proyecto en provisión, internación y/o traslado de las unidades generadoras debido a fuerza mayor por contingencia sanitaria COVID-19, contingencia social, u otra situación similar.contingencias sociales

Forma de implementación		Reporte final	Acción alternativa, implicancias y gestiones asociadas al impedimento
Se propone instalar un bloque de potencia que reemplace la capacidad instalada actualmente de 10 MW (TG HITACHI).			Contrato con proveedo considerará multas po atrasos, para incentiva cumplimiento de plazos.
Esta acción se compone de una las siguientes etapas: • Selección y adquisición de bloque		Copia notificación a la Superintendencia de Electricidad y Combustibles (SEC) de puesta en servicio	Contrato con proveedo considerará seguimient
de potencia compatible con la Central Tres Puente y con el Sistema eléctrico de Magallanes. Importación y traslado del bloque a	del nuevo bloque de potencia reemplazando la TG Hitachi.	de inspección técnica control de avano semanal. Notificación a SMA	
la Central Tres Puentes. Instalación y operación de bloque de potencia.			solicitud ampliaciones c plazo, si corresponde.

2.2.4 ACCIONES ALTERNATIVAS

Incluir todas las acciones que deban ser realizadas en caso de ocurrencia de un impedimento que imposibilite la ejecución de una acción principal.

N° IDENT	DESCRIPCIÓN	ACCIÓN PRINCIPAL ASOCIADA	PLAZO DE EJECUCIÓN	INDICADORES DE CUMPLIMIENTO	MEDIOS DE VERIFICACIÓN	COSTOS ESTIMADOS	
FICAD OR	(describir los aspectos fundamentales de la acción y forma de implementación, incorporando mayores detalles en anexos si es necesario)	(N° Identificador)	(a partir de la ocurrencia del impedimento)	(datos, antecedentes o variables que se utilizarán para valorar, ponderar o cuantificar el avance y cumplimiento de las acciones y metas definidas)	(a informar en Reportes de Avance y Reporte Final respectivamente)	(en miles de \$)	
18	Acción	16			Reportes de avance		

Obtención de RCA favorable para el proyecto descrito en la Acción N°11. Forma de implementación			Copia contrato consultora Copia carta ingreso DIA al SEA Copia RCA. Reporte final	
Con asesoría de empresa consultora se elaborará y someterá a tramitación diligente del procedimiento de evaluación ambiental las actividades descritas en la Acción Nº 11, sin suspensiones voluntarias de parte de EDELMAG, (excepto por fuerza mayor) para la obtención de RCA favorable.	100 días hábiles.	Resolución de Calificación Ambiental favorable del proyecto.		Ya indicado en Acción 12.

COMPLETAR PARA LA TOTALIDAD DE LAS INFRACCIONES:

4. PLAN DE SEGUIMIENTO DEL PLAN DE ACCIONES Y METAS

4.1 REPORTE INICIAL

REPORTE ÚNICO DE ACCIONES EJECUTADAS Y EN EJECUCIÓN.

PLAZO DEL REPORTE (en días hábiles)	5	Días hábiles desde de la notificación de la aprobación del Programa.
	N° Identificador	Acción a reportar
	1	Seleccionar servicio de asesoría para realizar la carga de los reportes trimestrales correspondientes al año 2016.
ACCIONES A REPORTAR	2	Levantamiento y preparación de la información a ser reportada en la plataforma SICTER.
(N° identificador y acción)	3	Habilitación plataforma SICTER para efectuar reporte trimestres 2016.
	7	Disminución de horas de operación anual TG HITACHI.
	13	Disminución de horas de operación anual TG HITACHI.

4.2 REPORTES DE AVANCE

REPORTE DE ACCIONES EN EJECUCIÓN Y POR EJECUTAR.

TANTOS REPORTES COMO SE REQUIERAN DE ACUERDO A LAS CARÁCTERÍSTICAS DE LAS ACCIONES REPORTADAS Y SU DURACIÓN

	Semanal			
	Bimensual			
PERIODICIDAD DEL REPORTE	(quincenal)		A partir de la notificación de aprobación del Programa.	
Indicar periodicidad con una	Mensual		Los reportes serán remitidos a la SMA en la fecha límite definida por la frecuencia señalada. Estos reportes incluirán la información hasta una determinada fecha de	
cruz)	Bimestral	Х	corte comprendida dentro del periodo a reportar.	
	Trimestral			
	Semestral			
ACCIONES A REPORTAR	N° Identificador	Acción a reportar		

(N° identificador y acción)		
	4	Actualización del protocolo interno de preparación y envío reportes a la SMA.
	5	Implementación de protocolo interno actualizado de preparación y envío reportes a la SMA.
	6	Carga de registros de emisiones correspondientes al periodo abril – diciembre 2016, en plataforma SICTER.
	7	Disminución de horas de operación anual TG HITACHI.
	8	Elaboración de un Estudio Técnico de Compensación de Emisiones de NOx en base a las emisiones producidas por la UGE Hitachi TG por sobre la norma de emisión D.S. N°13/2011.
	9	Implementación del Estudio Técnico de Compensación de Emisiones de NOx en base a las emisione producidas por la UGE Hitachi TG.
	10	Realizar consulta de pertinencia de ingreso al SEA, por cambio tecnológico en la capacidad de generación electrica instalada reemplazando la UGE TG HITACHI por otro tipo de UGE que asegure cumplimiento de la normativa vigente.
	11	Cambio de tecnología en la capacidad de generación eléctrica actualmente instalada, reemplazando la TG HITACHI por otro tipo de turbina que permita dar cumplimiento a la normativa ambiental vigente
	12	Obtención de RCA favorable para el proyecto descrito en la Acción N°11.
	13	Disminución de horas de operación anual TG HITACHI.
	14	Elaboración de un Estudio Técnico de Compensación de Emisiones de NOx en base a las emisiones producidas por la UGE Hitachi TG por sobre la norma de emisión D.S. N°13/2011.
	15	Implementación del Estudio Técnico de Compensación de Emisiones de NOx en base a las emisiones producidas por la UGE Hitachi TG.
	16	Realizar consulta de pertinencia de ingreso al SEA, por cambio tecnológico en la capacidad de generación electrica instalada reemplazando la UGE TG HITACHI por otro tipo de UGE que asegure cumplimiento de la normativa vigente.
	17	Cambio de tecnología en la capacidad de generación eléctrica actualmente instalada, reemplazando la TG HITACHI por otro tipo de turbina que permita dar cumplimiento a la normativa ambiental vigente
	18	Obtención de RCA favorable para el proyecto descrito en la Acción N°11.
4.3 REPORTE FINAL		

REPORTE ÚNICO AL FINALIZAR LA	EJECUCIÓN DEL PRO	OGRAMA.
PLAZO DE TÉRMINO DEL PROGRAMA CON ENTREGA DEL REPORTE FINAL	15	Días hábiles a partir de la finalización de la acción de más larga data.
	N° Identificador	Acción a reportar
ACCIONES A REPORTAR	4	Actualización del protocolo interno de preparación y envío reportes a la SMA.
(N° identificador y acción)	5	Implementación de protocolo interno actualizado de preparación y envío reportes a la SMA.
	6	Carga de registros de emisiones correspondientes al periodo abril – diciembre 2016, en plataforma SICTER.
	7	Disminución de horas de operación anual TG HITACHI.
	8	Elaboración de un Estudio Técnico de Compensación de Emisiones de NOx en base a las emisiones producidas por la UGE Hitachi TG por sobre la norma de emisión D.S. N°13/2011.
	9	Implementación del Estudio Técnico de Compensación de Emisiones de NOx en base a las emisiones producidas por la UGE Hitachi TG.
	10	Realizar consulta de pertinencia de ingreso al SEA, por cambio tecnológico en la capacidad de generación electrica instalada reemplazando la UGE TG HITACHI por otro tipo de UGE que asegure cumplimiento de la normativa vigente.
	11	Cambio de tecnología en la capacidad de generación eléctrica actualmente instalada, reemplazando la TG HITACHI por otro tipo de turbina que permita dar cumplimiento a la normativa ambiental vigente.
	12	Obtención de RCA favorable para el proyecto descrito en la Acción N°11.
	13	Disminución de horas de operación anual TG HITACHI.
	14	Elaboración de un Estudio Técnico de Compensación de Emisiones de NOx en base a las emisiones producidas por la UGE Hitachi TG por sobre la norma de emisión D.S. N°13/2011.
	15	Implementación del Estudio Técnico de Compensación de Emisiones de NOx en base a las emisiones producidas por la UGE Hitachi TG.
	16	Realizar consulta de pertinencia de ingreso al SEA, por cambio tecnológico en la capacidad de generación electrica instalada reemplazando la UGE TG HITACHI por otro tipo de UGE que asegure cumplimiento de la normativa vigente.

	Cambio de tecnología en la capacidad de generación eléctrica actualmente instalada, reemplazando la TG HITACHI por otro tipo de turbina que permita dar cumplimiento a la normativa ambiental vigente.
18	Obtención de RCA favorable para el proyecto descrito en la Acción N°11.

N° Identificador de la Acción		1	2	2	3	4	,		5	E	5	7		8	9		1	0	1	1	1	2	13	3	1	4	1	5	1	6	1	7	18	3
1																																П		
2																																		
3																																		
4																																		
5																																		
6																																		
7																																		
8																																		
9																																		
10																																П		
11																																		
12																																		
13																																		
14																																		П
15																																		
16																																		
17																																		\sqcap
18																																		
ENTREGA DE REPORTES	Er	ı M	ese	es		Χ	[n S	Sen	nar	nas					Des	sde	la	ар	rot	aci	ión	de	l p	ro	gra	ma	de	cu	mp	olin	niei	nto	
Reporte	:	1	2	2	3	4	,		5	E	5	7	'	8	9		1	0	1	1	1	2	13	3	1	4	1	5	1	6	1	7	18	3
Reporte Inicial																																		
Reporte de avance 2																																		
Reporte de avance 3																																		
Reporte de avance 4																																		
Reporte de avance 5																																		
Reporte de avance 6																																		
Reporte de avance 7																																		
Reporte de avance 8																																		
Reporte de avance 9																																		

Reporte final																		

INFORME EJECUTIVO Análisis Calidad del Aire en la Ciudad de Punta Arenas

Unidad de Generación Eléctrica Hitachi TG de Central Tres Puentes EDELMAG

Mayo 2020

Preparado para:

Índice de Contenidos

1.	ANT	TECEDENTES	3
2.	ANÁ	ALISIS CALIDAD DEL AIRE MATERIAL PARTICULADO MP2,5	3
2	.1.	Análisis norma diaria MP _{2,5}	3
2	2.	Análisis norma anual MP _{2,5}	4
3.	ANÁ	LISIS CALIDAD DEL AIRE DIÓXIDO DE NITRÓGENO NO2	5
4.		ICLUSIONES	
5.	ANE	XOS	8
		Índice de Tablas	
TAE	BLA 1.	RESUMEN DE LAS MEDICIONES EN LAS CAMPAÑAS DE MONITOREO DE NO2	6
		Índice de Figuras	
		SERIE DE TIEMPO PARA EL PROMEDIO DIARIO DE MP _{2,5} EN PUNTA ARENAS	
Figi	URA 2.	SERIE DE TIEMPO PARA EL PROMEDIO ANUAL DE MP2,5 EN PUNTA ARENAS	5
Figi		Mapa de la ciudad de Punta Arenas con la ubicación de Central Termoeléctrica y las estacione	
		ONITOREO PUNTA ARENAS Y EDELMAG.	6
Figi		Serie de tiempo para las concentraciones horarias de NO_2 en las tres campañas de medición	
	ANAI	JIZADOS.	7

1. ANTECEDENTES

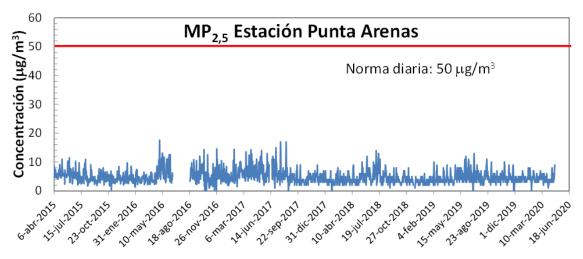
El presente informe ha sido elaborado por Alejandro Cofré (INGEA Ltda.), Ingeniero Civil Industrial y especialista en calidad del aire, y expone un análisis sobre la calidad del aire en la ciudad de Punta Arenas a partir de los datos de material particulado fino MP_{2,5} de la estación de monitoreo de Punta Arenas (Ministerio del Medio Ambiente) y campañas de monitoreo de calidad del aire en la estación de monitoreo EDELMAG con el objeto de analizar la situación específica de las excedencias en las emisiones del contaminante NO_x de la Unidad de Generación Eléctrica Hitachi TG de la Central Tres Puentes de la Empresa Eléctrica de Magallanes S.A. (EDELMAG), respecto de lo establecido en el D.S. N°13/2011, Norma de Emisión para Centrales Termoeléctricas.

EDELMAG, cuenta con la Central Tres Puentes, ubicada en el Barrio Industrial de la ciudad y comuna de Punta Arenas, en el sector Bahía Catalina, a 7 kilómetros aproximadamente del norte de la ciudad de Punta Arenas.

Una de sus unidades de generación eléctrica (UGE) corresponde a la UGE Hitachi TG, la cual desde el año 2016 hasta la hecha debe cumplir con la norma de emisión de 50 mg/m3N para el contaminante NO_x, desde el 23 de junio de 2016, de acuerdo con el D.S. N°13/2011.

La UGE señalada, ha superado el nivel de emisión señalado desde el año 2016, sin embargo, los niveles de calidad del aire en la ciudad de Punta Arenas se mantienen en condición de zona no saturada, es decir se cumplen todas las normas de calidad del aire, en particular MP_{2,5}, y NO₂ aspecto que se analiza en este informe para el período 2015 a 2019.

2. ANÁLISIS CALIDAD DEL AIRE MATERIAL PARTICULADO MP_{2,5}


2.1. Análisis norma diaria MP_{2.5}

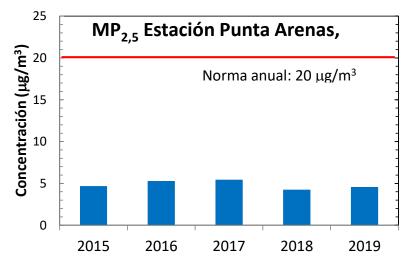
El promedio diario de las concentraciones de $MP_{2,5}$ medidos en la Estación de Punta Arenas del Ministerio del Medio Ambiente entre el 6 de abril de 2015 y el 20 de marzo de 2020 se muestra a continuación en la **Figura 1**.

3

Fuente: elaboración propia en base a datos obtenidos de: https://sinca.mma.gob.cl/index.php/estacion/index/key/C05

Figura 1. Serie de tiempo para el promedio diario de MP_{2,5} en Punta Arenas.

La línea roja en la **Figura 1** muestra la norma diaria (promedio 24 horas) para $MP_{2,5}$. Tal como se puede observar, no existe superación de la norma y los promedios diarios están todos por debajo de los 20 μ g/m³N, lo cual permite apreciar que la norma diaria de $MP_{2,5}$ se cumple con holgura al estar por debajo del 40% de la norma diaria de 50 μ g/m³N.


2.2. Análisis norma anual MP_{2.5}

Los promedios anuales de MP2,5 en la estación Punta Arenas, se muestran en la Figura 2.

También se puede ver que la norma anual no es superada en Punta Arenas y los promedios son mucho menores que la norma de $20~\mu g/m^3 N$ y solamente alcanzan el 25% de ésta (promedios inferiores a $6~\mu g/m^3 N$). Los bajos valores de concentración de $MP_{2,5}$ se pueden explicar porque la ciudad de Punta Arenas está ubicada en un sector relativamente plano, sin cerros que impidan la dispersión de contaminantes y con vientos de velocidad relativamente alta durante todo el año.

Fuente: elaboración propia en base a datos obtenidos de: https://sinca.mma.gob.cl/index.php/estacion/index/key/C05

Figura 2. Serie de tiempo para el promedio anual de MP2,5 en Punta Arenas.

3. ANÁLISIS CALIDAD DEL AIRE DIÓXIDO DE NITRÓGENO NO2

Para determinar los niveles de calidad del aire de NO_2 , se consideran las campañas de medición de NO_2 en la estación EDELMAG (ver **Figura 3**) ubicada muy cerca de la Central Termoeléctrica y directamente en su área de influencia.

La **Figura 3** muestra un mapa del sector, con la ciudad de Punta Arenas ubicada en el sector sur, la Estación de Monitoreo del Ministerio de Medio Ambiente, la Central Termoeléctrica Tres Puentes y la estación de Monitoreo EDELMAG. Esta última se utilizó para realizar campañas de monitoreo de NO₂, en períodos de aproximadamente un mes. La rosa de vientos muestra que la dirección predominante de los vientos es noroeste (flecha roja en la figura). Esto indica que las emisiones de la Central Termoeléctrica tienen poca probabilidad de alcanzar la ciudad de Punta Arenas, ya que los vientos las llevarían en dirección al mar.

5

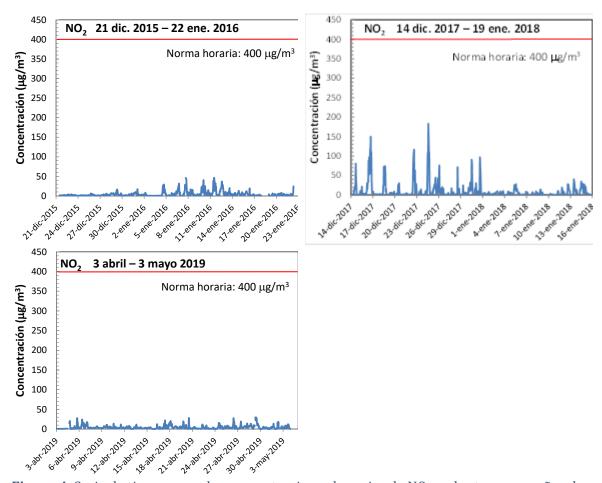
Figura 3. Mapa de la ciudad de Punta Arenas con la ubicación de Central Termoeléctrica y las estaciones de monitoreo Punta Arenas y EDELMAG.

Por otro lado, la estación de Monitoreo EDELMAG (punto azul en la **Figura 3**) está ubicada viento abajo de la Central (punto rojo), es decir en el área donde las emisiones de la Central pueden generar mayores concentraciones de contaminantes.

La **Tabla 1** muestra los promedios y máximos horarios medidos en la estación EDELMAG en campañas de un mes de duración.

Tabla 1. Resumen de las mediciones en las campañas de monitoreo de NO₂

Campaña de medición	Promedio horario de NO ₂ (µg/m³)	Máximo horario de NO2 (μg/m³)	Norma horaria
21 dic. 2015 – 22 ene. 2016	4,4	46,4	400
14 dic. 2017 – 19 ene. 2018	8,7	182,3	400
3 abril - 3 mayo 2019	4,2	29,6	400


ANAGEA.COM

La **Tabla 1** muestra que todos los promedios horarios son mucho menores que la norma, y los máximos de medición para el período solo alcanzan el 47% de la norma en la campaña del período del 14 dic. 2017 al 19 ene. 2018.

La **Figura 4** muestra gráficamente los promedios horarios para estas 3 campañas. En todos los períodos, las concentraciones horarias están muy por debajo de la norma, siendo el más alto el que corresponde a diciembre de 2017 a enero 2018, pero, aun así, por debajo del 50% de la norma

Figura 4. Serie de tiempo para las concentraciones horarias de NO₂ en las tres campañas de medición analizados.

ANAGEA.COM

7

4. CONCLUSIONES

En relación con la norma de calidad MP_{2,5}, de acuerdo con el análisis de las mediciones de calidad del aire del período 2015 a 2019, en la estación Punta Arenas del Ministerio del Medio Ambiente, se observa que los valores de la norma diaria son inferiores al 40% de la norma de 50 μ g/m³N. Respecto de la norma anual, se observa que los promedios anuales están por debajo del 30% de la norma anual de 20 μ g/m³N.

En relación con la norma de calidad horaria de NO_2 , de acuerdo con el análisis de las campañas realizadas entre los años 2016 y 2019 por EDELMAG en su estación cercana a la central ubicada en un punto donde sus emisiones pueden tener mayor impacto, se observó que los mayores valores se obtuvieron en la campaña diciembre 2017 y enero 2018, valores que no superaron el 50% de la norma de 400 μ g/m³N.

Finalmente, al comprobarse que tanto en $MP_{2,5}$ como en NO_2 , que los niveles de calidad del aire en la ciudad de Punta Arenas son al menos inferiores al 50% de las respectivas normas de calidad del aire, se puede afirmar que no ha habido efectos significativos en la salud humana, producto de las actividades de la Central y en particular de la Unidad UGE Hitachi TG que ha operado con gas natural en todo el periodo analizado de 2016 a 2019.

5. ANEXOS

Datos NO_X:

- Apéndice 1: Campaña de monitoreo calidad del aire diciembre 2015 enero 2016.
- / Apéndice 2: Campaña de monitoreo calidad del aire diciembre 2017 enero 2018.
- Apéndice 3: Campaña de monitoreo calidad del aire abril mayo 2019.

Datos MP_{2,5}:

https://sinca.mma.gob.cl/index.php/estacion/index/key/C05

8

INFORME DE RESULTADOS

MCA 089-A1/15

CAMPAÑA DE MONITOREO DE CALIDAD DEL AIRE Y METEOROLOGÍA PROYECTO EMPRESA ELÉCTRICA DE MAGALLANES S.A.

Preparado por:

Para:

Enero, 2016

INFORME DE RESULTADOS MCA 089-A1/15

CAMPAÑA DE MONITOREO DE CALIDAD DEL AIRE Y METEOROLOGÍA PROYECTO EMPRESA ELÉCTRICA DE MAGALLANES S.A.

Preparado para:

	Versión de	l Documen	ito		2				
Respoi	nsable Elaboración	Resi	oonsable Revisión	Responsable Aprobación					
Nombre:	Miguel Eyzaguirre	Nombre:	Ricardo Bonilla	Nombre:	Susan Saldaña				
Cargo:	Ingeniero de Proyecto	Cargo:	Encargado de Proyectos	Cargo:	Jefe de Área Monitoreo Atmosférico				
Fecha:	17-02-2016	Fecha:	19-02-2016	Fecha:	19-02-2016				
Firma:	Great.	Firma:	JAS.	Firma:	Suspendanos				

Enero, 2016

ÍNDICE DE CONTENIDOS

RESUM	1EN EJECUTIVO	i
1	INTRODUCCION	1
2	ALCANCES	2
3	ESTACIÓN DE MONITOREO	3
3.1	Ubicación	3
3.2	Equipamiento utilizado en el monitoreo	4
4	NORMATIVA APLICABLE	7
4.1	DTO. 61	7
4.2	Material Particulado Fino Respirable MP-2,5	8
4.3	Monóxido de Carbono CO	8
4.4	Dióxido de Nitrógeno (NO ₂)	9
5	RESULTADOS	10
5.1	Material Particulado Fino Respirable MP-2,5	10
5.2	Monóxido de Carbono	13
5.3	Dióxido de Nitrógeno	15
5.4	Meteorología	18
5.4.1	Velocidad del Viento	19
5.4.2	Dirección del Viento	21
5.4.3	Temperatura	29
5.4.4	Humedad Relativa	32
6	RESUMEN DE RESULTADOS	35

ÍNDICE DE FOTOGRAFÍAS

Fotografía N ^o	⁹ 1 Estación Edelmag6
	ÍNDICE DE FIGURAS
Figura N° 1	Ubicación espacial de Estación de Monitoreo, Proyecto Empresa Eléctrica de Magallanes
Figura N° 2 Figura N° 3	Rosa de los Vientos Estación Edelmag, Diciembre 2015
Figura N° 4	Rosa de Viento Horario de 12:00 a 23:59, Diciembre 2015 24
Figura Nº 5	Rosa de los Vientos Estación Edelmag, Enero 2016
Figura N° 6 Figura N° 7	Rosa de Viento Horario de 00:00 a 11:59, Enero 2016
	ÍNDICE DE TABLAS
Tabla N° 1	Identificación Estaciones de Monitoreo 3
Tabla N° 2	Equipamiento en Estaciones de Monitoreo
Tabla N° 3	Resumen de Variables Meteorológicas, Estación Edelmag, Diciembre 2015
Tabla Nº 4	Resumen de Variables Meteorológicas, Estación Edelmag, Enero 2016 18
Tabla N° 5	Dirección del Viento Estación Edelmag, Diciembre 2015 21
Tabla N° 6	Dirección de Viento según Rango de Velocidades Estación Edelmag,
Tabla Nº 7	Diciembre 2015
Tabla Nº 8	Dirección de Viento según Rango de Velocidades Estación Edelmag,
Tabla N° 9	Enero 2016
T NO 10	Edelmag, Diciembre 2015
Tabla N° 10 Tabla N° 11	Resultados de Meteorología, Estación Edelmag, Diciembre 2015 36 Resultados de Predominancia de vientos, Estación Edelmag, Diciembre
Tabla N II	2015
Tabla Nº 12	Resumen de concentraciones Material Particulado MP-2,5 y Gases,
T NO 12	Estación Edelmag, Enero 2016
Tabla N° 13 Tabla N° 14	Resultados de Meteorología, Estación Edelmag, Enero 2016
	Enero 2016

ÍNDICE DE GRÁFICOS

Gráfico Nº	1	Concentración de Material Particulado Fino Respirable MP-2,5 Estación
Gráfico Nº	2	Edelmag Diciembre 2015
Cuático NO	2	Diciembre 2015
Gráfico Nº	3	Concentración de Material Particulado Fino Respirable MP-2,5 Estación Edelmag Enero 2016
Gráfico Nº	4	Ciclo Diario Material Particulado Fino Respirable MP-2,5 Estación Edelmag
		Enero 2016
Gráfico Nº	5	Concentración de Monoxido de Carbono Estación Edelmag
G /6: NO	_	Diciembre 2015
Gráfico Nº		Ciclo Diario Monóxido de Carbono Estación Edelmag Diciembre 2015 13
Gráfico Nº	/	Concentración de Monoxido de Carbono Estación Edelmag Enero 2016
Gráfico Nº	8	Ciclo Diario Monóxido de Carbono Estación Edelmag Enero 2016
Gráfico Nº		Concentración de Dióxido de Nitrógeno Estación Edelmag,
		Diciembre 2015
Gráfico Nº	10	Ciclo Diario de Dióxido de Nitrógeno Estación Edelmag,
C	4.4	Diciembre 2015
Gráfico Nº	11	Concentración de Dióxido de Nitrógeno Estación Edelmag, Enero 2016
Gráfico Nº	12	Ciclo Diario de Dióxido de Nitrógeno Estación Edelmag, Enero 2016 17
Gráfico Nº		Velocidad del Viento Estación Edelmag, Diciembre 2015
Gráfico Nº	14	Ciclo Diario de Velocidad del Viento Estación Edelmag,
		Diciembre 2015
Gráfico Nº		Velocidad del Viento Estación Edelmag, Enero 2016
Gráfico Nº Gráfico Nº		Ciclo Diario de Velocidad del Viento Estación Edelmag, Enero 2016 20
Gráfico Nº		Temperatura Estación Edelmag, Diciembre 2015
Gráfico Nº		Temperatura Estación Edelmag, Enero 2016
Gráfico Nº		Ciclo Diario de Temperatura Estación Edelmag, Enero 2016
Gráfico Nº	21	Humedad Relativa Estación Edelmag, Diciembre 2015 32
Gráfico Nº		Ciclo Diario Humedad Relativa Estación Edelmag, Diciembre 2015 32
Gráfico Nº		Humedad Relativa Estación Edelmag, Enero 2016
Gráfico Nº	24	Ciclo Diario Humedad Relativa Estación Edelmag, Enero 2016
		ÍNDICE DE ANEXOS
		INDICE DE ANEXOS
ANEXO I		OMENCLATURA PARA INVALIDACIÓN O PÉRDIDA DE DATOS SEGÚN DTO.
	Ис	9 61
ANEXO II	TA	ABLAS DE CONCENTRACION DE MATERIAL PARTICULADO MP-2,5
ANEXO III ANEXO IV	1 <i>P</i>	IBLAS DE GASES ESTACIÓN EDELMAG, DICIEMBRE 2015 - ENERO 2016 44 IBLAS DE VARIABLES METEOROLÓGICAS, ESTACIÓN EDELMAG DICIEMBRE
AINLAU IV		115 - ENERO 2016

RESUMEN EJECUTIVO

El presente documento corresponde al Informe de Resultados de la "Campaña de Monitoreo de Calidad de Aire y Meteorología, Proyecto Empresa Eléctrica de Magallanes S.A.", el cual informa sobre los resultados obtenidos durante el periodo correspondiente a Diciembre 2015 - Enero de 2016.

Los Equipos necesarios para realizar los monitoreos Comprometidos son los siguientes:

- 1 Analizador de Material Particulado Fino Respirable MP-2,5
- 1 Analizador de Monóxido de Carbono (CO)
- 1 Analizador de Dióxido de Nitrógeno (NO₂)
- 1 Sensor de Velocidad y Dirección del viento
- 1 Sensor de Temperatura y Humedad Relativa

Las siguientes Tablas muestran el resumen de los resultados registrados de material particulado fino respirable 2,5, monóxido de carbono CO y dióxido de nitrógeno NO₂, durante los meses de Diciembre 2015 y Enero 2016.

Resumen de Concentración de Gases Monitoreados, Diciembre 2015

Contaminante	Estadístico	Cor	ncentración	Norma
Contaminante	Estadistico	Valor	Unidades	Norma
MD 25	Promedio del Periodo	7	μg/m³	20ª
MP - 2,5	Máximo Promedio diario	9	μ9/111	50°
	Promedio Mensual	0,2		
	Máximo Promedio Diario	0,3	, 3	
СО	Máximo Horario Mensual	0,5	mg/m³N	30 ^b
	Máximo Promedio Móvil 8 Hrs. Mensual	0,4		10 ^b
	Promedio Mensual	2,5		(100°)
NO ₂	Máximo Promedio Diario	4,9	μg/m³N	
	Máximo Horario Mensual	16,4		400 ^c

^a D.S. Nº 12 Norma primaria de calidad ambiental para material particulado fino respirable MP-2,5. Publicada en el Diario Oficial el día 09 de junio 2011.

^b D.S. Nº 115/02 del Ministerio Secretaría General de la Presidencia de la República.

^c D.S. Nº 114/02 del Ministerio Secretaría General de la Presidencia de la República.

Resumen de Concentración de Gases Monitoreados, Enero 2016

Contaminante	Estadístico	Cor	ncentración	Norma
Contaminante	Estadistico	Valor	Unidades	Norma
MD 2.5	Promedio del Periodo	7	μg/m³	20 ^d
MP - 2,5	Máximo Promedio diario	12	μg/π	50ª
	Promedio Mensual	0,2		
	Máximo Promedio Diario	0,3	, 3	
СО	Máximo Horario Mensual	0,5	mg/m ³ N	30 ^e
	Máximo Promedio Móvil 8 Hrs. Mensual	0,4		10 ^b
	Promedio Mensual	5,4		100 ^f
NO ₂	Máximo Promedio Diario	14,2	μg/m³N	
	Máximo Horario Mensual	46,4		400 ^c

Las siguientes tablas muestran un resumen de los valores de meteorología durante los meses Diciembre 2015 y Enero 2016.

Resultados diarios Meteorología, Diciembre 2015

Variable Monitoreada	Media Mensual	Mínima Horaria	Máxima Horaria
Velocidad del Viento (m/s)	3,8	Calma ^g	11,5
Temperatura (°C)	9,0	1,2	15,3
Humedad Relativa (%)	63	38	93

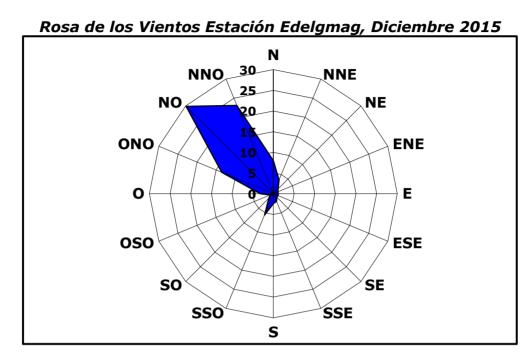
Resultados diarios Meteorología, Enero 2016

Variable Monitoreada	Media Mensual	Mínima Horaria	Máxima Horaria
Velocidad del Viento (m/s)	3,8	Calma ^h	12,6
Temperatura (°C)	10,6	3,1	19,4
Humedad Relativa (%)	58	26	94

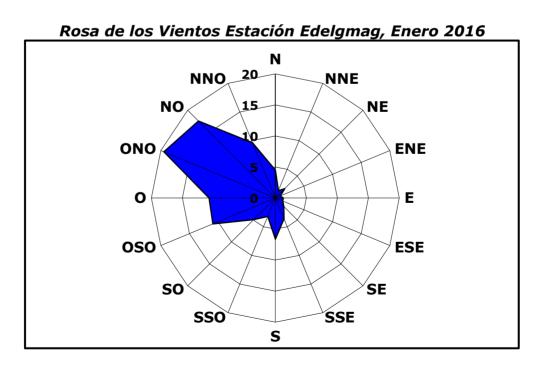
^d D.S. Nº 12 Norma primaria de calidad ambiental para material particulado fino respirable MP-2,5. Publicada en el Diario Oficial el día 09 de junio 2011.

^e D.S. Nº 115/02 del Ministerio Secretaría General de la Presidencia de la República.

f D.S. Nº 114/02 del Ministerio Secretaría General de la Presidencia de la República.


^g Corresponde a valores de velocidad inferiores a 0,5 m/s

h Corresponde a valores de velocidad inferiores a 0,5 m/s



Durante el mes de Diciembre 2015 en la Estación Edelmag se presentaron vientos provenientes principalmente del noroeste (NO) y en menor medida del norte - noroeste (NNO) y oeste – noroeste (ONO).

Durante el mes de Enero 2016 en la Estación Edelmag se presentaron vientos provenientes principalmente del oeste – noroeste (ONO) y en menor medida del noroeste (NO), oeste – suroeste (OSO) y oeste (O).

Al comparar de manera referencial los valores mensuales medidos de material particulado fino respirable MP-2,5 en la estación Edelmag con la normativa aplicable, se podría concluir que las concentraciones no sobrepasan el valor límite establecido por la norma respectiva.

Al comparar de manera referencial los valores mensuales medidos de monóxido de carbono CO en la estación Edelmag con la normativa aplicable, se podría concluir que las concentraciones no sobrepasan el valor límite establecido por la norma respectiva.

Al comparar de manera referencial los valores mensuales medidos de dióxido de nitrógeno NO_2 en la estación Edelmag con la normativa aplicable, se podría concluir que las concentraciones no sobrepasan el valor límite establecido por la norma respectiva.

El comportamiento de las variables meteorológicas; velocidad del viento, dirección del viento, temperatura y humedad relativa, medidas en la estación Edelmag, se comportan de acuerdo a lo esperado para la época del año.

1 INTRODUCCION

El presente documento corresponde al Informe de Resultados de la "Campaña de Monitoreo de Calidad de Aire y Meteorología, Proyecto Empresa Eléctrica de Magallanes S.A.", el cual informa sobre los resultados obtenidos durante el periodo correspondiente a Diciembre de 2015 – Enero 2016.

En el entorno del Proyecto, se instaló el equipamiento requerido para realizar los monitoreos comprometidos, el cual consistió de un analizador de Material Particulado Fino Respirable MP-2,5, Analizador de Monóxido de Carbono (CO), un Analizador de Dióxido de Nitrógeno (NO₂) y una Estación de Meteorología.

Cabe señalar que los Analizadores de gases cumplen con las exigencias definidas por la agencia ambiental *USEPA* (*Environmental Protection Agency*) para este tipo de equipos. El equipo cuenta con certificación Nº MC090158/01 otorgado por la Empresa Europea de Servicios de Certificación SIRA.

La Estación Edelmag cumple con las exigencias definidas por la Organización Meteorológica Mundial WMO (World Meteorological Organization), para los sensores considerados en las mediciones.

El analizador de MP-2,5, los analizadores de gases y los sensores de meteorología, en adelante Estación Edelmag, comienza sus operaciones en forma continua el día 21 de Diciembre de 2015.

2 ALCANCES

- a) Operar y mantener el equipamiento requerido para dar cumplimiento a los monitoreos comprometidos según el siguiente detalle:
 - 1 Analizador de CO
 - 1 Analizador de NO₂
 - 1 Analizador de MP-2,5.
 - 1 Sensor de Velocidad y Dirección del viento
 - 1 Sensor de Temperatura y Humedad Relativa
- b) Entregar informe de resultados de los monitoreos realizados, durante el periodo Diciembre 2015 Enero 2016.

3 ESTACIÓN DE MONITOREO

3.1 Ubicación

Las estaciones de monitoreo fueron instaladas en sectores considerados representativos de las zonas pobladas más cercanas al Proyecto Empresa Eléctrica de Magallanes, los cuales se encontraban libres de elementos naturales y artificiales que pudieran alterar las concentraciones de gases. La estación se ubicó en la localidad de Punta Arenas.

La ubicación de la estación se definió en conjunto entre Asesorías Algoritmos SPA. y el cliente Empresa Eléctrica Magallanes S.A.

Las coordenadasⁱ de la estación Edelmag se indican en la Tabla Nº 1:

Tabla Nº 1 Identificación Estaciones de Monitoreo

Dunto	Coordenadas UTM (m)		
Punto	Este	Norte	
Estación Edelmag	373.098	4.114.863	

ⁱ Coordenadas utilizando como Datum: WGS84 (Referente Datum).

3.2 Equipamiento utilizado en el monitoreo

En la Tabla N° 2 se presentan los equipos utilizados en el monitoreo.

Tabla N° 2 Equipamiento en Estaciones de Monitoreo

Estación	Equipo	Тіро	Monitoreo
Edelmag	Met One BAM 1020	MP 2,5	Continuo
	Teledyne T-300	СО	Continuo
	Teledyne T-200	NO ₂	Continuo
	Young 5103	Velocidad y Dirección del Viento	Continuo
	Vaisala HMP60	Temperatura y Humedad relativa	Continuo

A continuación, en la Figura Nº 1 se presenta la ubicación espacial de las estaciones de monitoreo.

Figura N° 1 Ubicación espacial de Estación de Monitoreo, Proyecto Empresa Eléctrica de Magallanes

En la Fotografía Nº 1 se presenta la Estación de monitoreo Edelmag

4 NORMATIVA APLICABLE

4.1 DTO. 61

El DTO. Nº 61 de 2008 del Ministerio de Salud, aprueba el Reglamento de Estaciones de Medición de Contaminantes Atmosféricos; y se aplica a las condiciones de instalación y funcionamiento de las estaciones de medición de contaminantes atmosféricos, para efectos de que sus mediciones sean consideradas válidas para la autoridad respectiva.

Toda instalación destinada a la verificación del cumplimiento de una norma primaria de calidad de aire y que deba ser calificada como de representación poblacional por la autoridad sanitaria, debe ser instalada considerando los criterios establecidos en las normas primarias de calidad de aire vigente.

Artículo 17.- Tanto los datos válidos como inválidos deben tener asociada la información de fecha y hora en que fueron medidos, de acuerdo con los formatos establecidos en este reglamento.

El proceso de validación debe realizarse sobre la base de los datos obtenidos de acuerdo a los meses calendario, aplicándose a los datos de concentraciones ambientales de contaminantes atmosféricos y sobre los parámetros meteorológicos. Debe ser realizado por personal que cumpla con los requerimientos establecidos en el artículo 15 de este reglamento, considerando los siguientes pasos y criterios:

- a) Se debe crear una copia o imagen de la base de datos crudos. La nueva base de datos o imagen se utilizará para el proceso de validación.
- b) Los datos serán validados por el personal especializado. Los datos válidos deberán entregarse a la autoridad sanitaria en conformidad a lo señalado en los artículos 19 y 20 de este reglamento.

En caso de existir datos inválidos o datos perdidos, éstos se deberán informar en una base o planilla diferente a la de los datos válidos, creada para tal efecto, que contenga solamente los códigos de aquellas horas o días en que se produjo la invalidación o pérdida de la información. En ella los datos inválidos o perdidos serán remplazados por los códigos presentados en el ANEXO I.

c) Para realizar el proceso de la letra b, se debe tener a la vista la información registrada en la bitácora de la estación de monitoreo, así como también toda la información relativa a las calibraciones realizadas a los equipos o sensores; los datos de los parámetros internos de los equipos monitores y en general cualquier información que permita realizar la validación de los datos en forma correcta.

4.2 Material Particulado Fino Respirable MP-2,5

D.S. 12/2011 del Ministerio de Medio Ambiente: Norma primaria de calidad ambiental para material particulado fino respirable MP-2.5. Publicada en el Diario Oficial el día 09 de Junio 2011.

Se considerará sobrepasada la norma primaria de calidad del aire para material particulado fino respirable MP-2.5, en los siguientes casos:

Cuando el percentil 98 de los promedios diarios registrados durante un año, sea mayor a 50(μg/m³), en cualquier estación monitora calificada como EMRP; o cuando el promedio tri-anual de las concentraciones anuales sea mayor a 20(μg/m³), en cualquier estación monitora calificada como EMRP.

Si el periodo de medición en una estación monitora no comenzare el 1º de enero, se considerarán los tres primeros periodos de 12 meses a partir del mes de inicio de las mediciones, hasta disponer de tres años calendario sucesivos de mediciones.

4.3 Monóxido de Carbono CO

D.S. N°115/2002 del Ministerio Secretaria General de la Presidencia de la República establece Norma de Calidad Primaria para Monóxido de Carbono CO.

Artículo 3.- La norma primaria de calidad de aire para monóxido de carbono como concentración de 8 horas será de 9 ppmv (10mg/m³N).

Se considerará sobrepasada la norma primaria de calidad de aire para monóxido de carbono como concentración de 8 horas, cuando el promedio aritmético de tres años sucesivos, del percentil 99 de los máximos diarios de concentración de 8 horas registrados durante un año calendario, en cualquier estación monitora EMRPG fuere mayor o igual al nivel indicado en el inciso precedente.

Si el período de medición en una estación monitora EMPRG no comenzare el 1º de enero, se considerarán los tres primeros períodos de 12 meses a partir del mes de inicio de las mediciones hasta disponer de tres años calendarios sucesivos de mediciones.

Se considerará sobrepasada la norma primaria de calidad de aire para monóxido de carbono como concentración de 8 horas, si en el primer o segundo período de 12 meses a partir del mes de inicio de las mediciones y, al reemplazar el percentil 99 de los máximos diarios de concentración de 8 horas para los períodos faltantes por cero, el promedio aritmético de los tres períodos resultare mayor o igual al nivel de la norma.

Artículo 4.- La norma primaria de calidad de aire para monóxido de carbono como concentración de 1 hora será de 26 ppmv (30 mg/m³N).

Se considerará sobrepasada la norma primaria de calidad de aire para monóxido de carbono como concentración de 1 hora, cuando el promedio aritmético de tres años sucesivos, del percentil 99 de los máximos diarios de concentración de 1 hora registrados durante un año calendario, en cualquier estación monitora EMRPG, fuere mayor o igual al nivel indicado en el inciso precedente.

Si el período de medición en una estación monitora EMPRG no comenzare el 1º de enero, se considerarán los tres primeros períodos de 12 meses a partir del mes de inicio de las mediciones hasta disponer de tres años calendarios sucesivos de mediciones.

Se considerará sobrepasada la norma primaria de calidad de aire para monóxido de carbono como concentración de 1 hora, si en el primer o segundo período de 12 meses a partir del mes de inicio de las mediciones y, al reemplazar el percentil 99 de los máximos diarios de concentración de 1 hora para los períodos faltantes por cero, el promedio aritmético de los tres períodos resultare mayor o igual al nivel de la norma.

4.4 Dióxido de Nitrógeno (NO₂)

D.S. N^o 114/2002 establece Norma de Calidad Primaria de Calidad de Aire para Dióxido de Nitrógeno NO_2

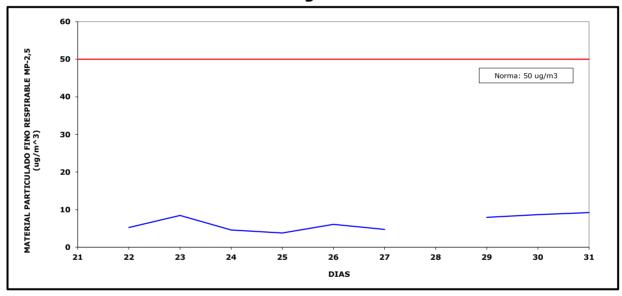
Se considerará sobrepasada la norma primaria de calidad de aire para dióxido de nitrógeno como concentración anual, cuando el promedio aritmético de los valores de concentración anual de tres años calendarios sucesivos, en cualquier estación monitora EMRPG, fuere mayor o igual al nivel indicado 100 µg/m³N.

Se considerará sobrepasada la norma primaria de calidad de aire para dióxido de nitrógeno como concentración de 1 hora, cuando el promedio aritmético de tres años sucesivos del percentil 99 de los máximos diarios de concentración de 1 hora registrados durante un año calendario, en cualquier estación monitora EMRPG, fuere mayor o igual a 400 µg/m³N.

Si el periodo de medición en una estación monitora EMPRG no comenzare el 1 de enero, se considerarán los tres primeros periodos de 12 meses a partir del mes de inicio de las mediciones hasta disponer de tres años calendarios consecutivos de mediciones.

5 RESULTADOS

5.1 Material Particulado Fino Respirable MP-2,5

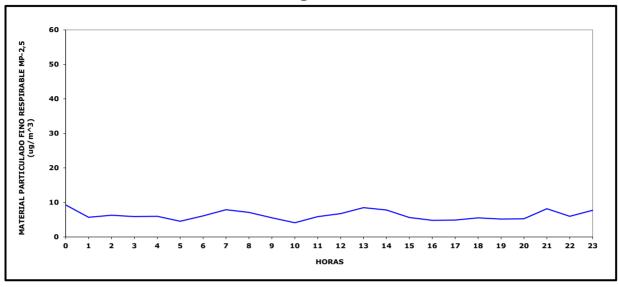

Los resultados obtenidos durante Diciembre de 2015 son presentados en el Gráfico Nº 1, en donde se muestra el promedio diario de los valores de concentración de Material Particulado Fino Respirable MP-2,5.

El Gráfico N° 2 muestra el ciclo diario de los valores de concentración de este contaminante.

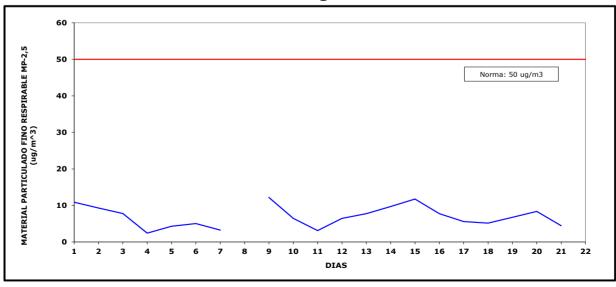
Gráfico Nº 1^j

Concentración de Material Particulado Fino Respirable MP-2,5

Estación Edelmag Diciembre 2015


.

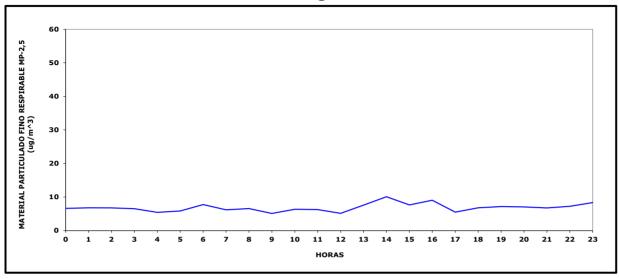
 $^{^{}m j}$ Pérdida de datos los días 21 y 28 de Diciembre 2015, debido a tiempo mínimo de muestreo


Gráfico Nº 2 Ciclo Diario Material Particulado Fino Respirable MP-2,5 Estación Edelmag Diciembre 2015.

Los resultados obtenidos durante Enero 2016 son presentados en el Gráfico Nº 3, en donde se muestra el promedio diario de los valores de concentración de Material Particulado Fino Respirable MP-2,5.

El Gráfico Nº 4 muestra el ciclo diario de los valores de concentración de este contaminante.

Gráfico Nº 3k Concentración de Material Particulado Fino Respirable MP-2,5 Estación Edelmag Enero 2016



^k Pérdida de datos los días 08 y 22 de Enero 2016, debido a tiempo mínimo de muestreo

Gráfico Nº 4
Ciclo Diario Material Particulado Fino Respirable MP-2,5
Estación Edelmag Enero 2016.

5.2 Monóxido de Carbono

El Gráfico Nº 5 muestra el promedio, el máximo horario y el valor máximo promedio móvil cada 8 hrs. diarios de los valores de concentración de monóxido de carbono registrados durante el mes de Diciembre 2015. Por otra parte el Gráfico Nº 6 muestra el ciclo diario de los valores de concentración de monóxido de carbono registrado, correspondiente a la Estación Edelmag.

Gráfico N° 5¹
Concentración de Monoxido de Carbono
Estación Edelmag Diciembre 2015

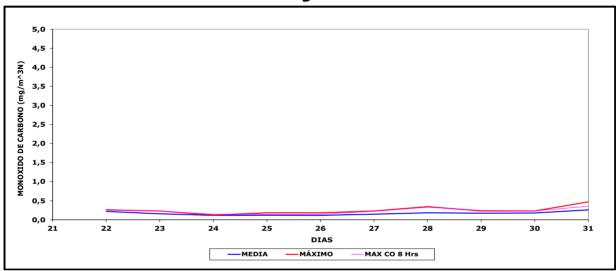
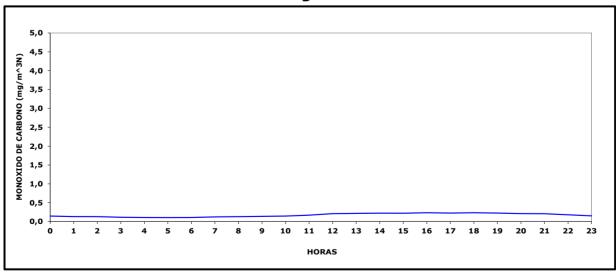



Gráfico Nº 6 Ciclo Diario Monóxido de Carbono Estación Edelmag Diciembre 2015

Pérdida de datos el día 21 de Diciembre 2015, debido a tiempo mínimo de muestreo

-

El Gráfico Nº 7 muestra el promedio, el máximo horario y el valor máximo promedio móvil cada 8 hrs. diarios de los valores de concentración de monóxido de carbono registrados durante el mes de Enero 2016. Por otra parte el Gráfico Nº 8 muestra el ciclo diario de los valores de concentración de monóxido de carbono registrado, correspondiente a la Estación Edelmag.

Gráfico Nº 7^m Concentración de Monoxido de Carbono Estación Edelmag Enero 2016.

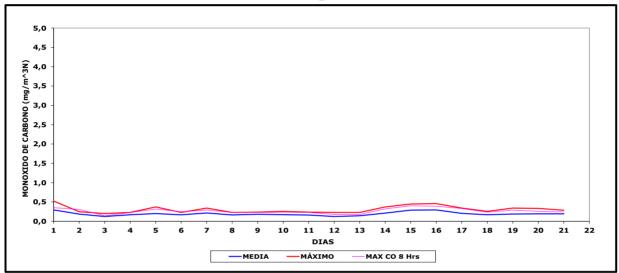
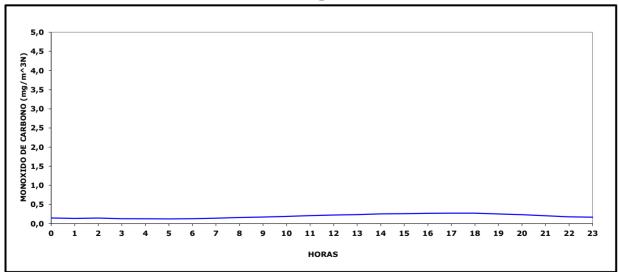
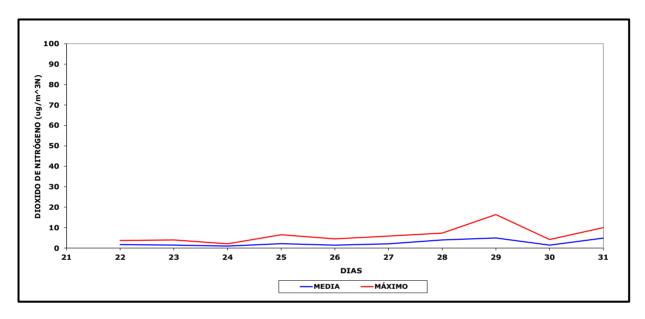



Gráfico Nº 8 Ciclo Diario Monóxido de Carbono Estación Edelmag Enero 2016.

 $^{^{}m m}$ Pérdida de datos el día 22 de Enero 2016, debido a tiempo mínimo de muestreo

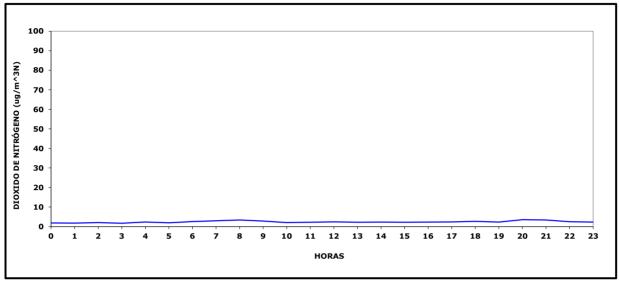
_



5.3 Dióxido de Nitrógeno

El Gráfico Nº 9 muestra el promedio y el máximo horario de los valores de concentración de dióxido de nitrógeno, registrados durante el mes de Diciembre 2015, correspondiente a la Estación Edelmag. El Gráfico Nº 10 muestra el ciclo diario de los valores de concentración de este contaminante para dicha estación.

Gráfico Nº 9ⁿ
Concentración de Dióxido de Nitrógeno
Estación Edelmag, Diciembre 2015


-

ⁿ Pérdida de datos el día 21 de Diciembre 2015, debido a tiempo mínimo de muestreo

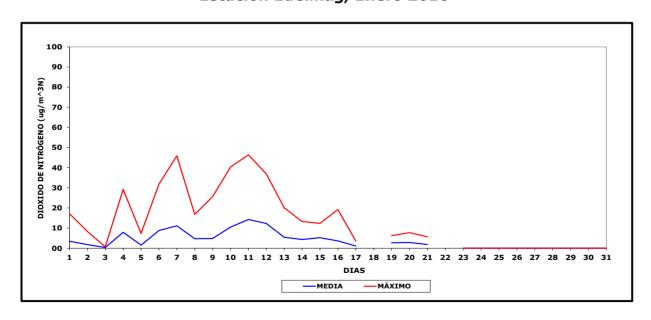
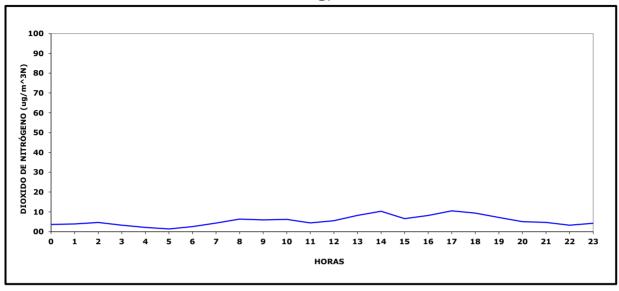


Gráfico Nº 10 Ciclo Diario de Dióxido de Nitrógeno Estación Edelmag, Diciembre 2015

El Gráfico Nº 11 muestra el promedio y el máximo horario de los valores de concentración de dióxido de nitrógeno, registrados durante el mes de Enero 2016, correspondiente a la Estación Edelmag. El Gráfico Nº 12 muestra el ciclo diario de los valores de concentración de este contaminante para dicha estación.

Gráfico Nº 11º
Concentración de Dióxido de Nitrógeno
Estación Edelmag, Enero 2016



º Pérdida de datos el día 18 y 21 de Enero 2016, debido a tiempo mínimo de muestreo

Gráfico Nº 12 Ciclo Diario de Dióxido de Nitrógeno Estación Edelmag, Enero 2016

5.4 Meteorología

La Tabla N° 3 y Tabla N° 4 muestran el promedio, el valor máximo y mínimo de las variables meteorológicas; Velocidad del Viento, Temperatura, Humedad Relativa, calculados en base a los valores registrados durante Diciembre 2015 -Enero 2016 en la Estación Edelmag.

Tabla N° 3 Resumen de Variables Meteorológicas, Estación Edelmag, Diciembre 2015

Variable	Media Mensual	Mínima Horaria	Máxima Horaria
Velocidad del Viento (m/s)	3,8	Calma ^p	11,5
Temperatura (°C)	9,0	1,2	15,3
Humedad Relativa (%)	63	38	93

Tabla Nº 4 Resumen de Variables Meteorológicas, Estación Edelmag, Enero 2016

Variable	Media Mensual	Mínima Horaria	Máxima Horaria
Velocidad del Viento (m/s)	3,8	Calma ^q	12,6
Temperatura (°C)	10,6	3,1	19,4
Humedad Relativa (%)	58	26	94

^p Corresponde a valores de velocidad inferiores a 0,5 m/s

^q Corresponde a valores de velocidad inferiores a 0,5 m/s

5.4.1 Velocidad del Viento

La velocidad del viento registrada en la Estación Edelmag durante el mes de Diciembre 2015 se presenta en el Gráfico Nº 13, en el cual se muestra el promedio diario, así como el valor mínimo y máximo horario de cada día.

Gráfico N° 13^r Velocidad del Viento Estación Edelmag, Diciembre 2015

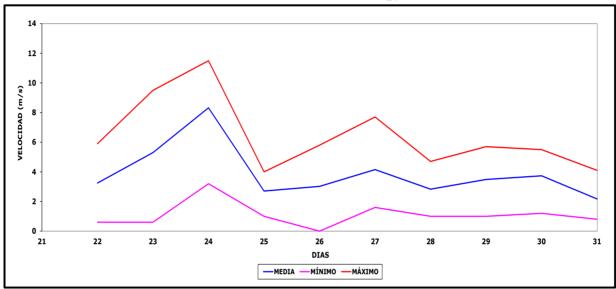
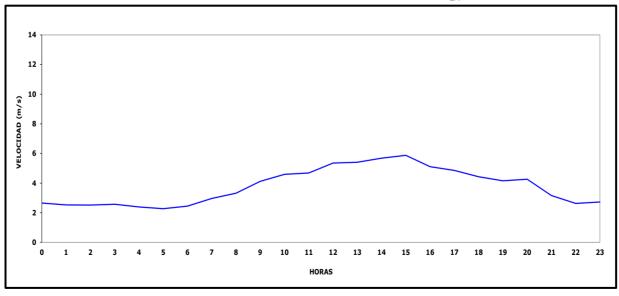



Gráfico Nº 14 Ciclo Diario de Velocidad del Viento Estación Edelmag, Diciembre 2015

r Pérdida de datos el día 21 de Diciembre 2015, debido a tiempo mínimo de muestreo

.

En el Gráfico N° 14 se observa el ciclo de la velocidad del viento durante el día, en el cual la menor velocidad se presenta a las 05:00 hrs., instante a partir del cual la velocidad del viento comienza a aumentar hasta las 15:00 hrs., luego la velocidad comienza a descender.

La velocidad del viento registrada en la Estación Edelmag durante el mes de Enero 2016 se presenta en el Gráfico N° 15, en el cual se muestra el promedio diario, así como el valor mínimo y máximo horario de cada día.

Gráfico Nº 15^s Velocidad del Viento Estación Edelmag, Enero 2016

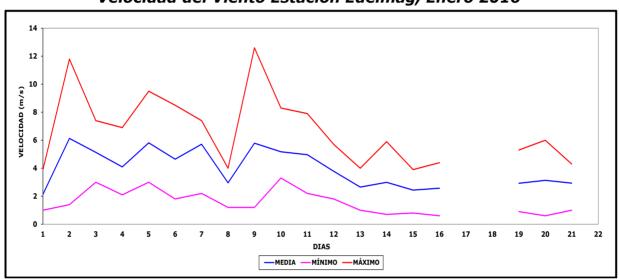
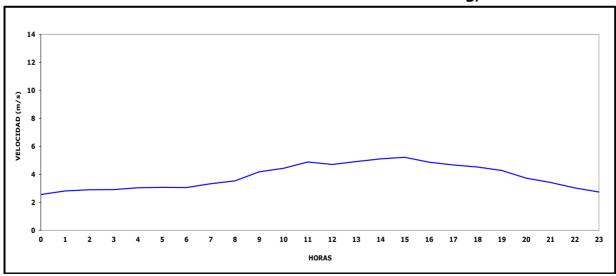



Gráfico Nº 16
Ciclo Diario de Velocidad del Viento Estación Edelmag, Enero 2016

s Pérdida de datos los días 17, 18 y 22 de Enero 2016, debido a tiempo mínimo de muestreo

-

En el Gráfico Nº 16 se observa el ciclo de la velocidad del viento durante el día, en el cual la menor velocidad se presenta a las 00:00 hrs., instante a partir del cual la velocidad del viento comienza a aumentar hasta las 15:00 hrs., luego la velocidad comienza a descender.

5.4.2 Dirección del Viento

Durante el mes de Diciembre 2015 la Estación Edelmag, presenta vientos provenientes principalmente del noroeste (NO) y en menor medida del norte - noroeste (NNO) y oeste – noroeste (ONO).

El detalle de la ocurrencia de vientos provenientes de cada dirección se presenta en la Tabla N° 5 mientras que en la Tabla N° 6 se presentan las direcciones de los vientos según el rango de velocidades, los cuales fueron definidos en base al mayor valor horario de velocidad del viento registrado en la Estación Edelmag.

La rosa de viento de Diciembre 2015 se presenta en la Figura N° 2. Seguidamente, en la Figura N° 3 y Figura N° 4 se presentan las rosas de viento según período del día para la Estación Edelmag.

Tabla N° 5
Dirección del Viento Estación Edelmag, Diciembre 2015

Dirección del vient		NNE	NE	ENE	E	ESE	SE	SSE	S	sso	so	oso	0	ONO	NO	NNO
% Ocurrenc	a 8,0	3,6	1,6	1,2	1,2	1,2	1,2	2,0	2,4	5,6	1,6	0,8	3,2	13,5	29,9	23,1

Tabla N° 6 Dirección de Viento según Rango de Velocidades Estación Edelmag, Diciembre 2015

Dirección		ν	elocidad (m/s	;)	
del Viento	0,5 - 1	1 – 2	2 - 3	3 – 4	> 4
N	0,8	2,8	2,4	0,4	1,6
NNE	0,8	2,4	0,4	0,0	0,0
NE	0,8	0,4	0,4	0,0	0,0
ENE	0,0	0,8	0,4	0,0	0,0
E	0,4	0,0	0,8	0,0	0,0
ESE	0,0	0,8	0,4	0,0	0,0
SE	0,0	0,4	0,0	0,4	0,4
SSE	0,4	0,0	1,2	0,4	0,0
S	0,0	0,4	1,6	0,4	0,0
SSO	0,4	1,6	0,8	2,8	0,0
SO	0,4	0,4	0,0	0,4	0,4
OSO	0,0	0,4	0,0	0,4	0,0
0	0,4	0,8	0,4	1,2	0,4
ONO	0,4	2,8	2,0	4,0	4,4
NO	0,8	1,2	3,6	5,2	19,1
NNO	0,4	0,4	3,2	2,8	16,3
TOTAL (%)	6,0	15,5	17,5	18,3	42,6

Figura N° 2 Rosa de los Vientos Estación Edelmag, Diciembre 2015

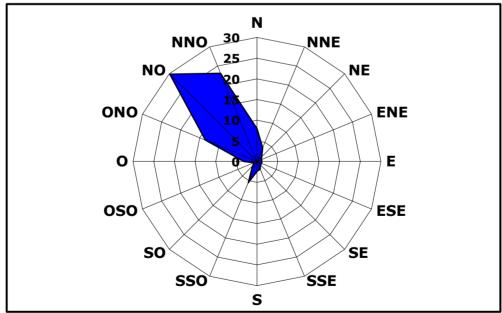


Figura N° 3 Rosa de Viento Horario de 00:00 a 11:59, Diciembre 2015

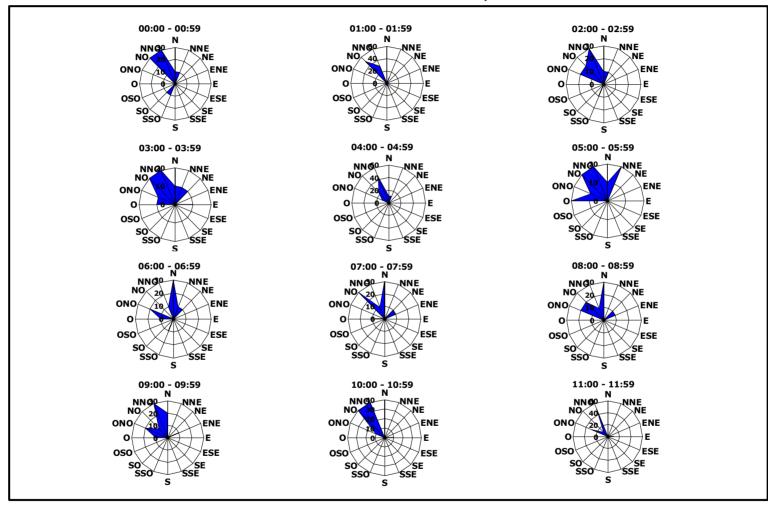
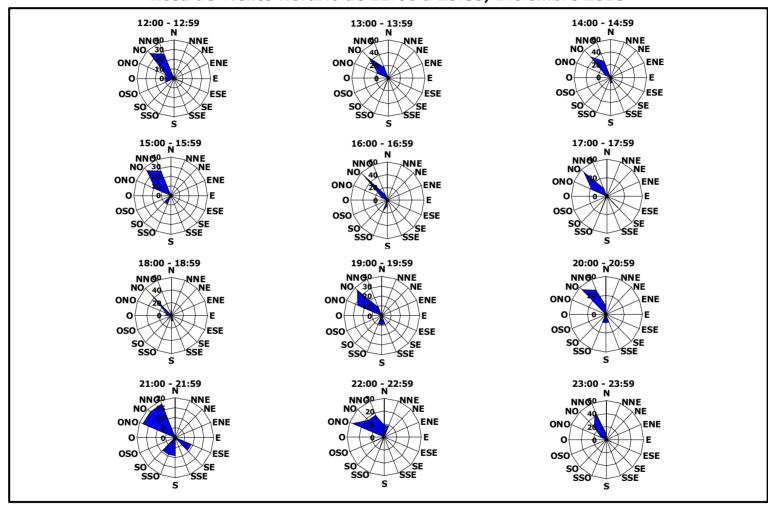



Figura N° 4 Rosa de Viento Horario de 12:00 a 23:59, Diciembre 2015

Durante el mes de Enero 2016 la Estación Edelmag, presenta vientos provenientes principalmente del oeste – noroeste (ONO) y en menor medida del noroeste (NO), oeste – suroeste (OSO) y oeste (O).

El detalle de la ocurrencia de vientos provenientes de cada dirección se presenta en la Tabla N° 7, mientras que en la Tabla N° 8 se presentan las direcciones de los vientos según el rango de velocidades, los cuales fueron definidos en base al mayor valor horario de velocidad del viento registrado en la Estación Edelmag.

La rosa de viento de Enero 2016 se presenta en la Figura N° 5. Seguidamente, en la Figura N° 6y Figura N° 7se presentan las rosas de viento según período del día para la Estación Edelmag.

Tabla N° 7 Dirección del Viento Estación Edelmag, Enero 2016.

Direct del vi	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSO	so	oso	0	ONO	NO	NNO
% Ocurr	4,5	1,3	2,1	0,9	1,3	1,3	1,9	3,6	6,6	3,2	4,9	10,9	10,7	19,5	17,6	9,6

Tabla N° 8 Dirección de Viento según Rango de Velocidades Estación Edelmag, Enero 2016.

Dirección		s)			
del Viento	0,5 - 1	1 – 2	2 – 3	3 – 4	> 4
N	0,4	1,1	0,6	1,7	0,6
NNE	0,2	0,6	0,4	0,0	0,0
NE	0,2	1,3	0,6	0,0	0,0
ENE	0,0	0,2	0,2	0,2	0,2
E	0,4	0,6	0,0	0,2	0,0
ESE	0,0	0,6	0,4	0,2	0,0
SE	0,0	0,2	0,6	0,6	0,4
SSE	0,0	0,6	0,4	1,9	0,6
S	0,0	1,3	1,1	2,1	2,1
SSO	0,0	1,3	0,9	0,9	0,2
SO	0,0	0,9	1,3	1,3	1,5
OSO	0,4	1,5	2,1	2,1	4,7
0	0,2	0,4	2,6	4,1	3,4
ONO	0,0	2,1	2,1	4,5	10,7
NO	0,6	1,9	1,9	1,7	11,3
NNO	0,4	0,9	0,2	1,1	7,1
TOTAL (%)	3,0	15,6	15,6	22,7	43,0

Figura N° 5 Rosa de los Vientos Estación Edelmag, Enero 2016.

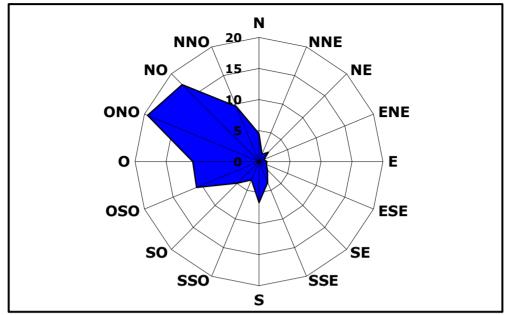


Figura N° 6 Rosa de Viento Horario de 00:00 a 11:59, Enero 2016

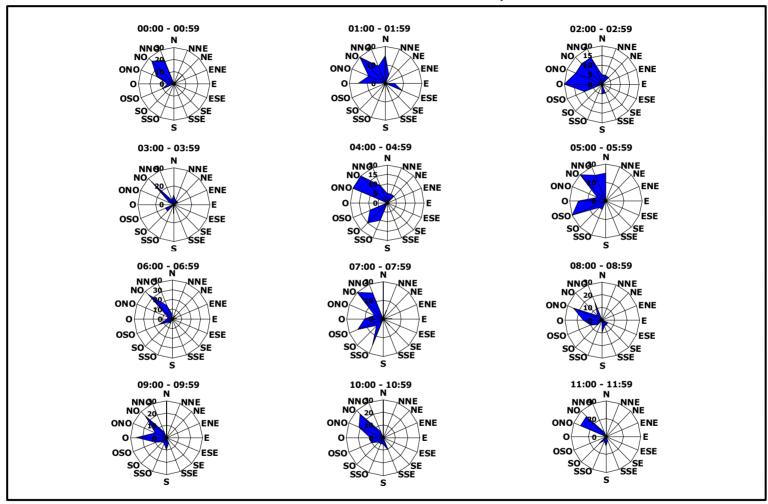
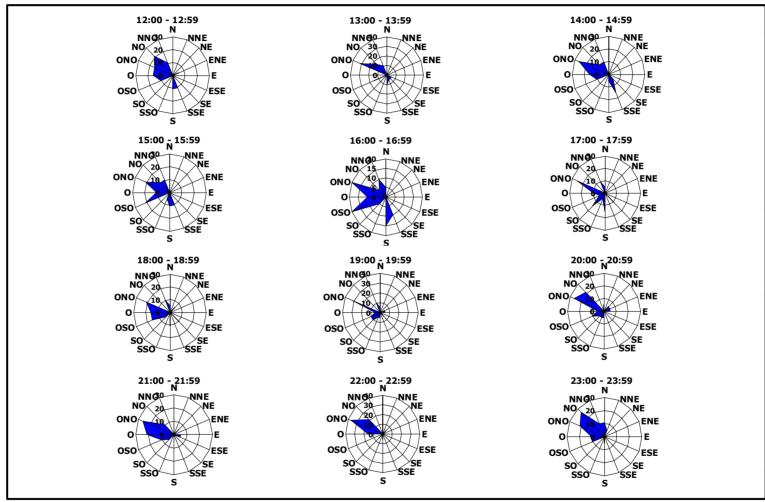



Figura N° 7 Rosa de Viento Horario de 12:00 a 23:59, Enero 2016

5.4.3 Temperatura

El comportamiento de la Temperatura registrada en la Estación Edelmag durante el mes de Diciembre 2015 se presenta en el Gráfico N° 17 en donde se muestra el promedio diario, así como el valor mínimo y máximo horario de cada día.

Gráfico N° 17^t Temperatura Estación Edelmag, Diciembre 2015

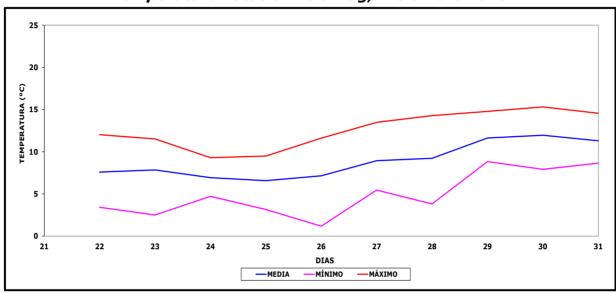
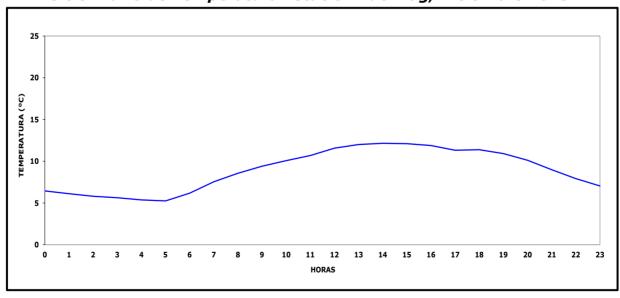
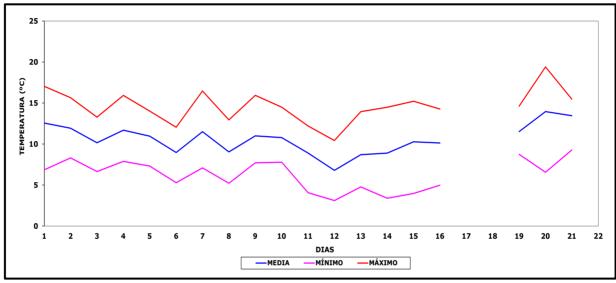



Gráfico Nº 18
Ciclo Diario de Temperatura Estación Edelmag, Diciembre 2015.

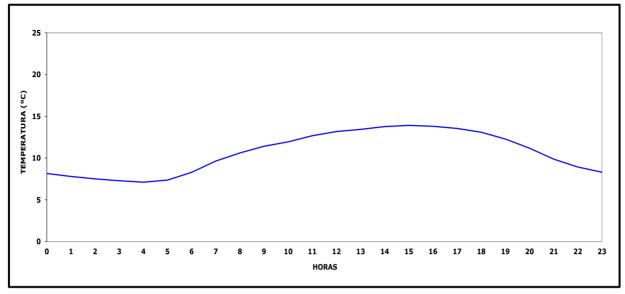
^t Pérdida de datos el día 21 de Diciembre 2015, debido a tiempo mínimo de muestreo



En el Gráfico Nº 18, se observa el comportamiento típico del ciclo de la temperatura durante el día, donde la hora de menor temperatura se presenta a las 05:00 hrs., instante en el cual la temperatura comienza a aumenta producto de la creciente insolación hasta las 14:00 hrs., luego la temperatura comienza a descender.

El comportamiento de la Temperatura registrada en la Estación Edelmag durante el mes de Enero 2016 se presenta en el Gráfico Nº 19 en donde se muestra el promedio diario, así como el valor mínimo y máximo horario de cada día.

Gráfico Nº 19^u Temperatura Estación Edelmag, Enero 2016



^u Pérdida de datos los días 17, 18 y 22 de Enero 2016, debido a tiempo mínimo de muestreo

Gráfico N° 20 Ciclo Diario de Temperatura Estación Edelmag, Enero 2016.

En el Gráfico N° 20, se observa el comportamiento típico del ciclo de la temperatura durante el día, donde la hora de menor temperatura se presenta a las 04:00 hrs., instante en el cual la temperatura comienza a aumenta producto de la creciente insolación hasta las 15:00 hrs., luego la temperatura comienza a descender.

5.4.4 Humedad Relativa

El comportamiento de la Humedad Relativa registrada en la Estación Edelmag se presenta en el Gráfico N° 21 en donde se muestra el promedio diario, el valor mínimo y máximo horario de cada día. El Gráfico N° 22 muestra el comportamiento horario de la Humedad Relativa.

Gráfico Nº 21º Humedad Relativa Estación Edelmag, Diciembre 2015

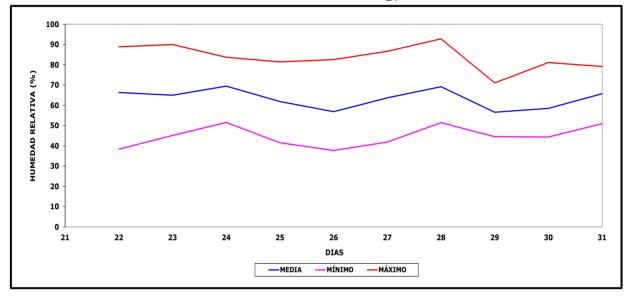
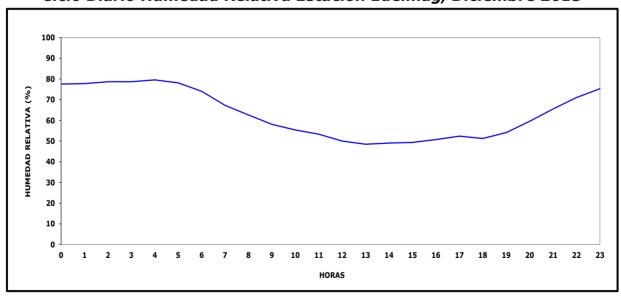
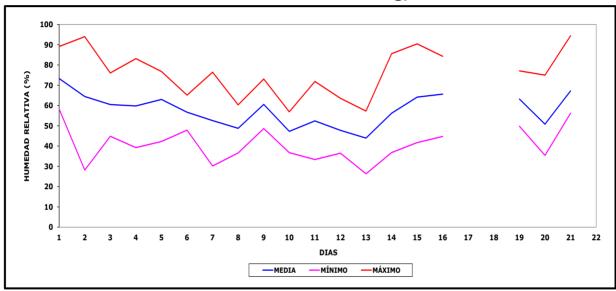



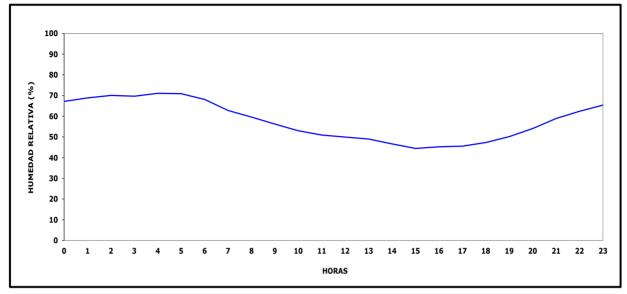
Gráfico Nº 22 Ciclo Diario Humedad Relativa Estación Edelmag, Diciembre 2015

^v Pérdida de datos el día 21 de Diciembre 2015, debido a tiempo mínimo de muestreo



Según se observa en el gráfico anterior, la Humedad Relativa del aire también describe su ciclo característico durante el día, el cual se caracteriza por dibujar una curva inversa a la curva de la Temperatura, con mayor humedad durante las horas de la noche, mientras que durante el día la humedad va disminuyendo a medida que aumenta la Temperatura.

El comportamiento de la Humedad Relativa registrada en la Estación Edelmag se presenta en el Gráfico N° 23 en donde se muestra el promedio diario, el valor mínimo y máximo horario de cada día. El Gráfico N° 24 muestra el comportamiento horario de la Humedad Relativa.



^w Pérdida de datos los días 17, 18 y 22 de Enero 2016, debido a tiempo mínimo de muestreo

Gráfico Nº 24 Ciclo Diario Humedad Relativa Estación Edelmag, Enero 2016.

Según se observa en el gráfico anterior, la Humedad Relativa del aire también describe su ciclo característico durante el día, el cual se caracteriza por dibujar una curva inversa a la curva de la Temperatura, con mayor humedad durante las horas de la noche, mientras que durante el día la humedad va disminuyendo a medida que aumenta la Temperatura.

Las Tablas de las variables meteorológicas se muestran en el ANEXO IV de este documento.

6 RESUMEN DE RESULTADOS

La Tabla N° 9 muestra un resumen de las concentraciones mensuales de MP-2,5 y los gases CO y NO₂ durante Diciembre 2015.

Tabla N° 9 Resumen de concentraciones Material Particulado MP-2,5 y Gases, Estación Edelmag, Diciembre 2015

Contaminante	Estadístico	Concentración	Unidades
MP-2,5	Promedio Mensual	7	- / 3
MP-2,5	Máximo Promedio Diario	9	μg/m³
	Promedio Mensual	0,2	
	Máximo Promedio Diario	0,3	2
СО	Máximo horario Mensual	0,5	mg/m ³ N
	Máximo Promedio Móvil 8 Hrs. Mensual	0,4	
	Promedio Mensual	2,5	
NO ₂	Máximo Promedio Diario	dio Diario 4,9	
	Máximo horario Mensual	16,4	

La Tabla N° 10 y Tabla N° 11 presentan los resultados de meteorología y predominancia de vientos para el mes de Diciembre 2015.

Tabla Nº 10 Resultados de Meteorología, Estación Edelmag, Diciembre 2015

Variable I	Meteorológica	Valor	Fecha registrada
Velocidad	Promedio Mensual	3,8	N/A
del Viento	Mínimo Mensual	Calma ^x	N/A
(m/s)	Máximo Mensual	11,5	24 diciembre 2015 a las 14:00 hrs.
_	Promedio Mensual	9,0	N/A
Temperatura (°C)	Mínimo Mensual	1,2	26 diciembre 2015 a las 04:00 hrs.
()	Máximo Mensual	15,3	30 diciembre 2015 a las 14:00 hrs
	Promedio Mensual	63	N/A
Humedad Relativa (%)	Mínimo Mensual	38	22 diciembre 2015 a las 16:00 hrs 26 de diciembre 2015 entre las 15:00 y 16:00 hrs.
	Máximo Mensual	93	28 diciembre 2015 a las 04:00 hrs.

El porcentaje del periodo en que se produjeron estados de **Calma** corresponde al 0,40% de las horas monitoreadas.

Tabla Nº 11 Resultados de Predominancia de vientos, Estación Edelmag, Diciembre 2015

Componente	Ocurrencia
noroeste (NO)	29,9
norte - noroeste (NNO)	23,1
oeste - noroeste (ONO)	13,5

La Tabla N° 9 muestra un resumen de las concentraciones mensuales de MP-2,5 y los gases CO y NO_2 durante Enero 2016.

x Corresponde a valores de velocidad inferiores a 0,5 m/s

Tabla Nº 12 Resumen de concentraciones Material Particulado MP-2,5 y Gases, Estación Edelmag, Enero 2016

Contaminante	Estadístico	Concentración	Unidades
MP-2,5	Promedio Mensual	7	- / 3
MP-2,5	Máximo Promedio Diario	12	μg/m³
	Promedio Mensual	0,2	
	Máximo Promedio Diario	0,3	
СО	Máximo horario Mensual	0,5	mg/m ³ N
	Máximo Promedio Móvil 8 Hrs. Mensual	0,4	
	Promedio Mensual	5,4	
NO ₂	Máximo Promedio Diario	mo Promedio Diario 14,2	
	Máximo horario Mensual	46,4	

La Tabla N° 13 y Tabla N° 14 presentan los resultados de meteorología y predominancia de vientos para el mes de Enero 2016.

Tabla Nº 13 Resultados de Meteorología, Estación Edelmag, Enero 2016

Variable I	Meteorológica	Valor	Fecha registrada
Velocidad	Promedio Mensual	3,8	N/A
del Viento	Mínimo Mensual	Calma ^y	N/A
(m/s)	Máximo Mensual	12,6	09 enero 2016 a las 17:00 hrs.
	Promedio Mensual	10,6	N/A
Temperatura (°C)	Mínimo Mensual	3,1	12 enero 2016 a las 04:00 hrs.
	Máximo Mensual	19,4	20 enero 2016 a las 14:00 hrs
	Promedio Mensual	58	N/A
l	Mínimo Mensual	26	13 enero 2016 a las 15:00 hrs
Humedad Relativa (%)	Máximo Mensual	94	02 enero 2016 a las 05:00 hrs 21 enero 2016 a las 23:00 hrs. 22 enero 2016 entre las 00:00 y las 01:00 hrs.

El porcentaje del periodo en que se produjeron estados de **Calma** corresponde al 0,21% de las horas monitoreadas.

^y Corresponde a valores de velocidad inferiores a 0,5 m/s

Tabla Nº 14 Resultados de Predominancia de vientos, Estación Edelmag, Enero 2016

Componente	Ocurrencia
oeste – noroeste (ONO)	19,5
noroeste (NO)	17,6
oeste - suroeste (OSO)	10,9
oeste (O)	10,7

Al comparar de manera referencial los valores mensuales medidos de material particulado fino respirable MP-2,5 en la estación Edelmag con la normativa aplicable, se podría concluir que las concentraciones no sobrepasan el valor límite establecido por la norma respectiva.

Al comparar de manera referencial los valores mensuales medidos de monóxido de carbono CO en la estación Edelmag con la normativa aplicable, se podría concluir que las concentraciones no sobrepasan el valor límite establecido por la norma respectiva.

Al comparar de manera referencial los valores mensuales medidos de dióxido de nitrógeno NO_2 en la estación Edelmag con la normativa aplicable, se podría concluir que las concentraciones no sobrepasan el valor límite establecido por la norma respectiva.

El comportamiento de las variables meteorológicas; velocidad del viento, dirección del viento, temperatura y humedad relativa, medidas en la estación Edelmag, se comportan de acuerdo a lo esperado para la época del año.

ANEXO I NOMENCLATURA PARA INVALIDACIÓN O PÉRDIDA DE DATOS SEGÚN DTO. Nº 61

Códigos Utilizados

Código	Significado	Justificación
2.a	Dato inválido	Por falla de energía
2.b	Dato inválido	Por falla de equipo
2.c	Dato inválido	Fuera de rango de temperatura de operación
2.d	Dato inválido	Por cambio de equipo
2.e	Dato inválido	Por mantención en terrero
2.f	Dato inválido	Por tiempo mínimo de muestreo
2.g	Dato inválido	Por exceso de tiempo de muestreo
2.h	Dato inválido	Valor fuera de rango
3.a	Sin dato	Por falla general de equipo
3.b	Sin dato	Por precipitación

ANEXO II^z TABLAS DE CONCENTRACIÓN DE MATERIAL PARTICULADO MP-2,5 ESTACIÓN EDELMAG DICIEMBRE 2015 – ENERO 2016

^z Los códigos de invalidación están detallados en el Anexo I

MATERIAL PARTICULADO RESPIRABLE MP-2,5, ESTACIÓN EDELMAG, DICIEMBRE 2015 UNIDAD: μg/m³

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20151221												2.e	2.e	2.e	8	2	13	1	2	0	2	5	4	2	2.f	2.f	2.f
20151222	9	5	7	7	7	4	3	3	4	5	7	8	7	5	3	1	0	0	1	3	5	12	9	11	5	0	12
20151223	13	8	14	4	4	4	4	4	5	4	1	7	6	11	20	14	12	14	18	13	5	12	1	5	8	1	20
20151224	8	4	4	4	5	2	2	3	1	1	2	5	7	7	11	10	5	3	4	2	1	4	6	9	5	1	11
20151225	8	7	4	5	4	4	6	3	0	0	0	0	1	4	4	2	0	3	7	6	7	5	4	7	4	0	8
20151226	13	2	7	9	6	3	3	2	2	4	3	3	8	8	7	11	7	13	7	2	1	7	7	11	6	1	13
20151227	6	4	4	4	5	5	5	8	5	4	3	2	3	3	3	4	3	1	5	4	3	5	12	13	5	1	13
20151228	11	6	6	5	2.b	2.b	2.b	6	4	5	3	0	2	6	4	1	2	10	2.f	2.f	2.f						
20151229	12	6	5	7	10	10	6	3	5	2	5	4	11	31	18	4	5	7	4	8	15	8	4	1	8	1	31
20151230	6	8	5	4	6	3	16	27	13	8	12	13	15	10	5	8	5	8	7	6	5	3	7	8	9	3	27
20151231	7	7	7	10	7	6	10	18	29	22	2.e	11	3	0	3	1	0	4	4	7	10	28	10	8	9	0	29
MEDIA	9	6	6	6	6	5	6	8	7	6	4	6	7	9	8	6	5	5	6	5	5	8	6	8	7		
MÍNIMO	6	2	4	4	4	2	2	2	0	0	0	0	1	0	3	1	0	0	1	0	1	1	1	1		0	
MÁXIMO	13	8	14	10	10	10	16	27	29	22	12	13	15	31	20	14	13	14	18	13	15	28	12	13			31

MATERIAL PARTICULADO RESPIRABLE MP-2,5, ESTACIÓN EDELMAG, ENERO 2016 UNIDAD: $\mu g/m^3$

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20160101	4	5	19	16	10	8	6	8	5	6	4	6	9	16	5	8	12	12	19	11	13	25	15	19	11	4	25
20160102	12	9	6	10	13	10	9	5	2	6	5	8	7	13	9	7	10	17	15	13	8	11	8	10	9	2	17
20160103	7	10	7	7	4	5	6	4	9	8	8	7	6	12	10	17	13	10	11	16	3	1	3	3	8	1	17
20160104	1	1	2	0	0	2	2	5	3	0	2	4	1	0	0	0	0	0	0	7	8	7	4	9	2	0	9
20160105	5	0	4	4	3	3	10	7	7	5	8	6	2	3	2	0	2.e	1	1	8	6	6	4	4	4	0	10
20160106	3	0	0	2	3	1	0	3	6	3	8	7	8	15	8	3	2	4	5	9	9	5	5	12	5	0	15
20160107	9	7	6	3	1	3	0	2	3	6	15	0	0	0	1	2	2	2	2	4	3	1	3	3	3	0	15
20160108	3	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.f	2.f	2.f									
20160109	2.b	2.b	3	10	9	5	4	5	8	5	6	4	2	9	69	33	66	9	9	7	4	1	0	0	12	0	69
20160110	4	7	9	6	2	0	0	1	1	0	3	2	11	15	25	22	5	5	9	6	6	6	3	7	6	0	25
20160111	8	7	6	4	5	3	4	7	3	0	0	0	0	3	1	1	2	1	2	3	4	1	6	4	3	0	8
20160112	4	4	6	8	5	5	3	5	8	6	8	6	2	4	6	8	14	9	8	9	6	3	4	14	6	2	14
20160113	11	8	8	8	8	9	12	8	12	8	7	10	8	8	5	8	6	9	6	11	4	0	5	7	8	0	12
20160114	6	7	10	9	6	4	29	10	16	7	5	5	4	7	12	8	8	5	8	11	9	10	17	20	10	4	29
20160115	9	20	11	11	11	16	19	18	7	7	19	10	5	3	14	10	12	6	6	2	8	24	20	14	12	2	24
20160116	13	12	13	12	7	10	7	8	9	2.b	3	6	4	7	5	4	2	4	10	10	7	6	12	7	8	2	13
20160117	11	11	7	3	5	7	6	1	0	1	5	15	8	4	8	7	3	0	2	1	17	0	5	7	6	0	17
20160118	6	3	5	7	3	7	7	3	12	10	6	10	6	6	3	2	3	2	4	2	0	1	5	11	5	0	12
20160119	10	8	4	2	3	7	9	7	7	3	1	2	4	10	8	6	10	9	12	8	14	8	3	7	7	1	14
20160120	6	7	4	7	5	4	20	11	9	11	8	8	10	14	10	6	2	3	2	0	10	17	20	7	8	0	20
20160121	7	8	6	4	1	7	7	10	5	5	6	9	6	3	1	1	0	2	5	5	2	2	3	2	4	0	10
20160122	0	2	6	4	10	7	3	2	6	2.e															2.f	2.f	2.f
MEDIA	7	7	7	7	5	6	8	6	7	5	6	6	5	8	10	8	9	6	7	7	7	7	7	8	7		
MÍNIMO	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	
MÁXIMO	13	20	19	16	13	16	29	18	16	11	19	15	11	16	69	33	66	17	19	16	17	25	20	20			69

ANEXO III^{aa} TABLAS DE GASES ESTACIÓN EDELMAG, DICIEMBRE 2015 – ENERO 2016

^{aa} Los códigos de invalidación están detallados en el Anexo I.

MONÓXIDO DE CARBONO, DICIEMBRE 2015, UNIDAD: mg/m³N

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20151221												2.e	0,5	0,4	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2	2.f	2.f	2.f
20151222	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2	0,2	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,3
20151223	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,2
20151224	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20151225	0,1	0,1	0,1	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,2	0,1	0,1	0,1	0,2	0,1	0,1	0,0	0,2
20151226	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2
20151227	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,2
20151228	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,1	0,2	0,0	0,3
20151229	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2	0,1	0,2
20151230	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20151231	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,2	0,2	0,2	2.e	0,2	0,2	0,3	0,3	0,2	0,3	0,3	0,3	0,4	0,4	0,5	0,3	0,2	0,3	0,1	0,5
MEDIA	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2		
MÍNIMO	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1		0,0	
MÁXIMO	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,2	0,5	0,4	0,3	0,3	0,3	0,3	0,3	0,4	0,4	0,5	0,3	0,2			0,5

MONÓXIDO DE CARBONO, ENERO 2016 UNIDAD: mg/m³N

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20160101	0,2	0,2	0,5	0,3	0,2	0,2	0,3	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,4	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,3	0,2	0,5
20160102	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,2
20160103	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,2
20160104	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20160105	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,1	0,2	0,2	0,2	0,2	0,2	2.e	0,4	0,4	0,4	0,3	0,3	0,2	0,1	0,1	0,2	0,1	0,4
20160106	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,2	0,1	0,2
20160107	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,3	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,3
20160108	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,2	0,1	0,2
20160109	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20160110	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,2	0,1	0,3
20160111	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,2	0,1	0,2
20160112	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,2
20160113	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,1	0,1	0,1	0,2	0,1	0,1	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,2
20160114	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,3	0,3	0,3	0,4	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,1	0,4
20160115	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,3	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,3	0,1	0,4
20160116	0,3	0,2	0,2	0,2	0,1	0,1	0,2	0,2	0,2	2.b	0,3	0,3	0,3	0,3	0,4	0,5	0,3	0,4	0,5	0,4	0,3	0,3	0,3	0,2	0,3	0,1	0,5
20160117	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,3
20160118	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	2.e	0,2	0,2	0,2	0,3	0,2	0,2	0,2	0,1	0,2	0,2	0,1	0,3
20160119	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,1	0,1	0,2	0,1	0,3
20160120	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,3
20160121	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,2	0,2	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,3
20160122	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	2.e															2.f	2.f	2.f
MEDIA	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,2		
MÍNIMO	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1		0,0	
MÁXIMO	0,3	0,2	0,5	0,3	0,2	0,2	0,3	0,2	0,3	0,3	0,3	0,3	0,3	0,4	0,4	0,5	0,4	0,4	0,5	0,4	0,4	0,4	0,4	0,4			0,5

MONÓXIDO DE CARBONO PROMEDIO MÓVIL 8 HRS., DICIEMBRE 2015 UNIDAD: mg/m³N

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20151221													2.f	2.f	2.f	2.f	2.f	0,4	0,4	0,4	0,3	0,3	0,3	0,3	2.f	2.f	2.f
20151222	0,3	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3
20151223	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20151224	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20151225	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20151226	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20151227	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,2
20151228	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,1	0,3
20151229	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20151230	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20151231	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,2	0,2	0,4
MEDIA	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2		
MÍNIMO	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1		0,1	
MÁXIMO	0,3	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,4	0,4	0,4	0,3	0,4	0,4	0,4			0,4

MONÓXIDO DE CARBONO PROMEDIO MÓVIL 8 HRS., ENERO 2016 UNIDAD: mg/m³N

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20160101	0,3	0,3	0,4	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,4
20160102	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3
20160103	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20160104	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20160105	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,1	0,3
20160106	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20160107	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,1	0,3
20160108	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20160109	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20160110	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20160111	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20160112	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,2
20160113	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,2
20160114	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,1	0,3
20160115	0,3	0,3	0,2	0,2	0,2	0,2	0,1	0,1	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,3	0,1	0,4
20160116	0,4	0,4	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,3	0,3	0,2	0,4
20160117	0,3	0,3	0,3	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,1	0,3
20160118	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20160119	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,1	0,3
20160120	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,1	0,3
20160121	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20160122	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	2.e													2.f	2.f	2.f
MEDIA	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,2	0,2	0,2		
MÍNIMO	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1		0,1	
MÁXIMO	0,4	0,4	0,4	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4			0,4

DIÓXIDO DE NITRÓGENO, DICIEMBRE 2015 UNIDAD: μg/m³N

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20151221												2.e	2.e	1,8	1,3	1,0	1,0	0,8	0,6	0,6	1,4	1,3	1,7	2,0	2.f	2.f	2.f
20151222	1,8	1,8	1,1	1,3	2,0	2,5	0,9	0,8	1,0	1,5	1,3	1,2	2,9	1,7	2,7	1,8	1,0	3,7	3,5	0,7	0,9	1,5	2,0	1,2	1,7	0,7	3,7
20151223	1,4	1,0	4,0	1,3	2,1	3,4	1,0	0,7	1,7	1,6	1,9	1,4	2,1	0,9	2,4	2,6	0,7	0,7	0,6	0,5	0,7	0,9	0,7	0,6	1,5	0,5	4,0
20151224	0,5	0,6	0,6	0,7	0,7	0,6	0,6	0,8	1,4	1,9	1,6	0,7	0,7	0,7	0,6	0,5	1,9	2,1	1,6	0,7	0,6	0,7	1,1	1,1	1,0	0,5	2,1
20151225	0,7	0,8	0,8	0,9	1,6	1,8	0,8	1,0	1,2	1,1	1,6	2,3	1,6	1,2	0,8	1,9	1,5	2,4	6,5	2,8	3,6	4,4	5,0	5,0	2,2	0,7	6,5
20151226	4,5	3,2	1,8	1,8	2,4	1,4	2,5	1,5	0,9	0,9	0,8	0,8	0,9	0,8	0,8	0,9	0,9	1,7	1,6	0,9	0,9	1,0	1,1	0,7	1,4	0,7	4,5
20151227	0,7	0,6	0,8	0,8	1,5	2,4	1,2	1,0	1,9	1,1	1,8	3,9	4,0	0,9	1,7	2,5	2,5	1,2	1,2	4,0	5,9	4,4	2,6	1,9	2,1	0,6	5,9
20151228	3,6	3,1	3,5	2,3	1,5	1,3	1,3	1,1	1,5	4,5	3,5	4,6	6,9	6,8	7,0	5,6	5,1	4,8	4,7	5,2	7,3	5,9	3,2	1,4	4,0	1,1	7,3
20151229	1,3	2,4	3,6	2,9	9,0	3,9	14,8	15,1	16,4	12,0	4,2	4,8	1,1	1,1	1,2	1,3	2,2	1,2	0,9	1,1	6,5	6,6	1,3	3,2	4,9	0,9	16,4
20151230	0,8	0,7	0,7	0,9	1,2	1,1	1,3	1,3	1,8	0,9	1,8	0,9	1,9	2,1	1,2	1,6	0,8	1,0	1,6	0,9	1,2	1,2	3,5	4,2	1,4	0,7	4,2
20151231	3,4	3,3	3,4	4,2	1,4	0,9	1,2	6,3	6,0	2.e	2.e	1,7	1,8	6,4	5,4	4,9	7,9	6,6	6,4	8,2	10,0	9,3	5,0	3,9	4,9	0,9	10,0
MEDIA	1,9	1,8	2,0	1,7	2,3	1,9	2,6	3,0	3,4	2,8	2,0	2,2	2,4	2,2	2,3	2,2	2,3	2,4	2,7	2,3	3,5	3,4	2,5	2,3	2,5		
MÍNIMO	0,5	0,6	0,6	0,7	0,7	0,6	0,6	0,7	0,9	0,9	0,8	0,7	0,7	0,7	0,6	0,5	0,7	0,7	0,6	0,5	0,6	0,7	0,7	0,6		0,5	
MÁXIMO	4,5	3,3	4,0	4,2	9,0	3,9	14,8	15,1	16,4	12,0	4,2	4,8	6,9	6,8	7,0	5,6	7,9	6,6	6,5	8,2	10,0	9,3	5,0	5,0			16,4

DIÓXIDO DE NITRÓGENO, ENERO 2016 UNIDAD: μg/m³N

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20160101	2,6	2,7	17,2	9,4	4,7	3,9	4,3	2,7	2,2	2,0	1,6	2,2	1,7	2,0	1,7	1,8	3,8	1,5	1,8	2,0	2,6	3,2	3,0	2,7	3,5	1,5	17,2
20160102	4,5	3,2	4,0	4,2	8,3	3,5	4,1	3,7	2,4	0,5	0,2	0,2	0,3	0,2	0,2	0,2	0,4	0,9	0,4	0,2	0,2	0,3	0,4	0,4	1,8	0,2	8,3
20160103	0,3	0,3	0,5	0,4	0,2	0,1	0,2	0,3	0,5	0,5	0,3	0,2	0,2	0,3	0,5	0,3	0,3	0,3	0,7	0,4	0,4	0,5	0,6	0,6	0,4	0,1	0,7
20160104	0,4	0,4	0,4	1,0	0,5	0,5	0,5	0,7	0,6	1,5	2,7	4,7	9,3	23,2	27,0	11,6	7,9	29,2	18,0	16,5	15,6	5,4	7,2	5,4	7,9	0,4	29,2
20160105	3,2	0,5	0,5	0,4	0,4	0,4	0,4	0,8	1,3	0,4	2,2	1,2	0,7	0,4	1,1	2.e	2.e	1,1	7,4	4,1	0,2	4,8	0,6	1,5	1,5	0,2	7,4
20160106	4,5	4,4	0,5	6,6	0,3	0,6	0,6	1,9	6,0	12,1	10,2	5,3	11,5	10,6	18,2	18,0	25,8	20,9	31,8	5,7	3,2	9,3	1,9	0,5	8,8	0,3	31,8
20160107	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,1	3,0	6,2	4,7	3,4	10,8	13,4	28,8	2.b	45,9	45,1	42,7	25,4	10,0	4,7	1,4	9,4	11,1	0,0	45,9
20160108	2,6	9,3	2,9	4,9	2,0	0,5	1,0	1,3	16,8	7,1	9,7	6,5	4,1	5,3	15,5	11,1	3,4	1,3	1,1	1,9	1,1	3,8	0,6	0,2	4,7	0,2	16,8
20160109	1,3	0,9	1,0	1,5	0,0	2,6	4,8	0,9	0,9	1,4	0,3	0,3	0,4	4,9	3,2	0,2	0,2	0,2	6,1	17,2	23,1	10,8	8,2	25,6	4,8	0,0	25,6
20160110	11,3	25,8	40,3	18,1	10,1	1,6	13,0	24,9	14,8	10,1	9,0	7,6	1,6	1,8	6,5	1,4	2,1	14,6	14,6	7,2	6,1	7,5	1,5	0,5	10,5	0,5	40,3
20160111	5,1	6,4	0,9	0,1	0,1	0,0	4,3	7,1	6,7	16,5	38,0	21,9	31,3	46,4	37,1	12,8	14,7	32,6	21,8	24,2	5,6	1,7	2,6	3,7	14,2	0,0	46,4
20160112	3,1	1,4	2,6	2,0	2,7	2,7	1,2	9,9	13,4	10,9	18,4	18,5	19,2	27,4	36,9	21,3	26,9	28,1	21,4	13,3	4,2	6,9	1,8	0,5	12,3	0,5	36,9
20160113	2,2	2,7	10,6	3,3	3,6	2,3	1,8	2,4	7,6	3,5	8,4	2,7	2,0	11,6	11,7	20,0	9,7	7,4	3,7	2,0	5,8	2,4	1,5	1,6	5,4	1,5	20,0
20160114	2,6	3,8	3,2	4,8	1,4	0,5	1,5	3,5	6,2	8,0	2,9	2,8	1,4	1,7	1,8	3,8	2,2	6,7	4,4	7,1	6,4	13,3	7,2	7,0	4,3	0,5	13,3
20160115	5,7	3,2	2,1	1,8	1,4	1,4	1,5	7,7	9,5	8,0	5,4	3,8	3,2	3,0	4,8	3,2	3,7	2,8	4,9	6,2	8,2	9,9	11,4	12,3	5,2	1,4	12,3
20160116	8,3	6,4	4,9	3,7	2,3	2,4	3,1	4,0	4,6	19,2	1,5	1,4	1,4	1,4	1,4	1,8	1,5	1,9	1,2	3,3	3,1	3,5	4,3	0,9	3,6	0,9	19,2
20160117	2,7	0,8	0,7	0,5	0,6	0,3	0,3	0,9	2,1	1,8	1,1	0,3	0,3	2,3	1,3	1,7	0,5	3,6	0,6	0,1	0,0	0,6	1,4	2.b	1,1	0,0	3,6
20160118	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	3,3	2.f	2.f	2.f
20160119	4,0	1,5	0,5	0,4	2.b	2.b	2.b	2.b	2.b	1,3	3,9	2,5	6,3	1,1	2,2	3,1	3,2	3,4	2,1	4,8	4,3	2,7	3,6	0,7	2,7	0,4	6,3
20160120	0,8	0,8	0,4	0,7	1,4	1,8	5,6	5,4	3,3	4,5	1,4	1,6	4,1	6,7	2,2	4,2	2,4	7,7	1,8	1,7	0,6	1,7	2,7	4,5	2,8	0,4	7,7
20160121	5,7	4,5	1,8	3,5	1,4	0,4	0,2	0,8	0,7	3,5	1,8	1,3	0,6	0,9	3,7	2,1	1,0	1,0	1,0	0,4	0,5	0,4	3,4	3,4	1,8	0,2	5,7
20160122	5,6	3,0	2,6	1,4	1,7	1,6	2,6	7,7	24,4	2.e															2.f	2.f	2.f
MEDIA	3,6	3,9	4,6	3,3	2,1	1,4	2,5	4,3	6,3	5,9	6,2	4,4	5,5	8,2	10,3	6,6	8,2	10,5	9,4	7,2	5,1	4,7	3,3	4,2	5,4		
MÍNIMO	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,1	0,5	0,4	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,4	0,1	0,0	0,3	0,4	0,2		0,0	
MÁXIMO	11,3	25,8	40,3	18,1	10,1	3,9	13,0	24,9	24,4	19,2	38,0	21,9	31,3	46,4	37,1	21,3	45,9	45,1	42,7	25,4	23,1	13,3	11,4	25,6			46,4

ANEXO IV^{bb} TABLAS DE VARIABLES METEOROLÓGICAS, ESTACIÓN EDELMAG DICIEMBRE 2015 – ENERO 2016

bb Los códigos de invalidación están detallados en el ANEXO I

VELOCIDAD DEL VIENTO ESTACIÓN EDELMAG, DICIEMBRE 2015 UNIDAD: m/s

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20151221												2.e	8,2	7,7	8,3	8,0	6,6	5,4	5,3	5,0	3,5	2,0	1,5	1,1	2.f	2.f	2.f
20151222	0,9	0,7	1,2	1,5	2,0	0,9	0,6	3,4	4,0	4,6	5,9	4,4	4,6	4,2	4,8	5,0	4,7	5,1	4,0	3,9	5,4	2,1	2,0	2,0	3,2	0,6	5,9
20151223	1,3	1,2	1,9	0,8	0,7	0,6	0,8	2,4	3,5	3,9	6,0	7,2	7,3	9,2	7,6	9,4	7,4	8,0	7,0	8,0	9,5	8,5	7,7	7,3	5,3	0,6	9,5
20151224	6,7	7,5	7,6	6,6	7,1	8,0	10,7	9,7	9,7	11,1	11,1	10,5	11,1	10,9	11,5	10,5	8,1	7,5	7,1	6,6	7,5	5,7	3,7	3,2	8,3	3,2	11,5
20151225	3,0	2,9	3,0	3,2	3,0	1,4	1,4	2,6	3,0	3,5	3,3	3,4	2,6	2,5	3,4	4,0	3,2	3,7	2,9	2,2	2,5	1,9	1,0	1,3	2,7	1,0	4,0
20151226	0,6	0,7	0,6	1,0	Calma	0,8	0,8	1,4	1,8	3,0	3,7	4,4	4,6	5,1	5,1	5,8	4,9	3,2	2,7	2,3	4,4	5,4	5,3	4,9	3,0	Calma	5,8
20151227	7,7	5,8	4,5	4,5	5,6	4,0	3,8	4,0	4,5	3,8	4,3	3,9	4,1	4,8	5,2	4,6	3,6	4,4	4,6	4,0	2,4	1,8	1,6	2,1	4,2	1,6	7,7
20151228	2,3	2,6	2,6	2,7	2,6	2,7	1,0	1,8	2,6	4,4	4,2	4,7	3,7	3,0	3,0	3,7	3,4	3,2	2,9	2,6	2,5	2,1	1,5	2,1	2,8	1,0	4,7
20151229	2,7	1,7	1,5	1,7	1,3	2,8	3,1	3,9	3,0	3,6	4,6	5,2	5,2	5,7	5,6	4,7	5,2	4,8	4,4	4,1	3,2	1,0	1,6	3,1	3,5	1,0	5,7
20151230	2,6	3,9	3,8	5,5	2,8	1,2	1,8	1,9	2,8	5,1	4,9	5,4	5,4	5,3	5,2	5,2	5,4	4,3	3,7	3,7	3,4	2,7	2,0	1,6	3,7	1,2	5,5
20151231	1,4	0,8	1,0	0,8	1,2	2,6	2,9	1,5	1,6	2,3	2,5	2,4	2,1	1,1	2,8	3,7	3,7	3,8	4,1	3,3	2,6	1,6	1,0	1,3	2,2	0,8	4,1
MEDIA	2,7	2,5	2,5	2,6	2,4	2,3	2,4	3,0	3,3	4,1	4,6	4,7	5,4	5,4	5,7	5,9	5,1	4,9	4,4	4,2	4,3	3,2	2,6	2,7	3,8		
MÍNIMO	Calma	2,1	1,1	2,8	3,7	3,2	3,2	2,7	2,2	2,4	1,0	1,0	1,1		Calma												
MÁXIMO	7,7	7,5	7,6	6,6	7,1	8,0	10,7	9,7	9,7	11,1	11,1	10,5	11,1	10,9	11,5	10,5	8,1	8,0	7,1	8,0	9,5	8,5	7,7	7,3			11,5

VELOCIDAD DEL VIENTO ESTACIÓN EDELMAG, ENERO 2016 UNIDAD: m/s

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20160101	1,0	1,6	1,2	1,7	1,8	1,8	1,4	2,1	3,5	3,5	3,9	3,2	2,2	1,7	3,1	3,1	2,4	1,4	1,6	2,2	2,3	2,2	1,2	1,2	2,1	1,0	3,9
20160102	1,4	2,2	1,6	1,5	1,5	1,5	1,4	1,8	2,6	3,4	5,5	9,2	8,0	8,0	10,5	8,4	9,1	9,0	10,5	11,2	10,6	11,1	11,8	5,3	6,1	1,4	11,8
20160103	4,6	4,1	4,6	4,8	5,9	5,1	5,4	5,3	5,7	5,1	5,5	6,0	7,4	7,4	7,1	6,7	5,7	5,5	4,3	3,0	3,2	3,8	3,6	3,4	5,1	3,0	7,4
20160104	3,0	3,7	4,1	2,8	2,1	3,6	3,0	3,9	3,1	4,7	4,9	5,3	4,9	5,5	5,1	5,4	6,9	5,4	4,1	4,6	3,0	2,3	2,7	4,2	4,1	2,1	6,9
20160105	3,2	6,5	6,4	6,7	7,0	7,2	9,5	6,9	5,0	6,8	7,2	6,1	5,8	5,7	6,4	7,6	5,4	4,6	5,6	4,7	4,1	4,5	3,6	3,0	5,8	3,0	9,5
20160106	2,5	2,7	3,0	2,0	1,8	2,5	2,0	3,2	3,9	3,0	3,6	8,5	7,8	7,5	6,0	5,7	4,2	3,6	4,9	6,4	7,5	7,6	5,5	6,1	4,6	1,8	8,5
20160107	6,7	7,4	6,8	7,2	6,5	6,9	6,4	5,3	5,9	5,6	5,6	6,2	6,2	5,7	6,0	5,6	5,8	6,1	5,8	5,5	5,0	4,1	2,6	2,2	5,7	2,2	7,4
20160108	2,7	1,2	2,2	2,9	1,4	1,8	2,2	2,8	2,6	2,9	4,0	3,7	3,7	3,3	3,6	3,6	3,1	3,9	3,5	3,2	2,8	3,6	2,2	4,0	3,0	1,2	4,0
20160109	3,1	1,2	1,8	2,1	4,6	5,1	3,1	3,7	4,4	7,2	7,2	6,8	5,0	5,8	6,9	10,4	11,4	12,6	10,5	8,2	6,7	4,3	3,7	3,1	5,8	1,2	12,6
20160110	5,3	8,3	6,8	6,5	5,1	3,3	3,5	4,0	3,9	3,9	3,9	4,3	3,7	5,2	6,1	7,1	7,2	5,3	3,9	5,0	5,1	6,2	5,3	5,3	5,2	3,3	8,3
20160111	3,0	2,2	3,1	5,5	7,5	7,9	6,7	7,1	4,0	5,1	5,7	5,5	5,2	5,1	5,7	5,8	5,6	4,7	4,8	4,8	3,9	3,2	3,6	3,4	5,0	2,2	7,9
20160112	2,9	2,5	2,8	1,9	1,8	2,1	2,5	3,7	4,0	4,1	4,8	4,4	4,9	5,7	4,5	5,1	5,2	5,3	4,5	4,5	4,2	3,3	3,0	3,0	3,8	1,8	5,7
20160113	2,9	2,8	2,1	1,0	1,6	2,1	1,4	2,4	3,2	3,6	2,7	1,8	3,4	3,5	3,6	4,0	4,0	3,3	3,3	2,3	1,9	2,0	2,2	2,6	2,7	1,0	4,0
20160114	2,2	0,9	0,7	1,3	2,1	1,4	0,9	1,1	1,4	3,9	5,9	5,4	5,4	5,9	5,1	5,3	4,3	4,3	3,7	3,2	2,9	1,8	1,1	1,6	3,0	0,7	5,9
20160115	1,6	1,4	2,1	2,0	1,9	1,7	2,3	1,5	1,9	2,9	3,5	3,9	3,7	3,8	3,7	3,2	3,6	3,9	2,9	2,7	1,9	0,8	0,8	0,8	2,4	0,8	3,9
20160116	0,8	1,3	1,7	1,1	1,6	0,6	0,9	1,6	2,5	3,0	3,2	4,3	3,4	4,1	4,3	4,0	3,5	4,4	2.b	2.b	2.b	2.b	2.b	2.b	2,6	0,6	4,4
20160117	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.f	2.f	2.f
20160118	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	3,3	2,9	4,1	4,6	3,2	2,4	1,1	0,6	2.f	2.f	2.f
20160119	1,1	2,4	2,6	2,1	1,5	1,9	2,1	2,6	3,1	4,6	4,4	4,2	4,2	5,2	5,3	4,3	3,7	3,5	3,3	2,3	0,9	1,3	1,9	1,7	2,9	0,9	5,3
20160120	1,7	1,9	2,4	1,7	1,2	0,8	1,0	2,1	1,9	3,5	4,6	5,7	5,5	6,0	6,0	5,5	4,4	4,6	5,0	3,6	1,9	0,6	1,6	2,0	3,1	0,6	6,0
20160121	1,7	1,0	1,5	1,3	2,0	2,8	3,0	2,5	3,8	3,3	2,7	3,3	3,9	3,3	3,3	3,7	3,6	3,9	4,3	3,7	3,6	3,5	3,3	1,4	2,9	1,0	4,3
20160122	Calma	1,1	0,7	2,3	2,1	1,5	2,6	3,2	4,4	3,7	2.e														2.f	2.f	2.f
MEDIA	2,6	2,8	2,9	2,9	3,1	3,1	3,1	3,3	3,5	4,2	4,4	4,9	4,7	4,9	5,1	5,2	4,9	4,7	4,5	4,3	3,7	3,4	3,0	2,7	3,8		
MÍNIMO	Calma	0,9	0,7	1,0	1,2	0,6	0,9	1,1	1,4	2,9	Calma		Calma														
MÁXIMO	6,7	8,3	6,8	7,2	7,5	7,9	9,5	7,1	5,9	7,2	7,2	9,2	8,0	8,0	10,5	10,4	11,4	12,6	10,5	11,2	10,6	11,1	11,8	6,1			12,6

DIRECCIÓN DEL VIENTO ESTACIÓN EDELMAG, DICIEMBRE 2015 UNIDAD: Grados

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20151221												2.e	343	338	343	334	323	310	320	318	326	301	300	2	2.f	2.f	2.f
20151222	351	332	13	28	26	15	211	0	2	5	338	329	322	303	295	301	309	303	266	294	325	313	355	347	332	0	355
20151223	26	26	0	97	6	319	51	347	324	329	325	332	343	322	318	321	333	330	349	340	328	338	334	339	344	0	349
20151224	336	340	344	340	339	332	329	320	330	324	326	330	325	324	330	328	307	314	299	302	313	319	314	336	325	299	344
20151225	334	314	313	307	304	260	294	325	312	297	314	302	259	301	310	313	180	145	160	160	160	169	206	308	282	145	334
20151226	227	306	287	278	Calma	277	27	74	350	338	339	335	348	334	328	318	321	295	313	316	331	330	329	342	324	27	350
20151227	327	316	324	310	319	309	286	309	303	298	304	292	292	306	309	303	302	131	320	304	4	137	29	345	314	4	345
20151228	320	334	330	350	345	333	5	44	34	358	342	344	255	208	162	201	193	194	184	178	186	213	294	326	299	5	358
20151229	304	310	292	295	291	286	263	279	282	270	284	299	307	325	324	328	320	322	320	313	320	103	321	312	304	103	328
20151230	307	318	343	332	345	12	2	3	351	341	333	317	310	320	324	309	312	319	316	297	305	300	297	118	327	2	351
20151231	201	168	195	36	339	4	352	357	67	60	81	86	110	205	187	217	204	211	215	211	207	216	248	301	197	4	357
MEDIA	317	325	324	339	337	323	332	348	341	332	329	326	314	306	311	304	294	288	292	290	309	282	311	336	319		
MÍNIMO	26	26	0	28	6	4	2	0	2	5	81	86	110	205	162	201	180	131	160	160	4	103	29	2		0	
MÁXIMO	351	340	344	350	345	333	352	357	351	358	342	344	348	338	343	334	333	330	349	340	331	338	355	347			358

DIRECCIÓN DEL VIENTO ESTACIÓN EDELMAG, ENERO 2016 UNIDAD: Grados

	۸	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
00400404	0	100						700															2200		-	IVIIIN	_
20160101	312	306	283	250	231	242	207	194	182	203	203	198	169	114	160	161	163	126	51	66	38	38	/	17	187	/	312
20160102	43	103	167	190	207	210	222	203	217	271	317	322	331	330	336	336	352	346	340	331	325	315	326	325	306	43	352
20160103	338	327	328	338	331	329	319	331	340	346	344	338	340	334	338	331	337	332	337	356	8	4	6	0	340	0	356
20160104	345	5	346	357	18	351	351	334	333	305	301	299	296	303	280	278	298	280	258	288	65	107	181	294	318	5	357
20160105	114	305	307	318	318	333	326	332	338	321	322	314	304	315	317	304	283	283	302	295	293	297	293	304	311	114	338
20160106	290	274	275	20	291	297	307	302	298	220	249	311	311	295	290	294	275	289	289	283	291	293	293	306	291	20	311
20160107	305	308	303	305	313	317	316	306	302	313	314	316	289	298	275	251	271	255	263	236	264	276	295	280	291	236	317
20160108	253	358	251	230	330	280	313	224	281	269	260	291	247	239	287	263	241	200	137	100	303	324	306	308	272	100	358
20160109	341	118	37	350	301	320	311	314	311	321	324	323	321	325	314	307	341	8	3	342	320	258	276	245	323	3	350
20160110	295	313	293	292	246	277	268	275	248	265	235	215	270	293	297	298	307	289	270	284	285	299	307	329	282	215	329
20160111	346	10	263	319	319	322	327	306	284	279	285	282	275	246	241	241	216	231	253	224	229	247	281	273	276	10	346
20160112	268	267	280	258	254	241	258	273	267	258	258	223	238	236	244	246	239	232	240	251	256	267	262	282	254	223	282
20160113	293	278	262	52	195	225	257	253	271	261	280	293	276	285	261	246	236	235	219	243	246	264	286	247	259	52	293
20160114	241	21	328	307	284	357	332	29	108	183	183	169	152	169	162	179	172	190	180	186	192	175	285	297	202	21	357
20160115	315	286	309	325	352	345	327	201	156	154	158	165	163	154	163	174	178	189	188	193	189	272	308	311	215	154	352
20160116	312	338	8	310	289	10	44	83	128	169	163	169	190	187	170	200	172	185	2.b	2.b	2.b	2.b	2.b	2.b	177	8	338
20160117	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.f	2.f	2.f
20160118	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	252	270	280	277	285	291	295	8	2.f	2.f	2.f
20160119	190	193	174	183	217	272	290	254	283	294	299	287	78	134	134	151	150	140	136	133	95	214	287	328	201	78	328
20160120	304	284	306	312	309	258	80	139	177	299	303	307	292	312	299	301	299	291	301	302	319	93	37	285	303	37	319
20160121	45	89	20	60	55	317	324	309	302	313	316	299	309	302	284	293	290	296	303	298	304	296	216	186	313	20	324
20160122	Calma	168	254	231	220	247	240	242	247	257	2.e														2.f	2.f	2.f
MEDIA	311	318	298	307	289	297	304	279	271	271	278	280	277	278	268	262	257	255	272	274	292	285	297	302	285		
MÍNIMO	//3	510	8	20	18	10	44	29	108	154	158	165	78	114	134	151	150	8	3	66	232	1	6	0	203	0	
MÁXIMO	346	358	346	357	352	357	351	334	340	346	344	338	340	334	338	336	352	346	340	356	325	324	326	329		_ U	358
DIVIDANIVI	J40	200	J40	331	JUZ	331	301	JJ4	340	J40	344	330	340	334	330	330	JOZ	J40	J40	330	JZD	JZ4	JZ0	JZJ	<u> </u>		330

ROSA DE VIENTOS HORARIA ESTACIÓN EDELMAG, DICIEMBRE 2015

						LIIDIKL A						
	0:00 - 0:59	1:00 - 1:59	2:00 - 2:59	3:00 - 3:59	4:00 - 4:59	5:00 - 5:59	6:00 - 6:59	7:00 - 7:59	8:00 - 8:59	9:00 - 9:59	10:00 - 10:59	11:00 - 11:59
N	10,0	0,0	10,0	10,0	11,1	10,0	30,0	30,0	30,0	20,0	0,0	0,0
NNE	10,0	10,0	10,0	10,0	11,1	20,0	10,0	0,0	0,0	0,0	0,0	0,0
NE	0,0	0,0	0,0	10,0	0,0	0,0	10,0	10,0	10,0	0,0	0,0	0,0
ENE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	10,0	10,0	10,0	0,0	0,0
E	0,0	0,0	0,0	10,0	0,0	0,0	0,0	0,0	0,0	0,0	10,0	10,0
ESE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
SE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
SSE	0,0	10,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
S	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
SSO	10,0	0,0	10,0	0,0	0,0	0,0	10,0	0,0	0,0	0,0	0,0	0,0
SO	10,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
oso	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
O	0,0	0,0	0,0	10,0	0,0	20,0	10,0	10,0	0,0	10,0	0,0	0,0
ONO	0,0	0,0	20,0	10,0	11,1	10,0	20,0	0,0	20,0	20,0	10,0	30,0
NO	30,0	50,0	20,0	20,0	22,2	20,0	0,0	30,0	20,0	10,0	40,0	10,0
NNO	30,0	30,0	30,0	20,0	44,4	20,0	10,0	10,0	10,0	30,0	40,0	50,0
TOTAL	100	100	100	100	100	100	100	100	100	100	100	100
	12:00 - 12:59	13:00 - 13:59	14:00 - 14:59	15:00 - 15:59	16:00 - 16:59	17:00 - 17:59	18:00 - 18:59	19:00 - 19:59	20:00 - 20:59	21:00 - 21:59	22:00 - 22:59	23:00 - 23:59
N	0,0	0,0	0,0	0,0	0,0	0,0	9,1	0,0	9,1	0,0	9,1	9,1
NNE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	9,1	0,0
NE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
ENE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
E	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
ESE	9,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	9,1	0,0	9,1
SE	0,0	0,0	0,0	0,0	0,0	18,2	0,0	0,0	0,0	9,1	0,0	0,0
SSE	0,0	0,0	9,1	0,0	0,0	0,0	9,1	9,1	9,1	0,0	0,0	0,0
S	0,0	0,0	9,1	0,0	9,1	0,0	9,1	9,1	9,1	9,1	0,0	0,0
SSO	0,0	18,2	0,0	9,1	18,2	18,2	0,0	9,1	9,1	9,1	9,1	0,0
SO	0,0	0,0	0,0	9,1	0,0	0,0	9,1	0,0	0,0	9,1	0,0	0,0
oso	9,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	9,1	0,0
O	9,1	0,0	0,0	0,0	0,0	0,0	9,1	0,0	0,0	0,0	0,0	0,0
ONO	9,1	18,2	9,1	18,2	9,1	18,2	9,1	27,3	0,0	18,2	27,3	9,1
NO	36,4	45,5	45,5	36,4	54,5	36,4	45,5	36,4	36,4	18,2	18,2	27,3
NNO	27,3	18,2	27,3	27,3	9,1	9,1	0,0	9,1	27,3	18,2	18,2	45,5
11110												

ROSA DE VIENTOS HORARIA ESTACIÓN EDELMAG, ENERO 2016

	0:00 - 0:59	1:00 - 1:59	2:00 - 2:59	3:00 - 3:59	4:00 - 4:59	5:00 - 5:59	6:00 - 6:59	7:00 - 7:59	8:00 - 8:59			11:00 - 11:59
N	0,0	15,0	5,0	10,0	5,0	15,0	5,0	0,0	0,0	0,0	0,0	0,0
NNE	0,0	5,0	5,0	5,0	5,0	0,0	0,0	5,0	0,0	0,0	0,0	0,0
NE	10,5	0,0	5,0	5,0	5,0	0,0	5,0	0,0	0,0	0,0	0,0	0,0
ENE	0,0	0,0	0,0	5,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
E	0,0	5,0	0,0	0,0	0,0	0,0	5,0	5,0	0,0	0,0	0,0	0,0
ESE	5,3	10,0	0,0	0,0	0,0	0,0	0,0	0,0	5,0	0,0	0,0	0,0
SE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	5,0	5,0	0,0	0,0	0,0
SSE	0,0	5,0	5,0	0,0	0,0	0,0	0,0	0,0	5,0	5,0	10,5	5,3
S	5,3	0,0	5,0	10,0	0,0	0,0	0,0	0,0	10,0	10,0	5,3	10,5
SSO	0,0	5,0	0,0	0,0	10,0	5,0	5,0	15,0	0,0	5,0	5,3	5,3
SO	0,0	0,0	0,0	10,0	15,0	5,0	5,0	5,0	5,0	5,0	5,3	10,5
oso	10,5	0,0	10,0	10,0	10,0	20,0	15,0	15,0	10,0	10,0	10,5	0,0
O	5,3	15,0	20,0	0,0	0,0	15,0	5,0	10,0	15,0	25,0	10,5	0,0
ONO	15,8	10,0	15,0	5,0	20,0	5,0	5,0	5,0	25,0	10,0	21,1	31,6
NO	26,3	20,0	15,0	35,0	20,0	20,0	35,0	20,0	5,0	25,0	26,3	31,6
NNO	21,1	10,0	15,0	5,0	10,0	15,0	15,0	15,0	15,0	5,0	5,3	5,3
TOTAL	100	100	100	100	100	100	100	100	100	100	100	100
	42.00 42.50	42.00 42.50	44.00 44.50	45.00 45.50	40.00 40.50	47.00 47.50	40.00 40.50	40.00 40.50	20.00 20.50	24.00 24.50	22.00 22.50	22.00 22.50
N												23:00 - 23:59
N NNF	0,0	0,0	0,0	0,0	5,0	5,0	5,3	5,3	5,3	5,3	10,5	10,5
NNE	0,0 0,0	0,0 0,0	0,0 0,0	0,0 0,0	5,0 0,0	5,0 0,0	5,3 0,0	5,3 0,0	5,3 0,0	5,3 0,0	10,5 0,0	10,5 5,3
NNE NE	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	5,0 0,0 0,0	5,0 0,0 0,0	5,3 0,0 5,3	5,3 0,0 0,0	5,3 0,0 5,3	5,3 0,0 5,3	10,5 0,0 5,3	10,5 5,3 0,0
NNE NE ENE	0,0 0,0 0,0 5,3	0,0 0,0 0,0 0,0	0,0 0,0 0,0 0,0	0,0 0,0 0,0 0,0	5,0 0,0 0,0 0,0	5,0 0,0 0,0 0,0	5,3 0,0 5,3 0,0	5,3 0,0 0,0 5,3	5,3 0,0 5,3 5,3	5,3 0,0 5,3 0,0	10,5 0,0 5,3 0,0	10,5 5,3 0,0 0,0
NNE NE ENE E	0,0 0,0 0,0 5,3 0,0	0,0 0,0 0,0 0,0 0,0	0,0 0,0 0,0 0,0 0,0	0,0 0,0 0,0 0,0 0,0	5,0 0,0 0,0 0,0 0,0	5,0 0,0 0,0 0,0 0,0	5,3 0,0 5,3 0,0 0,0	5,3 0,0 0,0 5,3 5,3	5,3 0,0 5,3 5,3 5,3	5,3 0,0 5,3 0,0 5,3	10,5 0,0 5,3 0,0 0,0	10,5 5,3 0,0 0,0 0,0
NNE NE ENE E ESE	0,0 0,0 0,0 5,3 0,0 0,0	0,0 0,0 0,0 0,0 0,0 0,0 5,3	0,0 0,0 0,0 0,0 0,0 0,0	0,0 0,0 0,0 0,0 0,0 0,0	5,0 0,0 0,0 0,0 0,0 0,0	5,0 0,0 0,0 0,0 0,0 0,0	5,3 0,0 5,3 0,0 0,0 0,0	5,3 0,0 0,0 5,3 5,3 0,0	5,3 0,0 5,3 5,3 5,3 0,0	5,3 0,0 5,3 0,0 5,3 5,3	10,5 0,0 5,3 0,0 0,0 0,0	10,5 5,3 0,0 0,0 0,0 0,0
NNE NE ENE E E ESE SE	0,0 0,0 0,0 5,3 0,0 0,0	0,0 0,0 0,0 0,0 0,0 5,3 5,3	0,0 0,0 0,0 0,0 0,0 0,0 0,0 5,3	0,0 0,0 0,0 0,0 0,0 0,0 0,0	5,0 0,0 0,0 0,0 0,0 0,0 0,0	5,0 0,0 0,0 0,0 0,0 0,0 0,0	5,3 0,0 5,3 0,0 0,0 0,0 10,5	5,3 0,0 0,0 5,3 5,3 0,0 5,3	5,3 0,0 5,3 5,3 5,3 0,0	5,3 0,0 5,3 0,0 5,3 5,3 0,0	10,5 0,0 5,3 0,0 0,0 0,0 0,0	10,5 5,3 0,0 0,0 0,0 0,0 0,0
NNE NE ENE E ESE SE SSE	0,0 0,0 0,0 5,3 0,0 0,0 0,0	0,0 0,0 0,0 0,0 0,0 5,3 5,3 5,3	0,0 0,0 0,0 0,0 0,0 0,0 0,0 5,3	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	5,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	5,0 0,0 0,0 0,0 0,0 0,0 10,0	5,3 0,0 5,3 0,0 0,0 0,0 10,5	5,3 0,0 0,0 5,3 5,3 0,0 5,3	5,3 0,0 5,3 5,3 5,3 0,0 0,0	5,3 0,0 5,3 0,0 5,3 5,3 0,0 0,0	10,5 0,0 5,3 0,0 0,0 0,0 0,0 0,0	10,5 5,3 0,0 0,0 0,0 0,0 0,0 0,0
NNE NE ENE E ESE SE SSE S	0,0 0,0 0,0 5,3 0,0 0,0 0,0 10,5 10,5	0,0 0,0 0,0 0,0 0,0 5,3 5,3 5,3 10,5	0,0 0,0 0,0 0,0 0,0 0,0 5,3 15,8 5,3	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 10,5	5,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 10,0	5,0 0,0 0,0 0,0 0,0 0,0 10,0 0,0 15,0	5,3 0,0 5,3 0,0 0,0 0,0 10,5 0,0	5,3 0,0 0,0 5,3 5,3 0,0 5,3 0,0	5,3 0,0 5,3 5,3 5,3 0,0 0,0 0,0	5,3 0,0 5,3 0,0 5,3 5,3 0,0 0,0 0,0	10,5 0,0 5,3 0,0 0,0 0,0 0,0 0,0 0,0 5,3	10,5 5,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 5,3
NNE NE ENE E ESE SE SSE S SSO	0,0 0,0 0,0 5,3 0,0 0,0 0,0 10,5 10,5	0,0 0,0 0,0 0,0 0,0 5,3 5,3 5,3 10,5	0,0 0,0 0,0 0,0 0,0 0,0 5,3 15,8 5,3 0,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0 10,5 10,5 5,3	5,0 0,0 0,0 0,0 0,0 0,0 0,0 10,0 15,0 0,0	5,0 0,0 0,0 0,0 0,0 0,0 10,0 0,0 15,0 5,0	5,3 0,0 5,3 0,0 0,0 0,0 10,5 0,0 10,5 0,0	5,3 0,0 0,0 5,3 5,3 0,0 5,3 0,0 5,3 5,3	5,3 0,0 5,3 5,3 5,3 0,0 0,0 0,0 5,3 5,3	5,3 0,0 5,3 0,0 5,3 5,3 0,0 0,0 5,3 0,0	10,5 0,0 5,3 0,0 0,0 0,0 0,0 0,0 0,0 5,3 0,0	10,5 5,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 5,3
NNE NE ENE E ESE SSE SSE SSO SO	0,0 0,0 0,0 5,3 0,0 0,0 0,0 10,5 10,5 0,0	0,0 0,0 0,0 0,0 0,0 5,3 5,3 5,3 10,5 0,0	0,0 0,0 0,0 0,0 0,0 0,0 5,3 15,8 5,3 0,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0 10,5 10,5 5,3	5,0 0,0 0,0 0,0 0,0 0,0 0,0 10,0 15,0 0,0 5,0	5,0 0,0 0,0 0,0 0,0 0,0 10,0 0,0 15,0 5,0	5,3 0,0 5,3 0,0 0,0 0,0 10,5 0,0 10,5 0,0 5,3	5,3 0,0 0,0 5,3 5,3 0,0 5,3 0,0 5,3 5,3 10,5	5,3 0,0 5,3 5,3 5,3 0,0 0,0 0,0 5,3 5,3	5,3 0,0 5,3 0,0 5,3 5,3 0,0 0,0 5,3 0,0 5,3	10,5 0,0 5,3 0,0 0,0 0,0 0,0 0,0 0,0 5,3 0,0 5,3	10,5 5,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 5,3 0,0
NNE NE ENE E ESE SE SSE S SSO	0,0 0,0 0,0 5,3 0,0 0,0 10,5 10,5 0,0 0,0	0,0 0,0 0,0 0,0 0,0 5,3 5,3 5,3 10,5 0,0	0,0 0,0 0,0 0,0 0,0 0,0 5,3 15,8 5,3 0,0 0,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0 10,5 10,5 5,3 0,0	5,0 0,0 0,0 0,0 0,0 0,0 0,0 10,0 15,0 0,0 5,0	5,0 0,0 0,0 0,0 0,0 0,0 10,0 0,0 15,0 5,0	5,3 0,0 5,3 0,0 0,0 0,0 10,5 0,0 10,5 0,0 5,3	5,3 0,0 0,0 5,3 5,3 0,0 5,3 0,0 5,3 5,3 10,5	5,3 0,0 5,3 5,3 5,3 0,0 0,0 0,0 5,3 5,3 5,3 10,5	5,3 0,0 5,3 0,0 5,3 5,3 0,0 0,0 5,3 0,0 5,3 10,5	10,5 0,0 5,3 0,0 0,0 0,0 0,0 0,0 5,3 0,0 5,3 0,0	10,5 5,3 0,0 0,0 0,0 0,0 0,0 0,0 5,3 0,0 0,0
NNE NE ENE E ESE SE SSE S SO OSO O	0,0 0,0 0,0 5,3 0,0 0,0 10,5 10,5 0,0 0,0 10,5 15,8	0,0 0,0 0,0 0,0 0,0 5,3 5,3 5,3 10,5 0,0 0,0	0,0 0,0 0,0 0,0 0,0 0,0 5,3 15,8 5,3 0,0 0,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0 10,5 10,5 5,3 0,0 21,1	5,0 0,0 0,0 0,0 0,0 0,0 0,0 10,0 15,0 0,0 5,0 20,0	5,0 0,0 0,0 0,0 0,0 0,0 10,0 0,0 15,0 5,0 15,0 5,0	5,3 0,0 5,3 0,0 0,0 0,0 10,5 0,0 10,5 0,0 5,3 15,8	5,3 0,0 0,0 5,3 5,3 0,0 5,3 0,0 5,3 5,3 10,5	5,3 0,0 5,3 5,3 5,3 0,0 0,0 0,0 5,3 5,3 5,3 10,5	5,3 0,0 5,3 0,0 5,3 5,3 0,0 0,0 5,3 0,0 5,3 10,5 21,1	10,5 0,0 5,3 0,0 0,0 0,0 0,0 0,0 0,0 5,3 0,0 5,3 0,0 15,8	10,5 5,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 5,3 0,0 0,0 10,5
NNE NE ENE E ESE SE SSE S SO OSO	0,0 0,0 0,0 5,3 0,0 0,0 10,5 10,5 0,0 0,0 10,5 15,8	0,0 0,0 0,0 0,0 0,0 5,3 5,3 5,3 10,5 0,0 0,0 15,8 0,0 31,6	0,0 0,0 0,0 0,0 0,0 0,0 5,3 15,8 5,3 0,0 0,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0 10,5 10,5 5,3 0,0 21,1 10,5 21,1	5,0 0,0 0,0 0,0 0,0 0,0 0,0 10,0 15,0 0,0 5,0 20,0	5,0 0,0 0,0 0,0 0,0 0,0 10,0 0,0 15,0 5,0 15,0 5,0 10,0 25,0	5,3 0,0 5,3 0,0 0,0 0,0 10,5 0,0 10,5 0,0 5,3	5,3 0,0 0,0 5,3 5,3 0,0 5,3 0,0 5,3 10,5 10,5 5,3 31,6	5,3 0,0 5,3 5,3 5,3 0,0 0,0 0,0 5,3 5,3 5,3 10,5 5,3 26,3	5,3 0,0 5,3 0,0 5,3 5,3 0,0 0,0 5,3 0,0 5,3 10,5	10,5 0,0 5,3 0,0 0,0 0,0 0,0 0,0 5,3 0,0 5,3 0,0 15,8 36,8	10,5 5,3 0,0 0,0 0,0 0,0 0,0 0,0 5,3 0,0 0,0 10,5 10,5
NNE NE ENE E ESE SE SSE S SO OSO ONO	0,0 0,0 0,0 5,3 0,0 0,0 10,5 10,5 0,0 0,0 10,5 15,8	0,0 0,0 0,0 0,0 0,0 5,3 5,3 5,3 10,5 0,0 0,0	0,0 0,0 0,0 0,0 0,0 0,0 5,3 15,8 5,3 0,0 0,0 10,5 15,8 26,3	0,0 0,0 0,0 0,0 0,0 0,0 0,0 10,5 10,5 5,3 0,0 21,1	5,0 0,0 0,0 0,0 0,0 0,0 0,0 10,0 15,0 0,0 5,0 20,0	5,0 0,0 0,0 0,0 0,0 0,0 10,0 0,0 15,0 5,0 15,0 5,0	5,3 0,0 5,3 0,0 0,0 0,0 10,5 0,0 10,5 0,0 5,3 15,8 15,8 21,1	5,3 0,0 0,0 5,3 5,3 0,0 5,3 0,0 5,3 5,3 10,5	5,3 0,0 5,3 5,3 5,3 0,0 0,0 0,0 5,3 5,3 5,3 10,5	5,3 0,0 5,3 0,0 5,3 5,3 0,0 0,0 5,3 0,0 5,3 10,5 21,1 26,3	10,5 0,0 5,3 0,0 0,0 0,0 0,0 0,0 0,0 5,3 0,0 5,3 0,0 15,8	10,5 5,3 0,0 0,0 0,0 0,0 0,0 0,0 5,3 0,0 0,0 10,5

TEMPERATURA ESTACIÓN EDELMAG, DICIEMBRE 2015 UNIDAD: °C

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20151221												2.e	11,9	13,1	13,9	13,7	13,1	12,1	12,1	11,3	10,1	8,9	7,6	6,2	2.f	2.f	2.f
20151222	5,2	4,1	3,4	3,8	4,3	4,1	4,3	5,9	7,3	8,4	9,3	9,8	10,2	10,2	11,2	11,6	12,0	10,4	10,8	9,6	8,1	7,3	6,1	4,6	7,6	3,4	12,0
20151223	4,3	3,7	3,7	3,1	2,6	2,5	4,7	6,9	8,0	8,8	9,9	11,2	11,5	11,2	9,7	11,4	10,6	10,5	10,3	10,4	9,5	8,7	7,7	7,1	7,8	2,5	11,5
20151224	6,7	6,2	6,0	5,7	5,5	5,1	5,9	5,9	6,8	7,4	7,6	8,0	8,8	9,1	9,3	8,5	7,9	8,9	8,6	6,9	5,6	5,8	5,4	4,7	6,9	4,7	9,3
20151225	4,6	4,6	4,3	3,7	3,5	3,2	4,9	5,6	6,5	7,1	7,9	8,4	9,4	9,5	8,8	9,0	8,7	8,0	7,6	7,6	7,5	7,1	5,9	4,4	6,6	3,2	9,5
20151226	3,5	3,8	2,5	1,5	1,2	1,7	4,0	6,6	7,9	7,9	8,7	9,4	10,1	11,1	11,6	11,2	10,6	9,7	9,3	8,9	8,7	7,6	7,3	6,9	7,1	1,2	11,6
20151227	6,2	5,9	6,1	6,3	6,0	6,0	6,5	7,7	8,7	9,0	9,0	9,6	11,2	11,4	11,8	13,0	13,5	11,4	12,0	12,0	10,9	8,2	6,7	5,5	8,9	5,5	13,5
20151228	5,0	4,8	4,4	4,4	4,2	3,8	5,5	7,4	9,0	10,8	12,0	12,3	12,9	13,9	14,3	13,2	12,0	11,5	11,8	11,4	11,0	9,8	8,3	8,0	9,2	3,8	14,3
20151229	9,0	8,9	9,0	9,1	8,8	9,0	9,5	10,7	11,3	11,5	11,8	12,5	13,6	14,7	13,9	13,9	14,8	14,4	13,9	13,3	12,3	11,6	11,0	10,4	11,6	8,8	14,8
20151230	10,4	10,2	10,0	9,9	8,9	8,4	7,9	8,7	9,6	12,2	13,3	13,9	14,4	14,4	15,3	15,0	14,8	14,3	14,3	14,3	13,6	12,0	10,9	10,3	12,0	7,9	15,3
20151231	9,8	8,9	8,8	8,7	8,8	8,6	8,8	10,0	10,5	11,1	11,2	11,8	13,3	13,4	13,9	12,6	12,8	13,4	14,6	14,4	14,1	11,9	10,3	9,4	11,3	8,6	14,6
MEDIA	6,5	6,1	5,8	5,6	5,4	5,3	6,2	7,5	8,6	9,4	10,1	10,7	11,6	12,0	12,2	12,1	11,9	11,3	11,4	10,9	10,1	9,0	7,9	7,0	9,0		
MÍNIMO	3,5	3,7	2,5	1,5	1,2	1,7	4,0	5,6	6,5	7,1	7,6	8,0	8,8	9,1	8,8	8,5	7,9	8,0	7,6	6,9	5,6	5,8	5,4	4,4		1,2	
MÁXIMO	10,4	10,2	10,0	9,9	8,9	9,0	9,5	10,7	11,3	12,2	13,3	13,9	14,4	14,7	15,3	15,0	14,8	14,4	14,6	14,4	14,1	12,0	11,0	10,4			15,3

TEMPERATURA ESTACIÓN EDELMAG, ENERO 2016 UNIDAD: °C

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20160101	8,6	7,7	6,9	7,3	7,1	8,0	8,3	10,7	11,3	12,8	12,5	13,5	15,3	15,9	15,3	16,1	16,7	16,2	16,5	17,0	16,1	14,7	13,7	13,4	12,6	6,9	17,0
20160102	12,8	12,2	11,2	10,8	10,7	9,9	9,9	11,0	10,6	11,4	12,8	13,2	12,6	14,7	15,6	15,7	15,6	14,5	13,5	11,6	10,0	9,1	8,6	8,3	11,9	8,3	15,7
20160103	8,2	7,9	7,9	7,5	7,2	6,6	7,4	8,4	9,1	9,1	9,5	10,8	12,1	12,4	12,3	12,4	12,9	13,3	13,3	12,6	12,2	11,2	10,0	9,5	10,2	6,6	13,3
20160104	9,4	9,3	9,0	8,7	7,9	8,4	9,0	9,5	11,3	12,3	13,5	14,4	14,0	15,8	15,9	15,6	14,2	13,4	12,9	12,2	11,9	10,9	10,5	10,5	11,7	7,9	15,9
20160105	10,5	10,3	9,8	9,4	9,4	9,4	10,0	10,6	10,7	11,1	11,8	13,9	14,0	12,5	11,9	13,6	14,0	13,9	12,3	11,0	9,6	8,4	7,8	7,3	11,0	7,3	14,0
20160106	7,3	6,8	6,4	5,3	5,8	6,1	6,4	7,2	8,0	8,7	9,9	10,1	9,9	10,7	11,4	11,3	11,5	11,4	12,0	11,6	10,3	9,3	8,8	8,8	9,0	5,3	12,0
20160107	8,9	9,0	8,8	8,9	8,8	9,2	10,2	11,3	12,3	12,7	13,3	13,9	15,5	16,5	16,3	15,9	14,6	13,6	12,6	11,3	9,7	8,3	7,5	7,1	11,5	7,1	16,5
20160108	6,7	5,8	6,1	6,1	5,7	5,7	5,2	7,0	7,8	9,5	10,4	10,6	11,9	12,2	12,4	12,1	12,7	12,9	10,2	10,2	10,4	8,9	8,4	8,2	9,0	5,2	12,9
20160109	7,9	7,9	7,7	8,1	8,3	8,0	8,4	8,9	9,7	10,4	12,0	12,7	12,5	13,6	15,9	15,2	14,8	14,3	13,7	13,0	12,0	10,7	9,5	8,7	11,0	7,7	15,9
20160110	8,8	8,6	8,6	8,6	8,3	7,8	7,8	9,1	10,2	11,1	12,1	13,2	14,5	13,6	13,2	12,8	12,4	13,4	13,9	12,6	11,2	9,6	8,9	8,7	10,8	7,8	14,5
20160111	8,1	8,0	8,1	7,9	8,0	8,1	8,4	9,5	10,3	10,6	11,9	12,2	12,0	11,6	11,3	11,0	9,4	8,5	9,8	8,0	7,5	5,1	4,7	4,1	8,9	4,1	12,2
20160112	3,8	3,5	3,2	3,5	3,1	3,3	4,3	5,8	6,8	6,7	7,3	7,2	8,2	8,6	10,2	10,2	9,9	10,3	10,4	9,6	8,7	7,0	5,9	5,3	6,8	3,1	10,4
20160113	4,9	5,1	5,3	4,8	5,0	5,3	5,9	6,9	8,0	8,4	8,4	8,6	10,3	11,2	12,9	14,0	13,2	12,7	11,7	10,7	10,4	9,7	8,3	7,3	8,7	4,8	14,0
20160114	6,6	5,1	3,4	4,0	3,9	4,4	6,0	8,5	10,2	12,3	13,1	14,5	12,5	12,8	12,1	12,0	11,6	12,0	10,9	10,3	9,0	7,7	6,1	4,5	8,9	3,4	14,5
20160115	5,0	4,4	4,0	4,1	4,0	5,5	8,1	9,9	12,1	13,2	13,3	13,3	13,5	13,4	13,9	15,2	14,9	14,4	14,1	13,4	11,4	9,7	8,3	7,4	10,3	4,0	15,2
20160116	7,1	6,5	5,9	5,4	5,0	5,0	8,0	10,1	10,1	11,4	12,2	12,5	13,3	14,0	14,1	14,3	14,0	13,5	2.b	2.b	2.b	2.b	2.b	2.b	10,1	5,0	14,3
20160117	2.b	2.f	2.f	2.f																							
20160118	2.b	16,2	16,3	15,5	13,3	11,7	10,4	9,3	8,9	2.f	2.f	2.f															
20160119	9,3	10,0	10,0	9,7	9,2	9,7	11,2	12,4	13,2	13,8	13,0	14,3	14,6	12,1	12,5	13,1	13,2	12,4	11,8	12,3	10,0	10,2	9,7	8,7	11,5	8,7	14,6
20160120	8,4	7,9	8,0	6,7	6,6	7,2	9,4	12,0	14,4	16,0	16,5	18,0	19,3	19,2	19,4	18,8	19,2	19,2	18,5	17,5	16,0	13,2	11,6	12,0	14,0	6,6	19,4
20160121	12,3	11,4	11,2	10,7	11,4	12,6	13,2	13,9	14,4	13,7	13,8	14,3	14,5	14,8	15,2	15,5	15,3	14,8	15,3	15,2	14,7	13,6	12,1	9,3	13,5	9,3	15,5
20160122	8,7	8,9	8,9	8,4	7,0	7,0	9,1	10,4	12,0	13,1	2.e														2.f	2.f	2.f
MEDIA	8,2	7,8	7,5	7,3	7,1	7,4	8,3	9,6	10,6	11,4	12,0	12,7	13,2	13,4	13,8	13,9	13,8	13,6	13,1	12,3	11,2	9,9	8,9	8,3	10,6		
MÍNIMO	3,8	3,5	3,2	3,5	3,1	3,3	4,3	5,8	6,8	6,7	7,3	7,2	8,2	8,6	10,2	10,2	9,4	8,5	9,8	8,0	7,5	5,1	4,7	4,1		3,1	
MÁXIMO	12,8	12,2	11,2	10,8	11,4	12,6	13,2	13,9	14,4	16,0	16,5	18,0	19,3	19,2	19,4	18,8	19,2	19,2	18,5	17,5	16,1	14,7	13,7	13,4			19,4

HUMEDAD RELATIVA ESTACIÓN EDELMAG, DICIEMBRE 2015

UNIDAD: %

																								_			
	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20151221												2.e	48	45	42	45	50	54	52	56	61	64	68	76	2.f	2.f	2.f
20151222	81	85	88	88	87	88	89	79	74	71	66	62	58	54	44	45	38	44	45	48	58	56	67	76	66	38	89
20151223	80	83	83	87	90	89	81	70	60	55	52	48	46	50	63	45	51	50	53	53	59	64	71	74	65	45	90
20151224	82	83	83	84	82	76	70	70	66	61	58	56	52	52	54	61	70	59	59	73	78	77	79	80	69	52	84
20151225	79	74	77	77	74	71	62	61	56	52	47	45	42	42	49	48	57	61	61	63	63	67	75	81	62	42	81
20151226	82	78	83	80	79	74	66	57	50	53	50	48	47	41	39	38	38	42	42	44	48	60	59	69	57	38	83
20151227	78	78	77	72	73	73	70	67	63	60	62	62	55	50	48	44	42	59	48	46	56	76	84	87	64	42	87
20151228	89	88	89	92	93	91	84	70	62	55	51	53	53	56	52	59	62	57	56	58	66	71	78	76	69	51	93
20151229	71	70	66	66	68	62	60	54	53	53	52	49	45	45	48	50	49	49	48	51	57	62	64	67	57	45	71
20151230	65	65	66	66	75	79	81	75	70	55	51	48	47	48	45	44	45	47	47	49	53	57	62	66	58	44	81
20151231	68	73	75	75	76	79	78	70	72	67	65	62	56	51	56	63	56	54	53	54	56	67	74	76	66	51	79
MEDIA	78	78	79	79	80	78	74	67	63	58	55	53	50	48	49	49	51	52	51	54	60	66	71	75	63		
MÍNIMO	65	65	66	66	68	62	60	54	50	52	47	45	42	41	39	38	38	42	42	44	48	56	59	66		38	
MÁXIMO	89	88	89	92	93	91	89	79	74	71	66	62	58	56	63	63	70	61	61	73	78	77	84	87			93

HUMEDAD RELATIVA ESTACIÓN EDELMAG, ENERO 2016

	Ν	т	\mathbf{r}	Λ	\mathbf{r}		0/
u	14	1	u	м	v	•	~/

															_												
	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20160101	79	85	88	86	87	87	89	80	80	73	74	69	60	61	62	59	58	61	62	61	66	73	78	81	73	58	89
20160102	84	84	89	90	90	94	93	88	91	81	53	41	41	35	28	29	28	31	42	52	65	71	72	75	64	28	94
20160103	73	73	73	75	75	76	68	64	58	60	57	53	48	48	48	48	46	45	47	51	55	64	73	74	60	45	76
20160104	76	78	79	80	83	81	81	83	75	64	51	48	49	41	40	39	42	45	47	46	46	50	53	55	60	39	83
20160105	57	62	68	74	77	77	72	70	71	68	66	61	63	75	76	60	55	42	47	50	53	58	56	54	63	42	77
20160106	55	58	58	65	62	61	62	63	61	59	55	55	57	53	51	52	53	52	48	49	54	58	60	63	57	48	65
20160107	66	68	70	73	76	76	73	66	61	54	50	49	38	30	32	32	35	36	38	40	44	49	52	53	53	30	76
20160108	52	55	53	52	54	53	57	49	49	43	40	41	37	37	38	38	37	39	54	56	55	59	60	60	49	37	60
20160109	60	57	60	55	63	69	72	73	70	70	68	67	71	65	51	49	51	52	54	55	55	53	55	58	61	49	73
20160110	56	55	54	53	55	56	55	51	46	43	40	38	37	41	43	44	44	41	37	40	44	49	53	57	47	37	57
20160111	63	62	63	68	69	72	71	63	60	53	43	41	42	36	33	34	43	45	37	43	42	59	58	58	52	33	72
20160112	56	61	64	58	60	57	53	50	47	49	45	50	42	40	37	38	39	37	36	38	41	48	48	52	48	36	64
20160113	56	57	56	57	56	55	52	49	47	47	47	48	43	41	33	26	27	27	30	40	34	36	41	49	44	26	57
20160114	55	60	63	56	57	58	51	41	40	39	38	37	51	49	54	54	57	54	61	62	69	76	82	86	56	37	86
20160115	87	89	90	90	89	84	74	63	56	52	53	53	55	56	47	42	46	46	48	50	58	66	71	74	64	42	90
20160116	74	78	80	81	82	84	82	74	70	61	55	57	54	51	50	45	49	54	2.b	2.b	2.b	2.b	2.b	2.b	66	45	84
20160117	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.b	2.f	2.f	2.f										
20160118	2.b	2.b	2.b	2.b	2.b	2.b	40	42	49	58	66	72	78	79	2.f	2.f	2.f										
20160119	77	72	70	71	73	71	63	52	51	51	54	50	54	67	62	60	59	63	68	64	76	62	62	66	63	50	77
20160120	67	68	68	74	75	73	67	58	50	43	42	39	35	38	38	37	36	36	36	38	42	49	55	55	51	35	75
20160121	56	60	62	67	71	68	70	69	68	77	76	73	70	66	62	59	61	62	59	60	60	66	78	94	67	56	94
20160122	94	94	93	68	69	66	55	49	41	39	2.e														2.f	2.f	2.f
MEDIA	67	69	70	70	71	71	68	63	60	56	53	51	50	49	47	44	45	46	47	50	54	59	62	65	58		
MÍNIMO	52	55	53	52	54	53	51	41	40	39	38	37	35	30	28	26	27	27	30	38	34	36	41	49		26	
MÁXIMO	94	94	93	90	90	94	93	88	91	81	76	73	71	75	76	60	61	63	68	64	76	76	82	94			94

CAMPAÑA DE MONITOREO DE CALIDAD DEL AIRE Y METEOROLOGÍA, PROYECTO EMPRESA ELÉCTRICA DE MAGALLANES S.A.

Preparado por:

Para:

Enero, 2018

INFORME DE RESULTADOS MCA 126-17

CAMPAÑA DE MONITOREO DE CALIDAD DEL AIRE Y METEOROLOGÍA, PROYECTO EMPRESA ELÉCTRICA DE MAGALLANES S.A.

Preparado para:

	Versión del	Document	o		1
Respo	nsable Elaboración	Resp	onsable Revisión	Respons	able Aprobación
Nombre:	Susan Saldaña	Nombre:	Aníbal Pacheco	Nombre:	Claudio Seguel
Cargo:	Jefe de Área Monitoreo Atmosférico	Cargo:	Gerente Técnico	Cargo:	Gerente General
Fecha:	31-01-2018	Fecha:	31-01-2018	Fecha:	01-02-2018
Firma:		Firma:		Firma:	

Enero, 2018

ÍNDICE DE CONTENIDOS

Resume	en	1
1	Introducción	1
2	Objetivos	2
3	Materiales y Métodos	3
3.1	Descripción del Área de Estudio	3
3.2	Ubicación	3
3.3	Parámetros utilizados para caracterizar el estado y evolución de las variables ambientales	
3.4	Metodología de Muestreo, Medición, Análisis y/o Control	7
3.5	Equipamiento utilizado en el monitoreo	8
3.6	Fecha de Monitoreo	. 10
4	Resultados	. 11
4.1	Material Particulado Fino Respirable MP-2,5	. 11
4.2	Monóxido de Carbono	. 15
4.3	Dióxido de Nitrógeno	. 19
4.4	Meteorología	. 23
4.4.1	Velocidad del Viento	. 24
4.4.2	Dirección del Viento	. 27
4.4.3	Temperatura	. 35
4.4.4	Humedad Relativa	
<u>5</u>	DISCUSIONES	. 41
5.1	Norma Primaria de Calidad de Aire para Material Particulado Fino Respirable MP-2,5.	. 41
5.2	Norma Primaria de Calidad de Aire para Monóxido de Carbono (CO) y Dióxido de	
	Nitrógeno (NO ₂)	
5.3	Meteorología	
6	CONCLUSIONES	<mark>. 46</mark>
7	REFERENCIAS	. 47

ÍNDICE DE FOTOGRAFÍAS

Fotografía N°	1 Estación Edelmag	9
	ÍNDICE DE FIGURAS	
Figura Nº 1 Ub	picación espacial de Estación de Monitoreo, Proyecto Empresa Eléctrica d	e
М	agallanes	4
Figura N° 2 Ro	osa de los Vientos Estación Edelmag, Diciembre 2017	28
	osa de Viento Horario de 00:00 a 11:59, Diciembre 2017	
	osa de Viento Horario de 12:00 a 23:59, Diciembre 2017	
	osa de los Vientos Estación Edelmag, Enero 2018	
	osa de Viento Horario de 00:00 a 11:59, Enero 2018	
rigura in 7 Ro	osa de Viento Horario de 12:00 a 23:59, Enero 2018	34
	ÍNDICE DE TABLAS	
Tabla N° 1	Resumen de Concentración de Gases Monitoreados, Diciembre 2017	
Tabla N° 2	Resumen de Concentración de Gases Monitoreados, Enero 2018	
Tabla Nº 3	Resultados diarios Meteorología, Diciembre 2017	i
Tabla N° 4	Resultados diarios Meteorología, Enero 2018	
Tabla N° 5	Identificación Estaciones de Monitoreo	3
Tabla Nº 6	Normativa nacional aplicable	
Tabla N° 7	Valores normados en la legislación ambiental	
Tabla N° 8	Equipamiento en Estación de Monitoreo	
Tabla N° 9	Promedio Diario de MP-2,5, Diciembre 2017	
Tabla N° 10 Tabla N° 11	Promedio Diario de MP-2,5, Enero 2018	15
Tabla N° 12	Concentración de CO, Enero 2018	
Tabla N° 13	Concentración de NO ₂ , Diciembre 2017	
Tabla N° 14	Concentración de NO ₂ , Enero 2018	21
Tabla N° 15	Resumen de Variables Meteorológicas, Estación Edelmag,	
	Diciembre 2017	23
Tabla Nº 16	Resumen de Variables Meteorológicas, Estación Edelmag, Enero 2018	23
Tabla Nº 17	Dirección del Viento Estación Edelmag, Diciembre 2017	
Tabla Nº 18	Dirección de Viento según Rango de Velocidades Estación Edelmag,	
	Diciembre 2017	
Tabla Nº 19	Dirección del Viento Estación Edelmag, Enero 2018	31
Tabla N° 20	Dirección de Viento según Rango de Velocidades Estación Edelmag,	
	Enero 2018	31
Tabla N° 21	Resumen de concentraciones Material Particulado MP-2,5, Estación	
	Edelmag, periodo diciembre 2015 – enero 2016 y	4.4
Table NO 22	diciembre 2017 – enero 2018	41
Tabla N° 22	Resumen de concentraciones Gases, Estación Edelmag, periodo	4-
Tabla N° 23	diciembre 2015 – enero 2016 y diciembre 2017 – enero 2018	
iabia N° 23	Resultados de Meteorología, Estación Edenniay, Diciembre 2017	43

T-1-1- NO 24	December de December de vientes - Estación Edelessa - Disimples
Tabla N° 24	Resultados de Predominancia de vientos, Estación Edelmag, Diciembre
Tabla N° 25	2017
Tabla N° 26	Resultados de Predominancia de vientos, Estación Edelmag,
14514 14 20	Enero 2018
	ÍNDICE DE GRÁFICOS
Gráfico Nº 1	Concentración de Material Particulado Fino Respirable MP-2,5 Estación
Granco IV I	Edelmag Diciembre 2017
Gráfico Nº 2	Ciclo Diario Material Particulado Fino Respirable MP-2,5 Estación
	Edelmag Diciembre 201712
Gráfico Nº 3	Concentración de Material Particulado Fino Respirable MP-2,5 Estación
•	Edelmag Enero 2018
Gráfico Nº 4	Ciclo Diario Material Particulado Fino Respirable MP-2,5 Estación Edelmag
Cráfico NO E	Enero 2018
Gráfico Nº 5	Diciembre 2017
Gráfico Nº 6	Ciclo Diario Monóxido de Carbono Estación Edelmag Diciembre 2017 16
Gráfico Nº 7	Concentración de Monoxido de Carbono Estación Edelmag Enero 2018 18
Gráfico Nº 8	Ciclo Diario Monóxido de Carbono Estación Edelmag Enero 2018
Gráfico Nº 9	Concentración de Dióxido de Nitrógeno Estación Edelmag,
_	Diciembre 2017
Gráfico Nº 10	Ciclo Diario de Dióxido de Nitrógeno Estación Edelmag, Diciembre 2017. 20
Gráfico N° 11 Gráfico N° 12	Concentración de Dióxido de Nitrógeno Estación Edelmag, Enero 2018 22 Ciclo Diario de Dióxido de Nitrógeno Estación Edelmag, Enero 2018 22
Gráfico N° 13	Velocidad del Viento Estación Edelmag, Diciembre 2017 24
Gráfico N° 14	Ciclo Diario de Velocidad del Viento Estación Edelmag, Diciembre 2017
Gráfico Nº 15	Velocidad del Viento Estación Edelmag, Enero 2018
Gráfico Nº 16	Ciclo Diario de Velocidad del Viento Estación Edelmag, Enero 2018 26
Gráfico Nº 17	Temperatura Estación Edelmag, Diciembre 2017 35
Gráfico Nº 18	Ciclo Diario de Temperatura Estación Edelmag, Diciembre 2017 35
Gráfico Nº 19	Temperatura Estación Edelmag, Enero 2018
Gráfico Nº 20	Ciclo Diario de Temperatura Estación Edelmag, Enero 2018
Gráfico Nº 21	Humedad Relativa Estación Edelmag, Diciembre 2017
	Humedad Relativa Estación Edelmag, Enero 2018
	Ciclo Diario Humedad Relativa Estación Edelmag, Enero 2018
	3 ,
	ÍNDICE DE ANEXOS
ANEXO I	NOMENCLATURA PARA INVALIDACIÓN O PÉRDIDA DE DATOS
	SEGÚN DTO. Nº 6148
ANEXO II	TABLAS DE CONCENTRACIÓN DE MATERIAL PARTICULADO MP-2,5 50
	TABLAS DE GASES ESTACIÓN EDELMAG, DICIEMBRE 2017 -
	ENERO 2018
	TABLAS DE VARIABLES METEOROLÓGICAS, ESTACIÓN EDELMAG
	DICIEMBRE 2017 - ENERO 2018

Resumen

El presente documento corresponde al Informe de Resultados de la "Campaña de Monitoreo de Calidad de Aire y Meteorología, Proyecto Empresa Eléctrica de Magallanes S.A.", el cual informa sobre los resultados obtenidos durante el periodo correspondiente a diciembre 2017 - enero de 2018.

A continuación en la Tabla N° 1 y Tabla N° 2 se presenta un resumen de los resultados registrados de material particulado fino respirable MP-2,5, monóxido de carbono CO y dióxido de nitrógeno NO_2 , durante los meses de diciembre 2017 y enero 2018 respectivamente.

Tabla Nº 1
Resumen de Concentración de Gases Monitoreados, Diciembre 2017

Ct		Concer	News	
Contaminante	Estadístico	Valor	Unidad	Norma
	Promedio del Periodo	7		20ª
MP - 2,5	Percentil 98, promedio diario	25	μg/m³	50ª
	Promedio Mensual	0,1		
	Máximo Promedio Diario	0,2		
СО	Máximo Horario Mensual Percentil 99	0,2	mg/m³N	30 ^b
	Máximo Promedio Móvil 8 Hrs. Mensual	0,2		10 ^b
	Promedio Mensual	12,6		1 <mark>00°</mark>
NO ₂	Máximo Promedio Diario	47,6	μg/m³N	
	Máximo Horario Mensual Percentil 99	149,6		(400°)

-

^a D.S. Nº 12 Norma primaria de calidad ambiental para material particulado fino respirable MP-2,5. Publicada en el Diario Oficial el día 09 de junio 2011.

^b D.S. Nº 115/02 del Ministerio Secretaría General de la Presidencia de la República.

^c D.S. Nº 114/02 del Ministerio Secretaría General de la Presidencia de la República.

Tabla N° 2 Resumen de Concentración de Gases Monitoreados, Enero 2018

Contaminante	Estadístico Co		ntración	N o wee p
Contaminante	Estadistico	Valor	Unidad	Norma
	Promedio del Periodo	3		20 ^d
MP - 2,5	Percentil 98, promedio diario	7	μg/m³	50 ^d
	Promedio Mensual	0,1		
	Máximo Promedio Diario	0,2		
СО	Máximo Horario Mensual Percentil 99	0,2	mg/m³N	30 ^e
	Máximo Promedio Móvil 8 Hrs. Mensual	0,2		10 ^e
	Promedio Mensual	5,1		100 ^f
NO ₂	Máximo Promedio Diario	15,9	μg/m³N	
	Máximo Horario Mensual Percentil 99	40,2		(400 ^f)

La Tabla N° 3 y Tabla N° 4 muestran un resumen de los valores de meteorología durante los meses diciembre 2017 y enero 2018 respectivamente.

Tabla N° 3 Resultados diarios Meteorología, Diciembre 2017

Variable Monitoreada	Media Mensual	Mínima Horaria	Máxima Horaria
Velocidad del Viento (m/s)	5,9	Calma ⁹	13,7
Temperatura (°C)	9,3	4,1	19,3
Humedad Relativa (%)	61	32	91

^d D.S. Nº 12 Norma primaria de calidad ambiental para material particulado fino respirable MP-2,5. Publicada en el Diario Oficial el día 09 de junio 2011.

e D.S. Nº 115/02 del Ministerio Secretaría General de la Presidencia de la República.

f D.S. Nº 114/02 del Ministerio Secretaría General de la Presidencia de la República.

⁹ Corresponde a valores de velocidad inferiores a 0,5 m/s

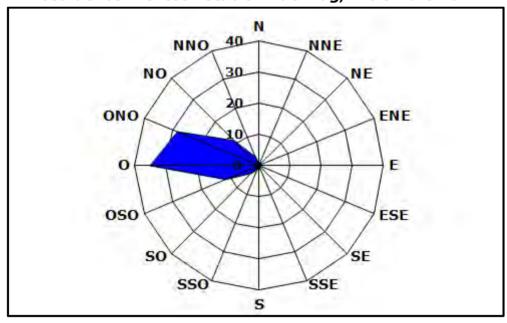
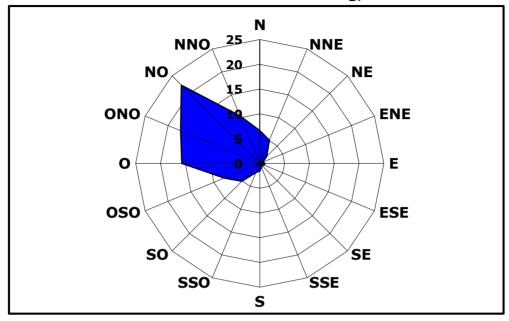


Tabla N° 4 Resultados diarios Meteorología, Enero 2018

Variable Monitoreada	Media Mensual	Mínima Horaria	Máxima Horaria
Velocidad del Viento (m/s)	4,6	0,6	11,7
Temperatura (°C)	12,2	4,3	23,4
Humedad Relativa (%)	63	38	91

Durante el mes de diciembre 2017 en la Estación Edelmag se presentaron vientos provenientes principalmente del oeste (O) y en menor medida del oeste – noroeste (ONO), oeste – suroeste (OSO) y noroeste (NO).

Rosa de los Vientos Estación Edelmag, Diciembre 2017



Durante el mes de enero 2018 en la Estación Edelmag se presentaron vientos provenientes principalmente del noroeste (NO) y en menor medida del oeste - noroeste (ONO), oeste (O) y norte - noroeste (NNO).

Rosa de los Vientos Estación Edelmag, Enero 2018

1 Introducción

El presente documento corresponde al Informe de Resultados de la "Campaña de Monitoreo de Calidad de Aire y Meteorología, Proyecto Empresa Eléctrica de Magallanes S.A.", el cual informa sobre los resultados obtenidos durante el periodo correspondiente a diciembre de 2017 – enero 2018.

A través de este documento se cumple con el compromiso voluntario de Edelmag de monitorear una vez al año o cada 2 años en la etapa de operación del proyecto "Instalación y Operación Turbogenerador Solar Titan 130", aprobado ambientalmente favorable de acuerdo a la RCA N° 144 del año 2007, considerando 7.1.

En el entorno del Proyecto, se instaló el equipamiento requerido para realizar los monitoreos comprometidos, el cual consistió en:

- Analizador de Material Particulado Fino Respirable MP-2,5,
- Analizador de Monóxido de Carbono (CO),
- Analizador de Dióxido de Nitrógeno (NO₂)
- Estación de Meteorología

Cabe señalar que los Analizadores de gases cumplen con las exigencias definidas por la agencia ambiental *USEPA* (*Environmental Protection Agency*) para este tipo de equipos. El equipo cuenta con certificación N° MC090158/01 otorgado por la Empresa Europea de Servicios de Certificación SIRA.

La Estación Edelmag cumple con las exigencias definidas por la Organización Meteorológica Mundial WMO (World Meteorological Organization), para los sensores considerados en las mediciones.

El analizador de MP-2,5, los analizadores de gases y los sensores de meteorología, en adelante Estación Edelmag, se instalaron el día 12 y 13 de enero, comenzando sus operaciones en forma continua el día 14 de Diciembre de 2017.

Algoritmos SpA realiza la instalación, operación e informe de resultados de la estación de monitoreo de calidad del aire.

2 Objetivos

El objetivo del presente informe de seguimiento ambiental es entregar los resultados del monitoreo de calidad del aire realizado por la estación Edelmag en la ciudad de Punta Arenas para el mes de diciembre 2017 y enero 2018.

3 Materiales y Métodos

3.1 Descripción del Área de Estudio

La estación de monitoreo fue instalada en sector considerado representativo de las zonas pobladas más cercanas al Proyecto Empresa Eléctrica de Magallanes, los cuales se encontraban libres de elementos naturales y artificiales que pudieran alterar las concentraciones de gases. La estación se ubicó en la comuna de Punta Arenas.

3.2 Ubicación

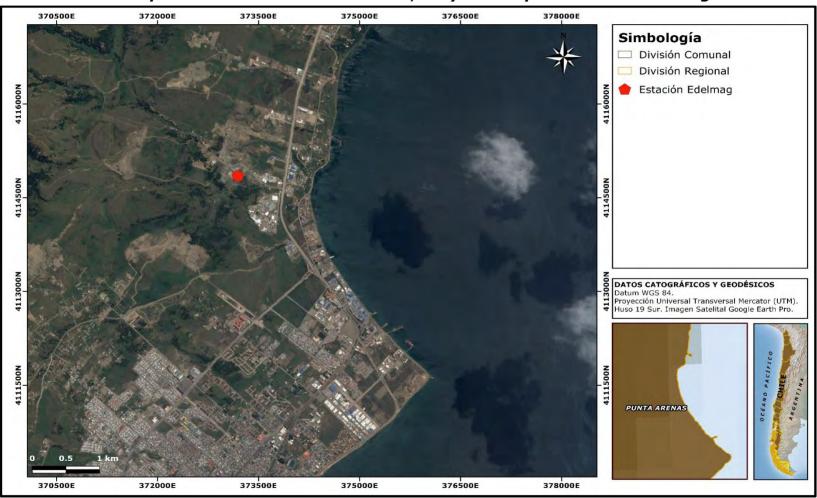
La ubicación de la estación se definió en conjunto entre Algoritmos SpA. y el cliente Empresa Eléctrica Magallanes S.A.

Las coordenadash de la estación Edelmag se indican en la Tabla N° 5:

Tabla N° 5ⁱ Identificación Estaciones de Monitoreo

Punto	Coordenadas UTM (m)		
Punto	Este Nort		
Estación Edelmag	373.192	4.114.847	

A continuación, en la Figura Nº 1 se presenta la ubicación espacial de la estación de monitoreo.


^h Coordenadas utilizando como Datum: WGS84 (Referente Datum). Huso 19 F

ⁱ La estación es de punto fijo.

Figura N° 1 Ubicación espacial de Estación de Monitoreo, Proyecto Empresa Eléctrica de Magallanes

3.3 Parámetros utilizados para caracterizar el estado y evolución de las variables ambientales

Los parámetros aplicables se presentan en la Tabla N° 6, mientras que en la Tabla N° 7 se presenta los valores normados en la legislación nacional.

Tabla N° 6 Normativa nacional aplicable

Parámetro	Tipo Norma	N° Decreto/Año	Organismo	Nombre
Operación Estación		61/2008	Ministerio Salud	Reglamento de Estaciones de Medición de Contaminantes Atmosféricos
MP-2,5	Primaria	12/2011	Ministerio Secretaría General de la República	Establece norma de calidad primaria para material particulado fino respirable MP _{2.5} , en especial de los valores que definen situaciones de emergencia.
NO ₂	Primaria	114/2002	Ministerio Secretaría General de la Presidencia	Establece norma primaria de calidad de aire para dióxido de nitrógeno (NO ₂).
СО	Primaria	115/2002	Ministerio Secretaría General de la Presidencia	Establece norma primaria de calidad de aire para monóxido de carbono (CO).

Tabla N° 7 Valores normados en la legislación ambiental

Parámetro	Tipo Norma	N° Decreto /Año	Valor Norma	Condiciones Superación Norma
MP – 2,5	Primaria	12/2011	50 μg/m³N, como concentración de 24 horas.	 El percentil 98 de las concentraciones de 24 horas registradas durante un periodo anual, sea mayor o igual a 50 (µg/m³N). En un período anual de mediciones, se registrare un número de días con mediciones sobre el valor de 50 µg/m³N mayor que siete (7).
			20 µg/m³N como concentración anual.	 La concentración anual calculada como promedio aritmético de tres años calendario consecutivos, sea mayor o igual que 20 μg/m³N.
NO ₂	Primaria	114/2002	100 µg/m³N, como concentración anual.	• Cuando el promedio tri-anual de las concentraciones anuales sea mayor o igual a 100 µg/m³N.
NO ₂	Primaria 114/2002	400 μg/m ³ N, como concentración horaria.	 Cuando el promedio tri-anual de percentil 99, de los máximos diarios en forma anual, sea mayor o igual a 400 µg/m³N. 	
СО	Primaria	115/2002	10 mg/m ³ N, como concentración de 8 horas.	 Cuando el promedio tri-anual de percentil 99, de los máximos diarios de concentración de 8 horas sea mayor o igual a 10 mg/m³N.
	riiiiaria	115/2002	30 mg/m ³ N, como concentración horaria.	 Cuando el promedio tri-anual de percentil 99, de los máximos diarios de concentración de 1 hora sea mayor o igual a 30 mg/m³N.

El Decreto N°61/2008 rige las condiciones de instalación y funcionamiento de las estaciones de medición de contaminantes atmosféricos, para efectos de que sus mediciones sean consideradas válidas para la autoridad respectiva. Este decreto además establece que en caso de existir datos inválidos o datos perdidos, éstos se deberán informar en una base o planilla diferente a la de los datos válidos, creada para tal efecto, que contenga solamente los códigos de aquellas horas o días en que se produjo la invalidación o pérdida de la información.

3.4 Metodología de Muestreo, Medición, Análisis y/o Control

3.4.1 Material Particulado Fino Respirable MP-2,5 (Atenuación Beta)

Los electrones que emana una fuente de C14 son conocidos como rayos Beta y el proceso en el cual se utilizan para medir se conoce como atenuación de radiación Beta. Cuando la materia se coloca entre la fuente radiactiva y un componente capaz de detectar la radiación beta, los rayos beta son absorbidos y su energía disminuye. Esto implica una disminución de la cantidad de partículas Beta detectadas. La magnitud de la reducción es una función de la masa del material absorbente situado entre la fuente y el detector. El número de partículas beta que pasan por el material absorbente, como el polvo depositado en una cinta de papel, decrece de una manera prácticamente exponencial con la masa a través de la cual debe pasar.

3.4.2 Monóxido de Carbono CO

El monitoreo de monóxido de carbono (CO) utiliza un analizador continuo basado en la Ley de Beer, es decir, define como una longitud de onda es absorbida por las moléculas de un gas en particular a cierta distancia. El analizador es controlado por un microprocesador que determina la concentración del monóxido de carbono, mediante el paso de una muestra de gas a través del instrumento. Éste, necesita que las muestras de gas y los gases de calibración sean suministrados a presión atmosférica, a fin de estabilizar el flujo en la cámara de muestra, lugar donde se mide la capacidad de los gases para absorber radiación infrarroja. Así, el microprocesador utiliza los valores de la calibración, las medidas de absorción de infrarrojos realizadas con la muestra de gas en relación a los datos de las medidas de temperatura y presión de la muestra de gas, para calcular la concentración de CO.

Los datos de los equipos fueron almacenados en un *datalogger* interno, el cual guardó los promedios en una frecuencia de 5 minutos.

3.4.3 Dióxido de Nitrógeno NO₂

El monitoreo de dióxido de nitrógeno (NO₂) utiliza un analizador continuo basado en la detección fotométrica de la quimioluminiscencia que resulta de la reacción de la fase gaseosa del Ozono (O₃) con el óxido de nitrógeno (NO). En esta reacción la intensidad de la luz emitida es proporcional a la concentración de NO presente y es aplicable a la medición directa de este compuesto. Por su parte, la detección de las concentraciones de dióxido de nitrógeno (NO₂) se realiza indirectamente. En la práctica, el NO₂ presente en una muestra de aire primero es reducido a NO utilizando un dispositivo convertidor. Todo el NO presente en la muestra de aire no sufre transformaciones al pasar por el convertidor, por lo

tanto, la concentración resultante obtenida de NO_x es igual a $NO + NO_2$, Una parte de la muestra de aire es también combinada con el ozono sin hacerla pasar por el convertidor, lo cual proporciona la concentración de NO. Esta última medición de NO es restada a la determinación previa de NO_x para definir la medición final de NO_2 .

Los datos de los equipos fueron almacenados en un *datalogger* interno, el cual guardó los promedios en una frecuencia de 5 minutos.

3.4.4 Meteorología

La estación meteorológica fue instalada en un mástil a 10 metros de altura, cumpliendo así con el estándar de la *WMO*. En la estación se instalaron los siguientes sensores:

- Sensor de Velocidad y Dirección del Viento
- Sensor de Temperatura y Humedad Relativa

Los datos de estos sensores, fueron almacenados en un datalogger, el cual guardó los promedios en una frecuencia de cada 15 minutos.

3.5 Equipamiento utilizado en el monitoreo

En la Tabla N° 8 se presentan los equipos utilizados en el monitoreo.

Tabla N° 8 Equipamiento en Estación de Monitoreo

Estación	Equipo	Тіро	Monitoreo
	Met One BAM 1020	MP 2,5	Continuo
	Teledyne T-300	СО	Continuo
	Teledyne T-200	NO ₂	Continuo
Edelmag	Young 5103	Velocidad y Dirección del Viento	Continuo
	Vaisala HMP60	Temperatura y Humedad relativa	Continuo

En la Fotografía Nº 1 se presenta la Estación de monitoreo Edelmag.

3.6 Fecha de Monitoreo

El periodo de monitoreo corresponde a un mes calendario completo, específicamente para el presente informe desde el día 14 de diciembre 2017 hasta el día 19 de enero 2018. Es importante mencionar que los equipos de monitoreo cumplen con el horario GMT-4 establecido en el DTO N° 61/2008.

4 Resultados

4.1 Material Particulado Fino Respirable MP-2,5

La Tabla N° 9 muestra el promedio diario de los valores de MP-2,5 registrados durante el mes de diciembre 2017.

Tabla N° 9 Promedio Diario de MP-2,5, Diciembre 2017

Fecha de Monitoreo	Concentración de 24 hrs (µg/m³)
14-12-2017	1
15-12-2017	4
16-12-2017	4
17-12-2017	10
18-12-2017	7
19-12-2017	25
20-12-2017	7
21-12-2017	5
22-12-2017	4
23-12-2017	8
24-12-2017	4
25-12-2017	10
26-12-2017	7
27-12-2017	14
28-12-2017	6
29-12-2017	8
30-12-2017	4
31-12-2017	4

Los resultados obtenidos durante Diciembre de 2017 son presentados en el Gráfico Nº 1, en donde se muestra el promedio diario de los valores de concentración de Material Particulado Fino Respirable MP-2,5.

El Gráfico Nº 2 muestra el ciclo diario de los valores de concentración de este contaminante.

Gráfico Nº 1 Concentración de Material Particulado Fino Respirable MP-2,5 Estación Edelmag Diciembre 2017

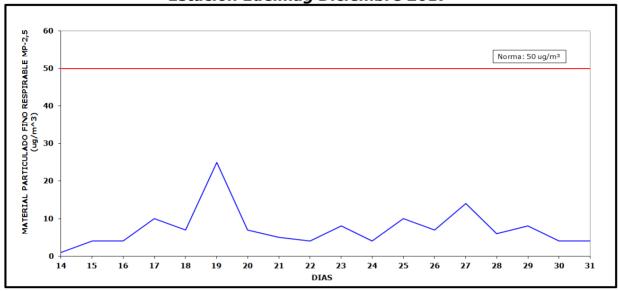
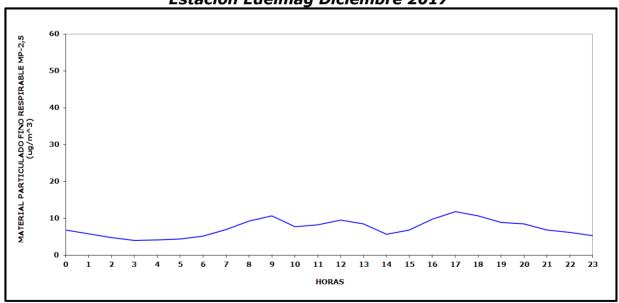



Gráfico Nº 2 Ciclo Diario Material Particulado Fino Respirable MP-2,5 Estación Edelmag Diciembre 2017

La Tabla N° 10 muestra el promedio diario de los valores de MP-2,5 registrados durante el mes de enero 2018.

Tabla N° 10 Promedio Diario de MP-2,5, Enero 2018

	e iii z/5/ ziieio zoi	
Fecha de Monitoreo	Concentración de 24 hrs (µg/m³)	
01-01-2018	3	
02-01-2018	5	
03-01-2018	2	
04-01-2018	2	
05-01-2018	3	
06-01-2018	2	
07-01-2018	2	
08-01-2018	2	
09-01-2018	2	
10-01-2018	7	
11-01-2018	3	
12-01-2018	3	
13-01-2018	2	
14-01-2018	2	
15-01-2018	3	
16-01-2018	2	
17-01-2018	3	
18-01-2018	2	
19-01-2018	2	

Los resultados obtenidos durante enero 2018 son presentados en el Gráfico Nº 3 en donde se muestra el promedio diario de los valores de concentración de Material Particulado Fino Respirable MP-2,5.

El Gráfico Nº 4 muestra el ciclo diario de los valores de concentración de este contaminante.

Gráfico Nº 3 Concentración de Material Particulado Fino Respirable MP-2,5 Estación Edelmag Enero 2018

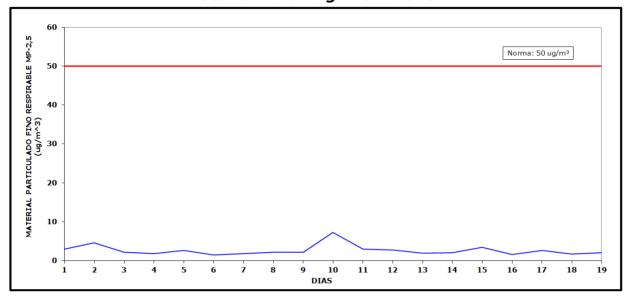
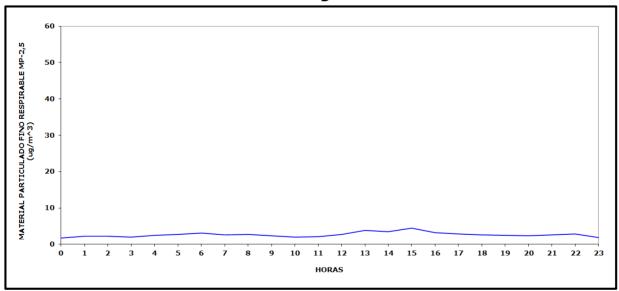



Gráfico Nº 4 Ciclo Diario Material Particulado Fino Respirable MP-2,5 Estación Edelmag Enero 2018

4.2 Monóxido de Carbono

La Tabla Nº 11 muestra el promedio, el máximo horario y el valor máximo promedio móvil de 8 horas diarios de los valores de concentración de monóxido de carbono registrados en diciembre 2017.

Tabla N° 11 Concentración de CO, Diciembre 2017

Fecha de Monitoreo	Concentración de 24 hrs (mg/m³N)	Máximo Horario (mg/m³N)	Máximo Promedio Móvil 8hrs (mg/m³N)
14-12-2017	0,1	0,1	0,1
15-12-2017	0,1	0,2	0,1
16-12-2017	0,1	0,1	0,1
17-12-2017	0,1	0,1	0,1
18-12-2017	0,1	0,1	0,1
19-12-2017	0,2	0,2	0,2
20-12-2017	0,1	0,2	0,2
21-12-2017	0,1	0,2	0,1
22-12-2017	0,0	0,1	0,1
23-12-2017	0,0	0,1	0,0
24-12-2017	0,1	0,1	0,1
25-12-2017	0,1	0,1	0,1
26-12-2017	0,1	0,1	0,1
27-12-2017	0,1	0,2	0,1
28-12-2017	0,1	0,2	0,2
29-12-2017	0,1	0,1	0,1
30-12-2017	0,1	0,2	0,1
31-12-2017	0,1	0,2	0,2

El Gráfico N° 5 muestra el promedio, el máximo horario y el valor máximo promedio móvil cada 8 hrs. diarios de los valores de concentración de monóxido de carbono registrados durante el mes de diciembre 2017. Por otra parte el Gráfico N° 6 muestra el ciclo diario de los valores de concentración de monóxido de carbono registrado, correspondiente a la estación Edelmag.

Gráfico Nº 5 Concentración de Monoxido de Carbono Estación Edelmag Diciembre 2017

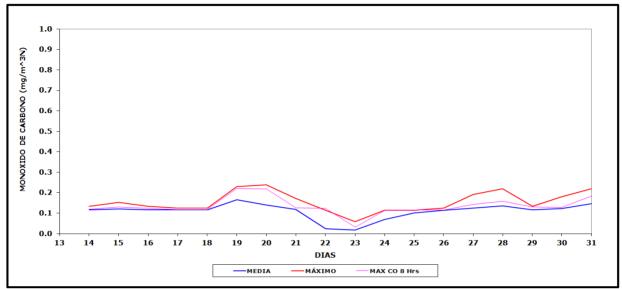
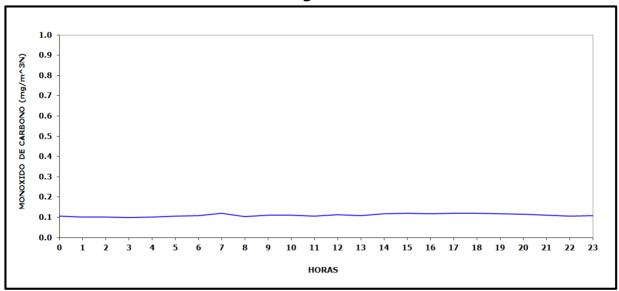



Gráfico Nº 6 Ciclo Diario Monóxido de Carbono Estación Edelmag Diciembre 2017

La Tabla Nº 12 muestra el promedio, el máximo horario y el valor máximo promedio móvil de 8 horas diarios de los valores de concentración de monóxido de carbono registrados en enero 2018.

Tabla Nº 12 Concentración de CO, Enero 2018

Fecha de Monitoreo	Concentración de 24 hrs (mg/m³N)	Máximo Horario (mg/m³N)	Máximo Promedio Móvil 8hrs (mg/m³N)
01-01-2018	0,1	0,1	0,1
02-01-2018	0,1	0,1	0,1
03-01-2018	0,1	0,1	0,1
04-01-2018	0,1	0,1	0,1
05-01-2018	0,1	0,1	0,1
06-01-2018	0,0	0,0	0,0
07-01-2018	0,1	0,1	0,1
08-01-2018	0,1	0,2	0,1
09-01-2018	0,1	0,1	0,1
10-01-2018	0,1	0,2	0,1
11-01-2018	0,1	0,2	0,1
12-01-2018	0,1	0,1	0,1
13-01-2018	0,1	0,1	0,1
14-01-2018	0,1	0,1	0,1
15-01-2018	0,1	0,1	0,1
16-01-2018	0,1	0,1	0,1
17-01-2018	0,1	0,1	0,1
18-01-2018	0,1	0,2	0,1
19-01-2018	0,2	0,3	0,2

El Gráfico Nº 7 muestra el promedio, el máximo horario y el valor máximo promedio móvil cada 8 hrs. diarios de los valores de concentración de monóxido de carbono registrados durante el mes de Enero 2018. Por otra parte el Gráfico Nº 8 muestra el ciclo diario de los valores de concentración de monóxido de carbono registrado, correspondiente a la estación Edelmag.

Gráfico Nº 7 Concentración de Monoxido de Carbono Estación Edelmag Enero 2018

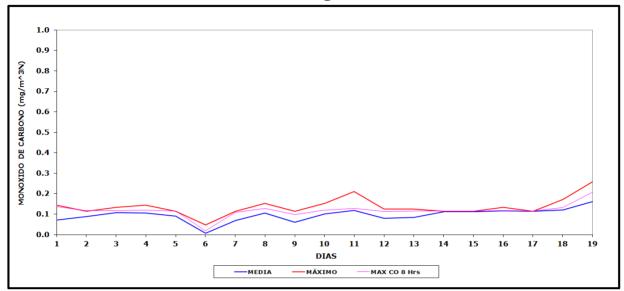
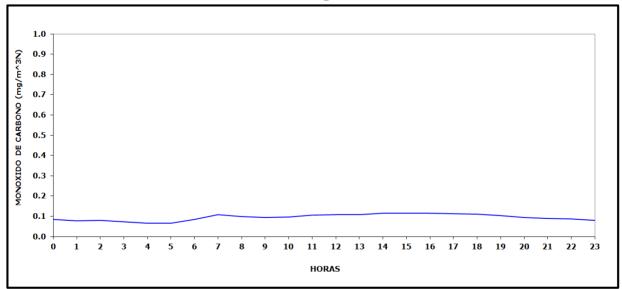



Gráfico Nº 8 Ciclo Diario Monóxido de Carbono Estación Edelmag Enero 2018

4.3 Dióxido de Nitrógeno

La Tabla Nº 13 muestra el valor promedio y máximo horario diario de los valores de concentración de dióxido de nitrógeno registrados en diciembre 2017.

Tabla N° 13 Concentración de NO₂, Diciembre 2017

Fecha de Monitoreo	Concentración de 24 hrs (µg/m³N)	Máximo Horario (μg/m³N)
14-12-2017	10,7	80,7
15-12-2017	3,1	21,3
16-12-2017	47,6	149,6
17-12-2017	1,7	8,2
18-12-2017	17,6	74,0
19-12-2017	3,2	8,9
20-12-2017	4,8	30,3
21-12-2017	1,4	4,7
22-12-2017	27,0	116,5
23-12-2017	2,9	14,3
24-12-2017	36,7	183,2
25-12-2017	16,4	44,6
26-12-2017	11,7	76,0
27-12-2017	2,1	16,9
28-12-2017	5,3	71,2
29-12-2017	2,8	24,5
30-12-2017	17,5	90,7
31-12-2017	14,8	96,8

El Gráfico Nº 9 muestra el promedio y el máximo horario de los valores de concentración de dióxido de nitrógeno, registrados durante el mes de Diciembre 2017, correspondiente a la estación Edelmag.

El Gráfico Nº 10 muestra el ciclo diario de los valores de concentración de este contaminante para dicha estación.

Gráfico Nº 9 Concentración de Dióxido de Nitrógeno Estación Edelmag, Diciembre 2017

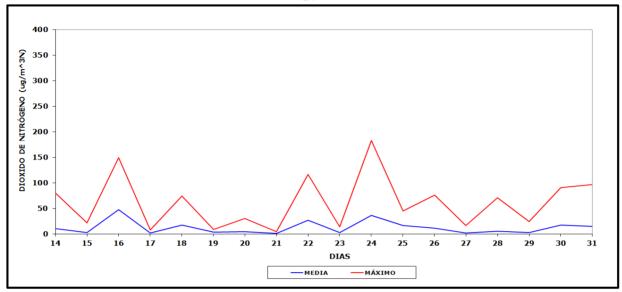
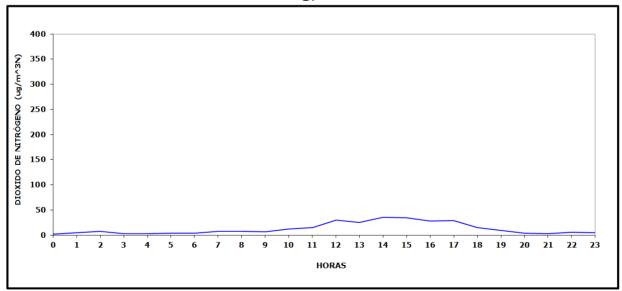



Gráfico Nº 10 Ciclo Diario de Dióxido de Nitrógeno Estación Edelmag, Diciembre 2017

La Tabla Nº 14 muestra el valor promedio y máximo horario diario de los valores de concentración de dióxido de nitrógeno registrados en enero 2018.

Tabla Nº 14 Concentración de NO₂, Enero 2018

Fecha de Monitoreo	Concentración de 24 hrs (µg/m³N)	Máximo Horario (μg/m³N)
01-01-2018	2,7	7,4
02-01-2018	3,1	8,0
03-01-2018	4,0	9,7
04-01-2018	2,2	8,9
05-01-2018	10,1	27,7
06-01-2018	1,4	8,0
07-01-2018	2,2	7,1
08-01-2018	3,5	13,8
09-01-2018	0,8	6,5
10-01-2018	0,6	3,4
11-01-2018	3,4	19,0
12-01-2018	7,6	27,5
13-01-2018	8,7	40,2
14-01-2018	12,5	34,3
15-01-2018	3,0	21,5
16-01-2018	9,1	30,6
17-01-2018	2,6	10,1
18-01-2019	15,9	57,2
19-01-2019	2,9	9,2

El Gráfico Nº 11 muestra el promedio y el máximo horario de los valores de concentración de dióxido de nitrógeno, registrados durante el mes de enero 2018, correspondiente a la estación Edelmag.

El Gráfico Nº 12 muestra el ciclo diario de los valores de concentración de este contaminante para dicha estación.

Gráfico Nº 11 Concentración de Dióxido de Nitrógeno Estación Edelmag, Enero 2018

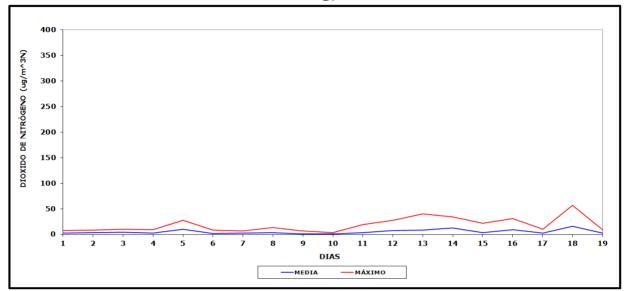
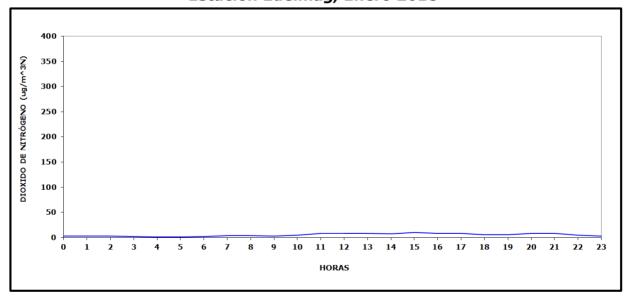



Gráfico Nº 12 Ciclo Diario de Dióxido de Nitrógeno Estación Edelmag, Enero 2018

4.4 Meteorología

La Tabla Nº 15 y Tabla Nº 16 muestran el promedio, el valor máximo y minimo de las variables meteorológicas; Velocidad del Viento, Temperatura, Humedad Relativa, calculados en base a los valores registrados durante diciembre 2017 enero 2018 en la estación Edelmag.

Tabla Nº 15 Resumen de Variables Meteorológicas, Estación Edelmag, Diciembre 2017

Variable	Media Mensual	Mínima Horaria	Máxima Horaria
Velocidad del Viento (m/s)	5,9	Calma ^j	13,7
Temperatura (°C)	9,3	4,1	19,3
Humedad Relativa (%)	61	32	91

Tabla Nº 16 Resumen de Variables Meteorológicas, Estación Edelmag, **Enero 2018**

Variable	Media Mensual	Mínima Horaria	Máxima Horaria
Velocidad del Viento (m/s)	4,6	0,6	11,7
Temperatura (°C)	12,2	4,3	23,4
Humedad Relativa (%)	63	38	91

^j Corresponde a valores de velocidad inferiores a 0,5 m/s

4.4.1 Velocidad del Viento

La velocidad del viento registrada en la estación Edelmag durante el mes de diciembre 2017 se presenta en el Gráfico N° 13, en el cual se muestra el promedio diario, así como el valor mínimo y máximo horario de cada día.

Gráfico Nº 13 Velocidad del Viento Estación Edelmag, Diciembre 2017

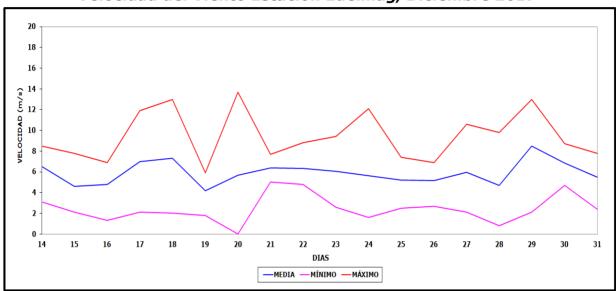
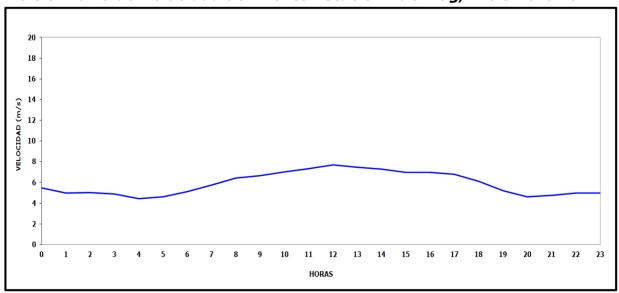



Gráfico Nº 14
Ciclo Diario de Velocidad del Viento Estación Edelmag, Diciembre 2017

En el Gráfico Nº 14 se observa el ciclo de la velocidad del viento durante el día, en el cual la menor velocidad se presenta a las 05:00 hrs., instante a partir del cual la velocidad del viento comienza a aumentar hasta las 15:00 hrs., luego la velocidad comienza a descender.

La velocidad del viento registrada en la estación Edelmag durante el mes de enero 2018 se presenta en el Gráfico N° 15, en el cual se muestra el promedio diario, así como el valor mínimo y máximo horario de cada día.

Gráfico Nº 15 Velocidad del Viento Estación Edelmag, Enero 2018

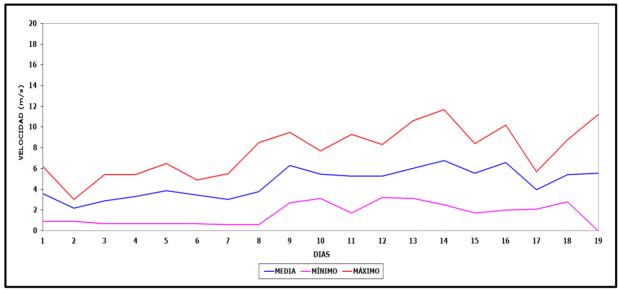
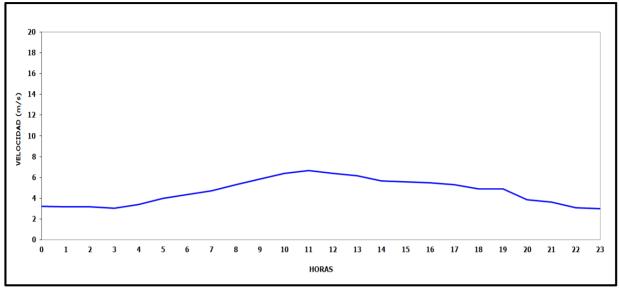



Gráfico Nº 16 Ciclo Diario de Velocidad del Viento Estación Edelmag, Enero 2018

En el Gráfico Nº 16 se observa el ciclo de la velocidad del viento durante el día, en el cual la menor velocidad se presenta a las 23:00 hrs, instante a partir del cual la velocidad del viento comienza a aumentar hasta las 11:00 hrs, luego la velocidad comienza a descender.

4.4.2 Dirección del Viento

Durante el mes de diciembre 2017 la estación Edelmag, presenta vientos provenientes principalmente del oeste (O) y en menor medida del oeste – noroeste (ONO), oeste – suroeste (OSO) y noroeste (NO).

El detalle de la ocurrencia de vientos provenientes de cada dirección se presenta en la Tabla N° 17, mientras que en la Tabla N° 18 se presentan las direcciones de los vientos según el rango de velocidades, los cuales fueron definidos en base al mayor valor horario de velocidad del viento registrado en la estación Edelmag.

La rosa de viento de diciembre 2017 se presenta en la Figura N° 2. Seguidamente, en la Figura N° 3 y Figura N° 4 se presentan las rosas de viento según período del día para la estación Edelmag.

Tabla N° 17 Dirección del Viento Estación Edelmag, Diciembre 2017

Dirección del viento	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSO	so	oso	0	ONO	NO	NNO
% Ocurrencia	0,2	1,1	0,9	0,4	0,7	0,2	0,0	0,4	1,5	1,3	3,5	11,6	35,1	28,5	11,4	3,1

Tabla Nº 18 Dirección de Viento según Rango de Velocidades Estación Edelmag, Diciembre 2017

Dirección		V	elocidad (m/s	5)	
del Viento	0,5 - 1	1 - 2	2 - 3	3 – 4	> 4
N	0,0	0,0	0,0	0,2	0,0
NNE	0,0	0,0	0,0	0,0	1,1
NE	0,0	0,0	0,2	0,4	0,2
ENE	0,0	0,0	0,0	0,4	0,0
E	0,2	0,2	0,0	0,0	0,2
ESE	0,0	0,0	0,0	0,2	0,0
SE	0,0	0,0	0,0	0,0	0,0
SSE	0,0	0,0	0,0	0,4	0,0
S	0,2	0,2	0,9	0,2	0,0
SSO	0,0	0,2	0,7	0,4	0,0
SO	0,0	0,0	1,3	0,7	1,5
OSO	0,2	0,9	1,1	1,3	8,1
0	0,2	0,2	0,7	2,0	32,0
ONO	0,0	0,4	0,9	2,0	25,2
NO	0,0	0,0	1,1	2,0	8,3
NNO	0,0	0,0	0,0	0,9	2,2
TOTAL (%)	0,9	2,2	6,8	11,2	78,9

Figura N° 2 Rosa de los Vientos Estación Edelmag, Diciembre 2017

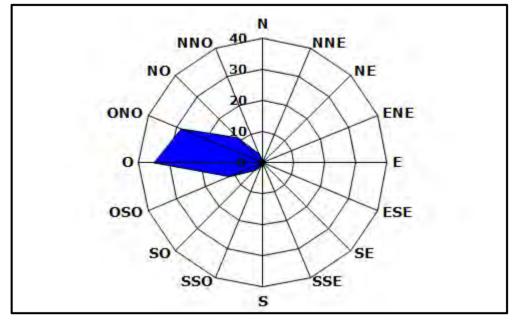


Figura N° 3 Rosa de Viento Horario de 00:00 a 11:59, Diciembre 2017

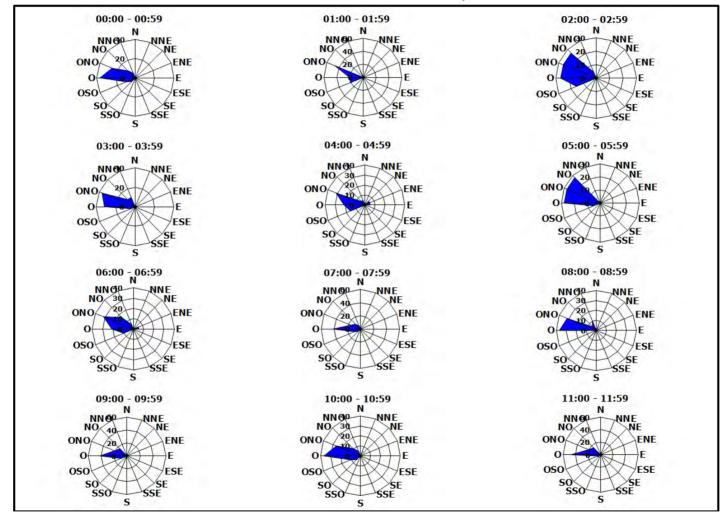
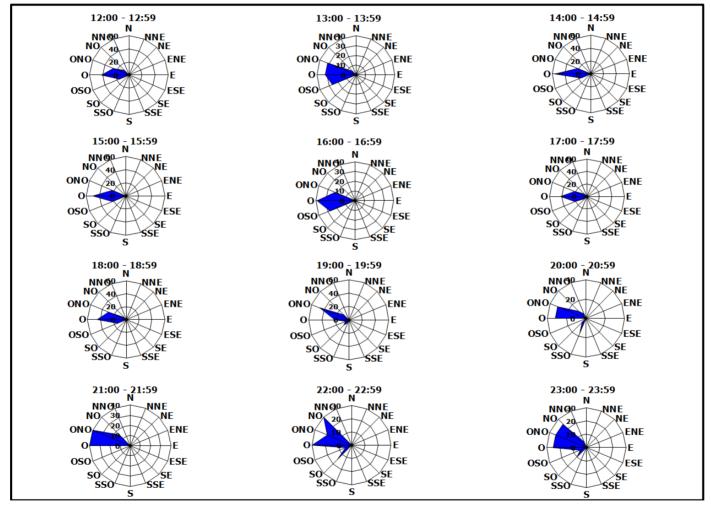



Figura N° 4 Rosa de Viento Horario de 12:00 a 23:59, Diciembre 2017

Durante el mes de enero 2018 la estación Edelmag, presenta vientos provenientes principalmente del noroeste (NO) y en menor medida del oeste - noroeste (ONO), oeste (O) y norte - noroeste (NNO).

El detalle de la ocurrencia de vientos provenientes de cada dirección se presenta en la Tabla N° 19, mientras que en la Tabla N° 20 se presentan las direcciones de los vientos según el rango de velocidades, los cuales fueron definidos en base al mayor valor horario de velocidad del viento registrado en la estación Edelmag.

La rosa de viento de enero 2018 se presenta en la Figura N° 5. Seguidamente, en la Figura N° 6 y Figura N° 7se presentan las rosas de viento según período del día para la estación Edelmag.

Tabla N° 19 Dirección del Viento Estación Edelmag, Enero 2018

Dirección del viento	N	NNE	NE	ENE	E	ESE	SE	SSE	S	sso	so	oso	0	ONO	NO	NNO
% Ocurrencia	6,6	5,1	2,0	0,7	1,1	0,9	0,7	0,9	1,5	2,0	5,1	7,7	15,7	17,3	22,3	10,4

Tabla N° 20 Dirección de Viento según Rango de Velocidades Estación Edelmag, Enero 2018

Dirección		V	elocidad (m/s	;)	
del Viento	0,5 - 1	1 – 2	2 – 3	3 – 4	> 4
N	0,2	0,7	0,9	1,3	3,5
NNE	0,2	0,7	0,9	2,0	1,3
NE	0,0	0,0	0,4	1,3	0,2
ENE	0,0	0,0	0,4	0,2	0,0
E	0,2	0,0	0,9	0,0	0,0
ESE	0,0	0,4	0,4	0,0	0,0
SE	0,2	0,2	0,2	0,0	0,0
SSE	0,0	0,9	0,0	0,0	0,0
S	0,2	0,0	0,9	0,2	0,2
SSO	0,2	0,9	0,7	0,2	0,0
SO	0,4	1,5	0,7	0,2	2,2
OSO	0,9	0,7	1,3	2,0	2,9
0	0,0	0,4	0,9	1,5	12,8
ONO	0,2	0,4	1,3	2,7	12,6
NO	0,2	0,7	1,8	3,1	16,6
NNO	0,0	0,7	1,5	2,0	6,2
TOTAL (%)	3,1	8,2	13,3	16,8	58,6

Figura Nº 5 Rosa de los Vientos Estación Edelmag, Enero 2018

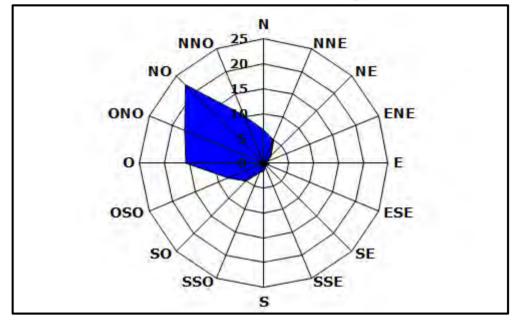


Figura N° 6 Rosa de Viento Horario de 00:00 a 11:59, Enero 2018

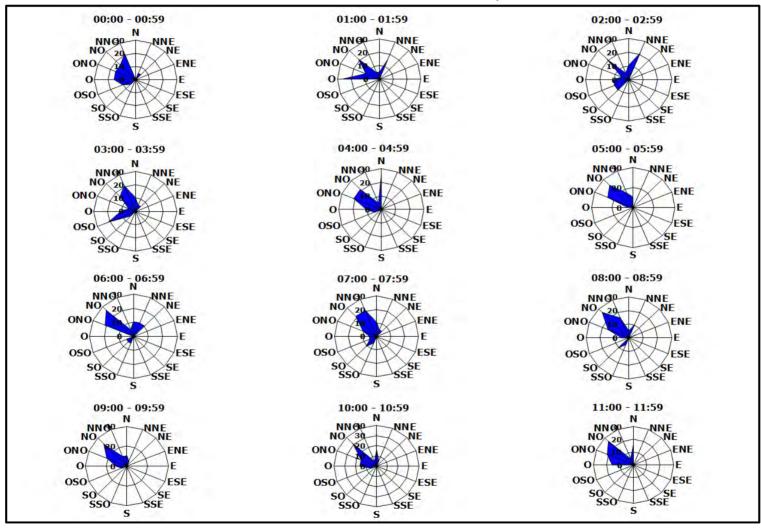
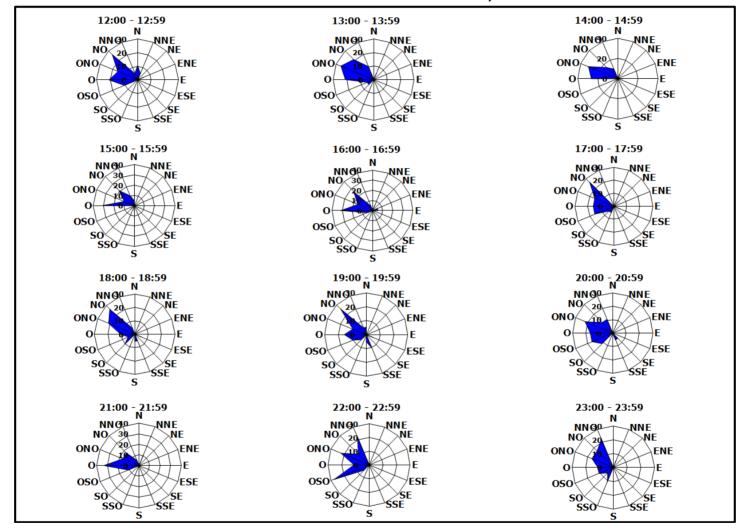



Figura N° 7 Rosa de Viento Horario de 12:00 a 23:59, Enero 2018

4.4.3 Temperatura

El comportamiento de la Temperatura registrada en la estación Edelmag durante el mes de diciembre 2017 se presenta en el Gráfico N° 1 en donde se muestra el promedio diario, así como el valor mínimo y máximo horario de cada día.

Gráfico Nº 17 Temperatura Estación Edelmag, Diciembre 2017

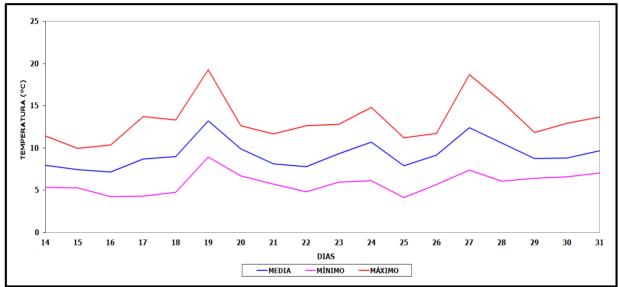
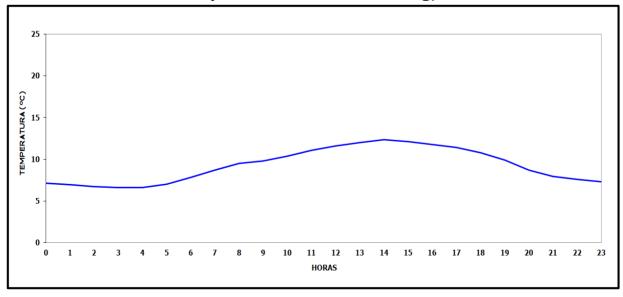



Gráfico Nº 18
Ciclo Diario de Temperatura Estación Edelmag, Diciembre 2017

En el Gráfico Nº 18, se observa el comportamiento típico del ciclo de la temperatura durante el día, donde la hora de menor temperatura se presenta entre las 03:00 y 04:00 hrs., instante en el cual la temperatura comienza a aumentar producto de la creciente insolación hasta las 14:00 hrs., luego la temperatura comienza a descender.

El comportamiento de la Temperatura registrada en la estación Edelmag durante el mes de enero 2018 se presenta en el Gráfico Nº 19 en donde se muestra el promedio diario, así como el valor mínimo y máximo horario de cada día.

Gráfico Nº 19 Temperatura Estación Edelmag, Enero 2018

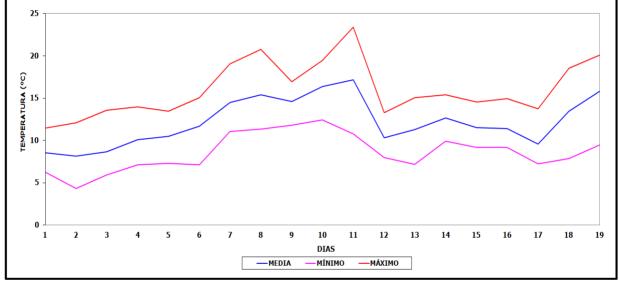
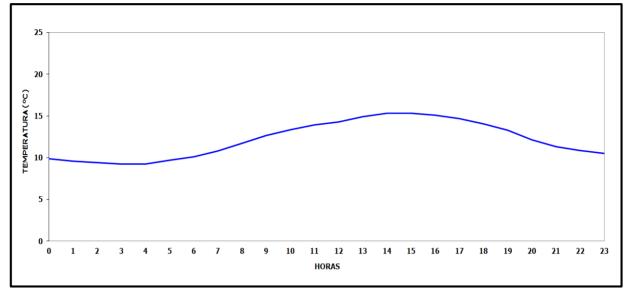



Gráfico Nº 20 Ciclo Diario de Temperatura Estación Edelmag, Enero 2018

En el Gráfico N° 20, se observa el comportamiento típico del ciclo de la temperatura durante el día, donde la hora de menor temperatura se presenta entre las 03:00 y 04:00 hrs., instante en el cual la temperatura comienza a aumentar producto de la creciente insolación hasta las 15:00 hrs., luego la temperatura comienza a descender.

4.4.4 Humedad Relativa

El comportamiento de la Humedad Relativa registrada en la estación Edelmag se presenta en el Gráfico N° 21 en donde se muestra el promedio diario, el valor mínimo y máximo horario de cada día. El Gráfico N° 22 muestra el comportamiento horario de la Humedad Relativa.

Gráfico Nº 21 Humedad Relativa Estación Edelmag, Diciembre 2017

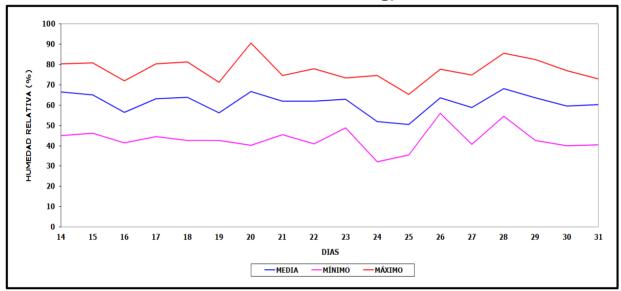
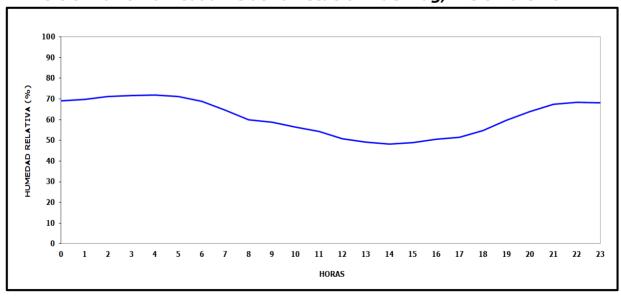



Gráfico Nº 22 Ciclo Diario Humedad Relativa Estación Edelmag, Diciembre 2017

Según se observa en el gráfico anterior, la Humedad Relativa del aire también describe su ciclo característico durante el día, el cual se caracteriza por dibujar una curva inversa a la curva de la Temperatura, con mayor humedad durante las horas de la noche, mientras que durante el día la humedad va disminuyendo a medida que aumenta la Temperatura.

El comportamiento de la Humedad Relativa registrada en la estación Edelmag se presenta en el Gráfico N° 23 en donde se muestra el promedio diario, el valor mínimo y máximo horario de cada día. El Gráfico N° 24 muestra el comportamiento horario de la Humedad Relativa.

Gráfico Nº 23 Humedad Relativa Estación Edelmag, Enero 2018

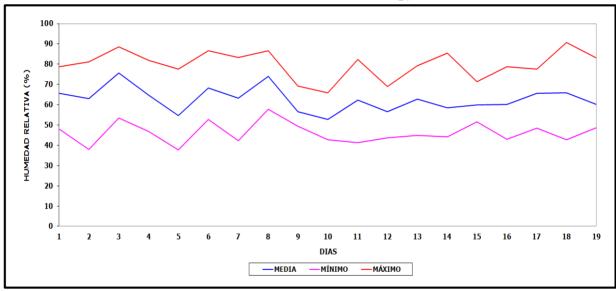
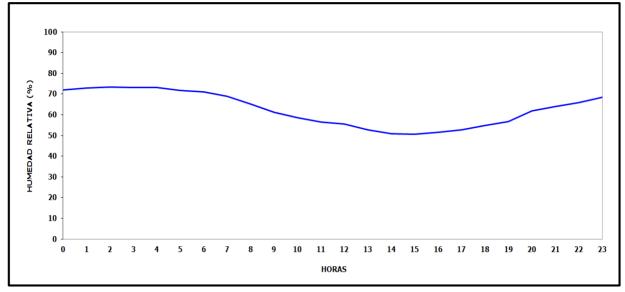



Gráfico Nº 24 Ciclo Diario Humedad Relativa Estación Edelmag, Enero 2018

Según se observa en el gráfico anterior, la Humedad Relativa del aire también describe su ciclo característico durante el día, el cual se caracteriza por dibujar una curva inversa a la curva de la Temperatura, con mayor humedad durante las horas de la noche, mientras que durante el día la humedad va disminuyendo a medida que aumenta la Temperatura.

Las Tablas de las variables meteorológicas se muestran en el ANEXO IV de este documento.

41/84

5 DISCUSIONES

5.1 Norma Primaria de Calidad de Aire para Material Particulado Fino Respirable MP-2,5.

La Tabla N° 21 muestra un resumen de las concentraciones de MP-2,5 registradas durante la campaña de monitoreo del periodo diciembre 2015 – enero 2016 y el periodo diciembre 2017 – enero 2018, comparado con la norma respectiva.

Tabla N° 21
Resumen de concentraciones Material Particulado MP-2,5,
Estación Edelmag, periodo diciembre 2015 – enero 2016 y
diciembre 2017 – enero 2018

		Conce				
Contaminante	Estadístico	Diciembre 2015	Enero 2016	Diciembre 2017	Enero 2018	Norma
	Promedio Mensual	7	7	7	3	20 ^k
MP-2,5	Percentil 98, promedio diario	9	12	25	7	50

Como se observa en la Tabla N° 21 el promedio mensual de material particulado fino respirable MP-2,5 de mayor concentración se presentó en los meses de diciembre 2015, enero 2016 y diciembre 2017 con un valor de $7 \mu g/m^3$, este valor es inferior al límite establecido por el Dto. N° 12 (20 $\mu g/m^3$). La comparación que se realiza es referencial debido a que la norma exige un promedio de concentración anual y de tres años sucesivos.

El valor del percentil 98 de los promedios diarios de material particulado fino respirable MP-2,5 de mayor concentración se presentó en el mes de diciembre 2017 con un valor de 25 μ g/m³, este valor es inferior en un 50% del límite establecido por el Dto. N° 12 (50 μ g/m³). La comparación que se realiza es referencial debido a que la norma exige un valor de percentil 98 de los promedios diarios registrados durante un año de monitoreo.

-

^k D.S. Nº 12 Norma primaria de calidad ambiental para material particulado fino respirable MP-2,5. Publicada en el Diario Oficial el día 09 de junio 2011.

5.2 Norma Primaria de Calidad de Aire para Monóxido de Carbono (CO) y Dióxido de Nitrógeno (NO₂)

La Tabla N° 22 muestra un resumen de las concentraciones de los gases CO y NO_2 registradas durante la campaña de monitoreo del periodo diciembre 2015 – enero 2016 y el periodo diciembre 2017 – enero 2018, comparado con la norma respectiva.

Tabla N° 22
Resumen de concentraciones Gases, Estación Edelmag, periodo diciembre 2015 – enero 2016 y diciembre 2017 – enero 2018

Contaminante	Estadístico	Diciembre 2015	Enero 2016	Diciembre 2017	Enero 2018	Norma
	Promedio Mensual	0,2	0,2	0,1	0,1	
co	Máximo Promedio Diario	0,3	0,3	0,2	0,2	
(mg/m³N)	Máximo horario Mensual Percentil 99	0,3	0,5	0,2	0,2	<mark>301</mark>
	Máximo Promedio Móvil 8 Hrs. Mensual	0,4	0,4	0,2	0,2	(10)
	Promedio Mensual	2,5	5,4	12,6	5,1	(100 ^m)
<mark>NO2</mark> (μg/m³N)	Máximo Promedio Diario	4,9	14,2	47,6	15,9	
(F3/ 11)	Máximo horario Mensual Percentil 99	10,0	45,9	(149,6)	40,2	400

Como se observa en la Tabla N° 22 los valores registrados para el monóxido de carbono (CO) no sobrepasan los valores límites establecidos por el Dto. N° 115. Al respecto, el máximo horario percentil 99 de mayor concentración se registró en enero 2016 con un valor de 0,5 mg/m³N, inferior en un 98,3% del valor límite permisible (30 mg/m³N). Así mismo, el valor máximo del promedio móvil de 8 horas de mayor concentración se registró en diciembre 2015 y enero 2016 con un valor de 0,4 mg/m³N, siendo inferior en un 96,0% del valor límite permisible (10 mg/m³N). Ambos valores límites permisibles son establecidos por el D.S. N° 115/02, del Ministerio Secretaría General de la Presidencia. Es importante señalar que comparación con norma es referencial debido a que la exigencia es para un periodo de 3 años sucesivos.

Informe de Resultados MCA126-17, Campaña de Monitoreo de Calidad del Aire y Meteorología Proyecto Empresa Eléctrica Magallanes S.A. Versión 1

¹ D.S. Nº 115/02 del Ministerio Secretaría General de la Presidencia de la República.

 $^{^{}m m}$ D.S. Nº 114/02 del Ministerio Secretaría General de la Presidencia de la República.

En relación al dióxido de nitrógeno (NO₂) el promedio mensual de mayor concentración se presentó en el mes de diciembre 2017 con un valor de 12,6 μg/m³N, siendo inferior en un 87,4% del valor límite permisible (100 μg/m³N). Así mismo el máximo horario mensual percentil 99 de mayor concentración se presentó en diciembre 2017 con un valor de 149,6 μg/m³N, siendo inferior en un 62,6% del límite permisible (400 μg/m³N). Ambos valores límites permisibles son establecidos por el D.S. N° 114/02, del Ministerio Secretaría General de la Presidencia. Es importante señalar que comparación con norma es referencial debido a que la exigencia es para un periodo de 3 años sucesivos.

5.3 Meteorología

La Tabla N° 23 y Tabla N° 24 presentan los resultados de meteorología y predominancia de vientos para el mes de diciembre 2017.

Tabla N° 23 Resultados de Meteorología, Estación Edelmag, Diciembre 2017

Variable I	Meteorológica	Valor	Fecha registrada
Velocidad	Promedio Mensual	5,9	N/A
del Viento	Mínimo Mensual	Calma ⁿ	N/A
(m/s)	Máximo Mensual	13,7	20 diciembre 2017 a las 10:00 hrs.
	Promedio Mensual	9,3	N/A
Temperatura (°C)	Mínimo Mensual	4,1	25 diciembre 2017 a las 04:00 hrs.
	Máximo Mensual	19,3	19 diciembre 2017 a las 18:00 hrs
	Promedio Mensual	61	N/A
Humedad Relativa (%)	Mínimo Mensual	32	24 diciembre 2017 a las 15:00 hrs
(10)	Máximo Mensual	91	20 diciembre 2017 a las 06:00 hrs.

El porcentaje del periodo en que se produjeron estados de **Calma** corresponde al 0,22% de las horas monitoreadas.

43/84

ⁿ Corresponde a valores de velocidad inferiores a 0,5 m/s

Tabla N° 24 Resultados de Predominancia de vientos, Estación Edelmag, Diciembre 2017

Componente	Ocurrencia
oeste (O)	35,1
oeste - noroeste (ONO)	28,5
oeste - suroeste (OSO)	11,6
noroeste (NO)	11,4

La Tabla N° 25 y Tabla N° 26 presentan los resultados de meteorología y predominancia de vientos para el mes de enero 2018.

Tabla N° 25 Resultados de Meteorología, Estación Edelmag, Enero 2018

Variable I	Meteorológica	Valor	Fecha registrada
Velocidad	Promedio Mensual	4,6	N/A
del Viento (m/s)	Mínimo Mensual	0,6	08 enero 2018 a las 03:00 hrs.
	Máximo Mensual	11,7	14 enero 2018 a las 09:00 hrs.
	Promedio Mensual	12,2	N/A
Temperatura (°C)	Mínimo Mensual	4,3	02 enero 2018 a las 04:00 hrs.
	Máximo Mensual	23,4	11 enero 2018 a las 13:00 hrs
	Promedio Mensual	63	N/A
Humedad Relativa (%)	Mínimo Mensual	38	02 enero 2018 a las 11:00 hrs y 05 enero 2018 a las 13:00 hrs.
	Máximo Mensual	91	18 enero 2018 a las 03:00 hrs.

Tabla N° 26 Resultados de Predominancia de vientos, Estación Edelmag, Enero 2018

Componente	Ocurrencia
noroeste (NO)	22,3
oeste – noroeste (ONO)	17,3
oeste (O)	15,7
norte - noroeste (NNO)	10,4

6 CONCLUSIONES

Al comparar de manera referencial los valores de material particulado fino respirable MP-2,5, no se presenta superación de la norma en los periodos monitoreados tanto en la norma anual como en el percentil 98 de los promedios diarios.

Al comparar de manera referencial los valores mensuales medidos de monóxido de carbono CO en la estación Edelmag con la normativa aplicable, se podría concluir que las concentraciones no sobrepasan el valor límite establecido por la norma respectiva.

Al comparar de manera referencial los valores mensuales medidos de dióxido de nitrógeno NO_2 en la estación Edelmag con la normativa aplicable, se podría concluir que las concentraciones no sobrepasan el valor límite establecido por la norma respectiva.

El comportamiento de las variables meteorológicas; velocidad del viento, dirección del viento, temperatura y humedad relativa, medidas en la estación Edelmag, se comportan de acuerdo a lo esperado para la época del año.

7 REFERENCIAS

- Resolución Exenta Nº 144/2007. Califica Ambientalmente Favorable el proyecto "Instalación y Operación Turbogenerador Solar Titan 130". CONAMA de la XII Región de Magallanes y la Antártica Chilena.
- CHILE, MINISTERIO DE SALUD. Reglamento de Estaciones de Medición de contaminantes Atmosféricos. DTO. Nº 61. Santiago 2008.
- CHILE, MINISTERIO DEL MEDIO AMBIENTE. Norma de Calidad Primaria para Material Particulado Fino Respirable MP-2,5. DTO. N° 12. Santiago 2011.
- CHILE, MINISTERIO SECRETARIA GENERAL DE LA PRESIDENCIA DE LA REPÚBLICA. Norma Primaria de Calidad de Aire para Monóxido de Carbono (CO). D.S. Nº 115. Santiago 2002.
- CHILE, MINISTERIO SECRETARIA GENERAL DE LA PRESIDENCIA DE LA REPÚBLICA. Norma Primaria de Calidad de Aire para Dióxido de Nitrógeno (NO₂). D.S. Nº 114. Santiago 2002.
- EE.UU. Met One Instruments. Manual de operación Analizador de material particulado Modelo BAM-1020. Junio 2003.
- EE.UU. Teledyne Advanced Pollution Intrumentation. Manual de operación Analizador de monóxido de carbono Teledyne Modelo T300. Febrero 2012.
- EE.UU. Teledyne Advanced Pollution Intrumentation. Manual de operación Analizador de dióxido de nitrógeno Teledyne Modelo T200. Febrero 2012.

ANEXO I NOMENCLATURA PARA INVALIDACIÓN O PÉRDIDA DE DATOS SEGÚN DTO. Nº 61

Códigos Utilizados

Código	Significado	Justificación
2.a	Dato inválido	Por falla de energía
2.b	Dato inválido	Por falla de equipo
2.c	Dato inválido	Fuera de rango de temperatura de operación
2.d	Dato inválido	Por cambio de equipo
2.e	Dato inválido	Por mantención en terrero
2.f	Dato inválido	Por tiempo mínimo de muestreo
2.g	Dato inválido	Por exceso de tiempo de muestreo
2.h	Dato inválido	Valor fuera de rango
3.a	Sin dato	Por falla general de equipo
3.b	Sin dato	Por precipitación

ANEXO II° TABLAS DE CONCENTRACIÓN DE MATERIAL PARTICULADO MP-2,5 ESTACIÓN EDELMAG DICIEMBRE 2017 – ENERO 2018

° Los códigos de invalidación están detallados en el Anexo I

MATERIAL PARTICULADO RESPIRABLE MP-2,5, ESTACIÓN EDELMAG, DICIEMBRE 2017 UNIDAD: μg/m³

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20171214	3	2.b	0	2	1	0	0	2	1	0	0	0	0	0	0	0	0	0	0	1	2	3	3	1	1	0	3
20171215	1	0	1	4	3	4	2	7	4	2	2	0	6	7	5	5	6	6	3	0	4	7	4	3	4	0	7
20171216	7	4	5	3	1	1	1	0	5	4	1	3	4	4	2	4	6	5	6	4	4	5	10	9	4	0	10
20171217	11	8	8	8	5	9	7	4	2	2	1	11	53	22	10	7	11	8	16	9	11	11	7	3	10	1	53
20171218	2	2	6	6	4	4	6	4	5	9	6	3	2	3	3	6	5	4	7	18	32	11	6	6	7	2	32
20171219	7	8	7	8	11	8	29	55	75	67	45	37	26	27	18	23	53	28	32	23	9	5	4	3	25	3	75
20171220	5	3	2	3	2	2	3	4	4	19	11	5	7	6	5	5	9	12	16	16	4	12	11	10	7	2	19
20171221	7	5	3	1	5	6	3	2	5	7	5	5	6	10	8	8	9	8	6	3	6	6	4	2	5	1	10
20171222	2	6	5	4	2.b	4	3	4	3	1	3	4	2	3	3	1	3	6	5	11	8	6	4	4	4	1	11
20171223	6	5	5	3	2	2	5	6	4	2	3	4	8	7	5	16	20	21	15	15	15	10	10	9	8	2	21
20171224	26	5	3	3	5	4	3	3	1	0	1	1	0	5	4	0	0	2	6	4	3	8	8	7	4	0	26
20171225	11	10	5	2	3	4	3	2	5	4	3	11	8	4	1	2	9	67	39	11	11	8	7	4	10	1	67
20171226	3	8	7	7	7	5	1	1	5	13	7	1	3	4	6	5	3	12	11	23	20	7	6	2	7	1	23
20171227	0	1	3	1	0	4	8	12	15	29	39	54	29	17	21	15	17	11	7	8	16	5	8	9	14	0	54
20171228	10	8	6	5	4	2	3	5	11	21	2	2	6	5	2	5	5	4	6	5	3	8	7	7	6	2	21
20171229	6	11	8	4	5	5	5	8	16	7	4	1	7	20	3	12	14	12	9	5	3	6	5	8	8	1	20
20171230	6	5	3	4	7	10	6	2	2	3	2	4	3	7	5	8	7	7	4	0	0	2	3	4	4	0	10
20171231	9	10	8	5	5	6	5	4	3	3	5	3	2	1	0	0	0	0	4	4	1	2	4	3	4	0	10
MEDIA	7	6	5	4	4	4	5	7	9	11	8	8	10	8	6	7	10	12	11	9	8	7	6	5	7		
MÍNIMO	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	2	3	1		0	
MÁXIMO	26	11	8	8	11	10	29	55	75	67	45	54	53	27	21	23	53	67	39	23	32	12	11	10			75

MATERIAL PARTICULADO RESPIRABLE MP-2,5, ESTACIÓN EDELMAG, ENERO 2018 UNIDAD: μg/m³

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20180101	1	0	2	4	3	4	5	2	2	0	1	4	3	2	4	3	2	2	3	2	6	4	7	6	3	0	7
20180102	3	2	1	4	5	4	4	2	2	0	1	0	15	17	14	15	8	3	2	1	2	2	1	2	5	0	17
20180103	3	6	6	2	0	3	4	4	3	4	4	0	0	1	0	2	3	0	1	2	1	0	1	1	2	0	6
20180104	0	1	2	4	3	2	2	1	0	1	1	2	1	0	3	1	0	1	1	2	2	1	8	4	2	0	8
20180105	3	4	3	2	2	1	0	0	0	0	1	0	2	3	3	3	1	1	1	5	5	12	7	3	3	0	12
20180106	4	6	3	1	2	2	2	1	1	1	0	0	0	0	2	1	0	0	4	3	1	1	0	1	1	0	6
20180107	2	1	1	0	1	1	1	0	0	0	0	0	0	1	0	0	4	9	8	6	3	2	2	1	2	0	9
20180108	2	1	3	3	4	3	3	5	4	3	1	3	3	0	2	1	0	2	1	0	1	3	3	1	2	0	5
20180109	2	3	1	2	2	2	3	3	4	0	3	4	2	4	4	2	3	1	0	0	0	1	3	3	2	0	4
20180110	2	1	1	0	1	5	9	6	12	12	6	5	2	20	14	34	11	9	11	7	2	0	4	1	7	0	34
20180111	0	0	0	0	1	1	1	1	1	1	1	2	6	10	7	6	6	6	3	0	5	4	5	3	3	0	10
20180112	1	0	1	1	1	3	3	4	2	4	6	7	3	0	1	2	3	2	1	5	6	4	2	4	3	0	7
20180113	4	6	4	4	6	5	3	0	0	1	0	0	0	2	1	0	0	0	0	6	3	1	1	0	2	0	6
20180114	0	4	2	2	3	0	1	2	1	0	2	2	4	4	3	2	4	5	1	0	4	3	1	0	2	0	5
20180115	2	3	2	1	2	7	9	7	6	6	4	3	4	2	2	4	6	6	4	2	0	1	0	0	3	0	9
20180116	0	1	1	3	3	1	0	1	2	1	0	0	0	0	2	5	2	0	3	3	0	5	3	1	2	0	5
20180117	3	4	4	3	3	1	3	5	6	6	4	4	0	2	2	2	2	1	3	1	0	0	2	3	3	0	6
20180118	1	0	2	0	1	3	4	2	2	2	1	2	2	2	1	2	6	3	0	0	0	3	1	0	2	0	6
20180119	0	0	3	2	4	3	1	4	3	2	2	2	5	3	1	0	0	2	2	2.e					2	0	5
MEDIA	2	2	2	2	2	3	3	3	3	2	2	2	3	4	3	4	3	3	3	2	2	3	3	2	3		igsquare
MİNIMO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	
MÁXIMO	4	6	6	4	6	7	9	7	12	12	6	7	15	20	14	34	11	9	11	7	6	12	8	6			34

ANEXO IIIP **TABLAS DE GASES** ESTACIÓN EDELMAG, **DICIEMBRE 2017 - ENERO 2018**

MONÓXIDO DE CARBONO, DICIEMBRE 2017, UNIDAD: mg/m³N

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20171214	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20171215	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,2
20171216	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20171217	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20171218	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	2.e	0,1	0,1	0,1	0,1	0,1	0,1
20171219	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20171220	0,2	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2
20171221	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2
20171222	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1
20171223	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1
20171224	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20171225	0,1	0,1	0,1	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20171226	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	2.e	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20171227	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2
20171228	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,2
20171229	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20171230	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2
20171231	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,2
MEDIA	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1		
MÍNIMO	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		0,0	
MÁXIMO	0,2	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2			0,2

MONÓXIDO DE CARBONO, ENERO 2018 UNIDAD: mg/m³N

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20180101	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20180102	0,1	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20180103	0,1	0,1	0,1	0,1	0,1	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20180104	0,1	0,1	0,1	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20180105	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	2.e	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1
20180106	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
20180107	0,0	0,1	0,1	0,0	0,0	0,0	0,1	0,1	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20180108	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,1	0,0	0,2
20180109	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,1	0,0	0,1
20180110	0,0	0,1	0,1	0,1	0,1	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,2
20180111	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2
20180112	0,1	0,1	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	2.e	0,0	0,0	0,0	0,1	0,0	0,1
20180113	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20180114	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20180115	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20180116	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20180117	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20180118	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,2
20180119	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,2	0,2	0,3	0,2	0,2	0,2	0,1	2.e					0,2	0,1	0,3
MEDIA	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1		
MÍNIMO	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		0,0	
MÁXIMO	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,2	0,1	0,2	0,2	0,3	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1			0,3

MONÓXIDO DE CARBONO PROMEDIO MÓVIL 8 HRS., DICIEMBRE 2017 UNIDAD: mg/m³N

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20171214								0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	2.f	2.f	2.f
20171215	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20171216	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20171217	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20171218	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20171219	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20171220	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,2
20171221	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20171222	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1
20171223	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
20171224	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20171225	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20171226	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20171227	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20171228	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2
20171229	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20171230	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20171231	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,2
MEDIA	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1		
MÍNIMO	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		0,0	
MÁXIMO	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2			0,2

MONÓXIDO DE CARBONO PROMEDIO MÓVIL 8 HRS., ENERO 2018

UN:	[DA	D: n	ng/r	n³N	
1000	1100	1200	1300	1400	
0.0	0.0	0.4	0.4	0.4	Г

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20180101	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20180102	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20180103	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20180104	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20180105	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1	0,0	0,1
20180106	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
20180107	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20180108	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20180109	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20180110	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20180111	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20180112	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20180113	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20180114	0,1	0,1	0,1	0,1	0,1 0.1	0,1 0.1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1 0.1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1 0,1	0,1	0,1
20180115	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20180117	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20180118	0,1	0.1	0,1	0,1	0,1	0,1	0.1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20180119	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0.2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	2.e	0,1	0,1	0,1	0,1	0,1
MEDIA	0.1	0.1	0.1	0.1	0.1	0,1	0,1	0,1	0,1	0.1	0.1	0.1	0,1	0,1	0,2	0.1	0,1	0,1	0,1	0.1	0,2	0,1	0.1	0,1	0,2	0,1	- V,Z
MÍNIMO	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0,0	0.0	0.0	0.0	0,0	0.0	0.0	0,0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0,0	V, I	0,0	\dashv
MÁXIMO	0,0	0.1	0,0	0,0	0,0	0,0	0.1	0,0	0,0	0,0	0.1	0,0	0,0	0.2	0.2	0.2	0.2	0,0	0.2	0.2	0,0	0,0	0,0	0,0		0,0	0,2
IVIAVAIIVIO	v, i	U, I	U, I	U, I	U, I	U, I	v, i	υ, Ι	V, I	v, I	V, I	V, I	U, I	U,Z	U,Z	v,Z	v,Z	v,Z	v,Z	υ,Ζ	U,Z	V, I	U, I	υ, Ι			v,z

DIÓXIDO DE NITRÓGENO, DICIEMBRE 2017 UNIDAD: μg/m³N

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20171214	0,8	1,6	0,6	0,4	1,0	0,8	1,0	2,4	1,2	0,9	1,4	11,0	16,7	20,8	14,6	28,8	80,7	41,7	26,2	1,4	1,2	0,7	0,9	1,0	10,7	0,4	80,7
20171215	0,9	0,8	0,7	0,4	1,0	1,1	1,8	10,2	2,6	1,7	2,4	2,1	21,3	2,4	2,2	2,1	3,6	2,9	2,3	2,7	1,5	2,3	2,7	3,2	3,1	0,4	21,3
20171216	1,5	1,3	2,1	6,6	9,1	29,5	14,7	32,0	32,5	33,5	87,9	73,5	97,0	53,2	71,3	117,8	101,8	149,6	61,2	109,4	38,3	14,5	2,9	1,6	47,6	1,3	149,6
20171217	2,5	8,2	2,4	1,6	1,1	1,4	1,3	1,6	1,4	1,4	1,1	1,6	1,3	1,1	1,2	1,5	1,8	1,1	1,2	1,5	1,2	1,2	1,1	1,0	1,7	1,0	8,2
20171218	2,6	1,2	1,4	1,1	1,3	1,9	1,4	1,8	1,8	1,7	24,1	25,5	72,9	42,6	25,3	40,5	74,0	55,9	9,3	15,2	2.e	0,9	1,1	0,9	17,6	0,9	74,0
20171219	0,5	1,0	0,8	0,8	1,1	0,9	1,9	3,2	3,7	5,1	5,8	5,7	4,1	5,5	4,9	4,6	4,9	1,9	1,6	1,6	1,4	5,8	8,9	1,4	3,2	0,5	8,9
20171220	1,1	1,3	1,1	1,4	1,4	1,9	3,4	3,6	1,9	4,5	4,8	25,9	8,0	3,9	30,3	9,6	3,7	1,7	1,3	0,9	1,1	1,0	0,9	0,9	4,8	0,9	30,3
20171221	0,8	0,9	0,8	0,9	0,3	0,9	1,1	1,2	2,3	1,3	1,6	1,3	1,3	2,3	4,7	1,2	1,6	3,0	1,6	1,1	0,7	0,8	0,7	0,4	1,4	0,3	4,7
20171222	0,7	0,7	0,7	0,5	1,6	0,6	0,7	1,2	1,9	3,9	4,5	21,6	71,0	96,1	108,5	116,5	35,9	61,9	63,2	2,0	5,6	6,9	28,5	13,6	27,0	0,5	116,5
20171223	2,8	0,8	0,8	0,7	0,9	0,8	0,8	2,1	2,0	8,7	7,7	7,4	1,8	6,5	14,3	3,1	1,4	1,2	1,4	1,6	0,9	1,1	0,8	0,8	2,9	0,7	14,3
20171224	1,0	1,0	1,0	1,0	3,0	9,7	3,4	5,7	7,7	1,6	8,6	50,0	107,9	89,7	183,2	146,0	106,0	109,4	29,7	7,6	1,7	1,4	1,5	4,0	36,7	1,0	183,2
20171225	1,5	1,1	1,3	1,2	9,6	2,3	11,1	17,9	14,1	20,1	26,8	27,1	24,0	39,5	44,6	16,7	2,5	7,3	23,9	11,0	4,2	6,6	42,1	36,1	16,4	1,1	44,6
20171226	6,7	51,5	76,0	8,5	0,9	1,1	1,5	12,7	16,5	11,5	2,9	9,3	19,9	2,9	10,7	15,9	3,8	2.e	2.e	0,9	1,2	1,5	0,7	0,8	11,7	0,7	76,0
20171227	0,7	0,7	0,7	0,6	1,1	1,1	2,1	5,4	1,7	2,0	1,0	1,1	1,0	1,1	1,1	1,2	1,1	1,2	16,9	1,0	3,7	0,8	1,0	1,1	2,1	0,6	16,9
20171228	7,0	4,2	0,9	1,0	0,9	1,1	1,4	1,4	1,7	1,1	2,4	1,4	1,4	1,6	71,2	1,9	1,2	0,8	0,9	16,0	3,5	1,0	2,2	0,9	5,3	0,8	71,2
20171229	0,9	0,9	0,8	0,4	0,8	0,8	0,8	1,7	24,5	1,5	1,3	2,8	0,8	1,0	2,4	6,3	5,8	1,0	1,0	0,8	0,9	2,2	5,3	1,5	2,8	0,4	24,5
20171230	1,5	6,6	18,6	7,4	8,5	18,2	16,8	32,1	25,1	11,0	22,6	11,5	90,7	76,9	31,2	14,1	1,4	0,9	0,9	1,1	0,8	1,6	4,1	16,0	17,5	0,8	90,7
20171231	5,3	6,1	30,1	13,0	6,3	1,6	0,8	0,9	0,8	2,2	10,0	1,9	6,6	3,1	14,4	96,8	69,7	56,4	21,6	1,9	0,9	1,9	1,9	1,0	14,8	0,8	96,8
MEDIA	2,2	5,0	7,8	2,6	2,8	4,2	3,7	7,6	8,0	6,3	12,0	15,6	30,4	25,0	35,3	34,7	27,8	29,3	15,5	9,9	4,1	2,9	6,0	4,8	12,6		
MÍNIMO	0,5	0,7	0,6	0,4	0,3	0,6	0,7	0,9	0,8	0,9	1,0	1,1	0,8	1,0	1,1	1,2	1,1	0,8	0,9	0,8	0,7	0,7	0,7	0,4		0,3	
MÁXIMO	7,0	51,5	76,0	13,0	9,6	29,5	16,8	32,1	32,5	33,5	87,9	73,5	107,9	96,1	183,2	146,0	106,0	149,6	63,2	109,4	38,3	14,5	42,1	36,1			183,2

DIÓXIDO DE NITRÓGENO, ENERO 2018 UNIDAD: μg/m³N

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20180101	2,1	0,1	4,1	0,9	0,1	3,6	5,7	3,9	3,9	2,1	0,1	0,1	0,7	0,0	0,1	2,7	1,1	3,0	4,2	3,7	7,4	6,9	4,9	4,0	2,7	0,0	7,4
20180102	1,7	0,3	0,7	0,6	0,6	1,0	1,3	2,0	2,7	1,7	1,7	1,5	2,6	3,1	3,3	4,1	3,3	5,2	5,0	4,8	6,9	5,0	6,5	8,0	3,1	0,3	8,0
20180103	9,6	8,2	5,5	4,1	1,4	0,3	1,1	3,5	3,9	2,5	8,9	6,4	0,5	3,3	5,3	7,3	3,5	0,4	5,6	9,7	5,5	0,1	0,1	0,3	4,0	0,1	9,7
20180104	0,4	0,6	0,1	0,3	0,4	0,5	0,8	0,4	0,8	0,7	1,3	8,9	8,8	0,2	0,9	1,1	0,9	2,8	6,2	6,2	5,7	1,0	0,8	4,2	2,2	0,1	8,9
20180105	0,8	0,7	3,3	3,1	2,4	4,5	4,4	16,0	25,4	12,5	24,5	19,8	21,8	27,7	12,2	9,1	9,9	15,1	2.e	9,1	3,0	2,4	2,2	2,2	10,1	0,7	27,7
20180106	4,9	0,8	0,7	0,4	0,4	0,3	0,1	0,3	1,1	0,8	0,8	1,3	0,9	1,7	1,2	0,5	0,5	0,3	0,3	0,4	0,5	1,8	8,0	5,1	1,4	0,1	8,0
20180107	5,4	7,1	7,0	2,8	0,3	0,6	2,0	0,5	0,3	0,3	0,2	0,2	0,2	0,2	0,3	0,4	1,0	2,3	3,6	6,4	6,9	2,5	0,7	2,0	2,2	0,2	7,1
20180108	2,0	1,2	1,4	2,6	1,4	0,4	2,6	9,1	3,8	1,6	1,8	5,4	3,1	3,0	3,2	1,0	0,4	0,7	0,5	0,0	7,7	13,4	13,8	3,2	3,5	0,0	13,8
20180109	0,2	0,6	0,2	5,1	6,5	0,1	0,1	0,6	0,6	0,3	0,4	0,5	0,1	0,3	0,4	0,4	0,5	0,1	0,1	0,0	0,1	0,5	0,1	0,1	0,8	0,0	6,5
20180110	0,1	0,4	0,5	0,2	0,1	0,2	3,4	1,4	0,6	0,8	0,9	0,3	0,7	1,6	1,2	1,0	0,2	0,4	0,4	0,1	0,2	0,1	0,1	0,0	0,6	0,0	3,4
20180111	0,1	0,1	0,1	0,3	0,4	0,6	5,3	10,7	8,7	2,2	0,8	1,1	0,3	1,1	1,2	0,9	0,4	0,3	0,2	0,1	19,0	13,4	12,7	1,8	3,4	0,1	19,0
20180112	2,1	5,3	7,9	5,7	2,4	1,5	0,9	1,9	0,6	0,9	0,5	0,3	0,4	2,3	7,0	27,5	27,3	26,9	20,6	11,9	2.e	11,3	8,7	0,4	7,6	0,3	27,5
20180113	0,6	0,2	0,1	0,1	0,1	0,1	0,1	0,2	0,4	0,9	22,2	40,2	33,2	29,8	18,6	14,1	8,6	10,8	2,8	1,6	12,6	7,1	3,9	0,4	8,7	0,1	40,2
20180114	0,1	0,1	0,5	0,4	0,2	0,2	1,1	13,2	9,5	18,0	18,3	34,3	20,7	17,7	27,6	29,2	26,1	13,0	4,5	5,8	20,4	26,8	8,1	3,7	12,5	0,1	34,3
20180115	9,3	21,5	16,1	9,8	0,7	0,3	0,2	0,4	4,2	2,9	0,8	0,5	1,4	2,5	0,3	1,0	0,3	0,1	0,2	0,1	0,2	0,1	0,1	0,2	3,0	0,1	21,5
20180116	0,2	0,1	0,2	0,1	0,1	0,1	0,0	0,1	0,2	0,1	3,5	16,6	26,8	28,3	17,4	30,6	15,4	8,0	6,0	6,4	16,5	27,6	9,7	5,1	9,1	0,0	30,6
20180117	2,7	0,7	0,2	0,2	0,2	0,2	0,3	0,9	2,0	5,5	1,7	0,5	0,4	1,0	0,5	5,8	9,8	3,7	2,9	10,1	7,5	4,3	1,5	0,3	2,6	0,2	10,1
20180118	0,6	0,6	0,4	0,2	0,3	0,3	0,7	0,8	0,4	0,5	2,2	19,4	31,1	33,6	33,1	43,4	48,1	57,2	35,0	18,1	16,0	20,7	8,5	10,5	15,9	0,2	57,2
20180119	4,1	5,0	4,4	1,4	1,3	0,1	6,7	0,3	0,2	0,2	0,3	0,3	0,4	2,2	5,0	7,0	9,2	4,2	2,8	2.e					2,9	0,1	9,2
MEDIA	2,5	2,8	2,8	2,0	1,0	0,8	1,9	3,5	3,6	2,9	4,8	8,3	8,1	8,4	7,3	9,8	8,8	8,1	5,6	5,2	8,0	8,1	5,0	2,9	5,1		$oxed{oxed}$
MÍNIMO	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1	0,2	0,1	0,1	0,1	0,1	0,0	0,1	0,4	0,2	0,1	0,1	0,0	0,1	0,1	0,1	0,0		0,0	$oxed{oxed}$
MÁXIMO	9,6	21,5	16,1	9,8	6,5	4,5	6,7	16,0	25,4	18,0	24,5	40,2	33,2	33,6	33,1	43,4	48,1	57,2	35,0	18,1	20,4	27,6	13,8	10,5			57,2

ANEXO IV^q TABLAS DE VARIABLES METEOROLÓGICAS, ESTACIÓN EDELMAG DICIEMBRE 2017 – ENERO 2018

^q Los códigos de invalidación están detallados en el ANEXO I

VELOCIDAD DEL VIENTO ESTACIÓN EDELMAG, DICIEMBRE 2017 UNIDAD: m/s

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20171214	7.9	7.7	7,4	8.3	6.1	7,6	7.7	7,6	8.5	7.9	8.4	6.1	8,1	7.4	7.9	6.0	6.8	4.8	4.3	4.8	3.3	4.2	3,1	4.0	6,5	3.1	8,5
20171215	7.3	7.8	7.8	7.4	7.7	7.8	5.9	2.4	3.3	3,5	4.2	5,4	5.1	4.2	4.2	3.4	3,3	3.6	2,5	2.1	2.9	2.6	2.6	3.2	4.6	2.1	7,8
20171216	2,2	1,3	3,3	2,7	2,7	4,0	6,9	5,7	5,3	5,4	5,9	6,0	5,9	6,1	6,8	5,9	6,1	6,4	5,6	5,6	5,1	4,3	2,7	2,4	4,8	1,3	6,9
20171217	2,1	3,8	4,2	2,2	3,8	3,4	4,3	4,8	5,7	6,5	7,3	9,4	11,4	11,9	9,5	7,8	10,1	8,5	9,7	8,3	8,4	8,7	8,1	7,6	7,0	2,1	11,9
20171218	7,9	5,4	5,6	7,4	7,1	8,0	8,9	12,2	11,9	13,0	11,8	11,4	9,3	8,3	8,4	7,2	6,2	5,5	4,7	2,0	3,1	3,3	2,4	4,0	7,3	2,0	13,0
20171219	5,8	4,6	4,1	3,4	3,1	3,8	3,5	3,3	4,9	5,2	4,6	4,6	4,4	5,2	4,9	3,5	3,2	3,5	2,8	4,7	4,6	5,9	4,6	1,8	4,2	1,8	5,9
20171220	0,9	1,8	2,2	1,5	0,8	Calma	1,2	3,2	6,3	11,7	13,7	11,2	10,7	9,0	7,0	7,4	7,6	6,2	5,7	6,3	5,1	4,8	5,8	5,6	5,7	Calma	13,7
20171221	6,4	6,4	6,0	5,8	5,0	5,8	5,0	5,3	7,7	7,6	7,6	7,4	7,7	6,8	6,9	7,5	6,8	5,8	5,4	5,3	5,9	5,3	6,4	7,2	6,4	5,0	7,7
20171222	7,7	6,0	5,9	6,8	7,2	6,7	7,2	8,3	8,8	7,6	4,8	6,6	6,3	6,4	6,6	6,3	5,1	4,8	5,4	5,3	5,2	5,3	5,5	5,8	6,3	4,8	8,8
20171223	6,7	4,4	3,4	4,0	4,0	3,4	5,6	7,4	5,7	4,3	6,0	6,9	7,5	8,3	7,3	8,8	9,4	9,4	7,7	4,3	3,4	2,6	6,0	8,3	6,0	2,6	9,4
20171224	12,1	10,3	7,2	7,0	6,6	5,0	3,0	3,5	4,0	3,6	5,0	5,4	6,8	6,9	7,9	8,0	7,2	6,9	4,4	4,0	3,5	2,2	1,6	3,0	5,6	1,6	12,1
20171225	2,5	3,7	4,4	4,2	3,9	3,5	3,7	4,6	5,3	4,9	5,7	6,6	7,4	6,1	5,8	5,9	6,5	6,5	6,8	5,0	4,1	6,0	6,8	5,3	5,2	2,5	7,4
20171226	4,2	5,1	6,2	6,7	4,4	5,4	5,0	6,4	6,9	6,2	5,0	4,3	3,5	4,4	6,3	4,4	5,3	5,7	4,8	2.e	2.e	2,7	6,0	5,0	5,2	2,7	6,9
20171227	4,6	4,6	5,2	3,9	3,1	3,5	3,2	4,0	5,3	7,1	8,0	8,4	10,6	9,8	9,0	8,6	9,7	8,4	4,9	3,4	2,1	5,6	5,4	5,0	6,0	2,1	10,6
20171228	2,8	1,6	0,8	2,3	0,8	1,7	4,0	6,2	5,4	5,3	4,2	5,3	5,9	6,5	8,4	7,9	7,6	8,9	9,8	5,7	1,7	4,5	3,2	2,4	4,7	0,8	9,8
20171229	2,1	2,3	4,7	3,5	4,8	5,2	6,3	6,5	8,5	8,0	9,9	11,5	12,5	12,9	10,1	11,2	12,0	13,0	12,5	10,1	9,5	9,2	8,3	8,9	8,5	2,1	13,0
20171230	7,9	7,7	7,7	5,5	5,9	5,7	5,7	6,6	5,8	6,7	8,0	8,7	8,3	7,9	7,1	7,7	6,4	7,6	7,4	6,9	4,9	4,7	6,1	6,9	6,8	4,7	8,7
20171231	7,4	4,8	4,5	5,2	2,5	2,4	5,3	5,4	6,4	5,4	6,4	6,8	6,9	6,7	7,4	7,8	6,5	6,9	5,4	4,8	5,4	3,9	4,9	3,1	5,5	2,4	7,8
MEDIA	5,5	5,0	5,0	4,9	4,4	4,6	5,1	5,7	6,4	6,7	7,0	7,3	7,7	7,5	7,3	7,0	7,0	6,8	6,1	5,2	4,6	4,8	5,0	5,0	5,9		igsquare
MÍNIMO	0,9	1,3	0,8	1,5	0,8	Calma	1,2	2,4	3,3	3,5	4,2	4,3	3,5	4,2	4,2	3,4	3,2	3,5	2,5	2,0	1,7	2,2	1,6	1,8		Calma	igsquare
MÁXIMO	12,1	10,3	7,8	8,3	7,7	8,0	8,9	12,2	11,9	13,0	13,7	11,5	12,5	12,9	10,1	11,2	12,0	13,0	12,5	10,1	9,5	9,2	8,3	8,9			13,7

VELOCIDAD DEL VIENTO ESTACIÓN EDELMAG, ENERO 2018 UNIDAD: m/s

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20180101	3,0	4,3	5,3	6,2	5,5	2,5	2,7	3,5	4,1	4,0	5,5	5,4	5,2	5,4	5,3	2,8	2,9	3,4	1,8	1,5	1,2	0,9	1,3	2,0	3,6	0,9	6,2
20180102	1,7	3,0	2,1	1,6	2,5	1,9	2,2	2,9	2,8	2,0	3,0	2,8	2,9	2,8	2,5	2,4	2,9	2,6	2,0	1,9	1,4	0,9	1,0	0,9	2,2	0,9	3,0
20180103	1,4	1,0	0,8	0,7	2,1	3,1	3,6	4,9	5,4	5,0	4,4	3,4	3,2	3,8	3,9	4,2	2,1	3,2	2,7	1,4	1,2	3,0	1,9	2,8	2,9	0,7	5,4
20180104	2,2	1,7	4,5	4,0	1,8	3,3	3,6	3,4	3,4	2,8	3,2	5,1	5,2	5,0	5,4	4,8	4,9	3,6	2,6	2,0	0,9	1,8	3,4	0,7	3,3	0,7	5,4
20180105	2,4	2,1	1,9	3,3	1,7	1,7	2,6	4,2	4,9	6,1	6,5	6,3	6,3	6,2	5,5	5,0	5,7	6,1	4,9	4,3	1,5	0,8	0,7	1,5	3,8	0,7	6,5
20180106	0,7	2,0	2,5	2,2	4,8	3,9	4,1	3,7	4,0	4,3	4,5	4,6	3,9	2,9	2,3	3,6	4,6	4,6	4,6	4,9	4,0	2,9	1,3	1,4	3,4	0,7	4,9
20180107	0,8	0,6	1,1	1,6	3,3	2,8	1,6	3,1	3,9	5,0	5,1	5,5	5,0	4,9	5,0	4,1	4,2	3,5	2,5	1,2	0,8	1,5	3,2	2,2	3,0	0,6	5,5
20180108	2,8	1,1	1,3	0,6	2,3	3,8	2,9	1,7	3,0	3,5	3,4	5,6	4,1	3,9	3,3	4,0	4,5	4,1	4,9	8,5	8,5	6,8	2,8	2,9	3,8	0,6	8,5
20180109	3,8	3,1	3,2	4,1	3,5	6,5	7,2	2,7	5,9	6,8	7,4	8,7	8,3	9,5	8,6	6,8	7,8	8,1	6,6	8,1	6,4	4,4	7,6	6,2	6,3	2,7	9,5
20180110	5,1	4,7	3,7	4,1	6,9	7,7	3,1	4,6	5,2	4,9	6,6	7,4	5,9	6,2	5,1	4,2	5,5	6,1	5,8	6,7	5,8	5,0	4,9	6,1	5,5	3,1	7,7
20180111	5,4	4,5	4,2	4,0	3,0	1,7	3,1	3,0	3,3	5,6	5,0	5,9	9,3	7,9	6,0	8,4	4,7	5,2	7,0	6,7	8,7	6,3	4,2	3,8	5,3	1,7	9,3
20180112	4,6	5,5	3,7	3,3	3,2	3,3	3,6	3,6	4,4	4,1	5,5	5,7	5,8	6,1	7,2	8,3	7,0	6,2	7,3	6,7	6,2	6,3	4,6	4,0	5,3	3,2	8,3
20180113	3,7	4,2	4,2	4,0	3,1	5,2	8,0	8,6	7,7	10,1	10,6	8,7	8,7	7,8	6,3	6,3	5,9	5,2	3,7	4,4	5,0	3,9	4,5	4,2	6,0	3,1	10,6
20180114	2,9	3,3	3,1	3,8	5,8	8,6	11,3	10,8	11,5	11,7	11,2	10,1	9,6	8,1	7,2	7,4	6,7	6,0	4,3	3,7	4,5	5,0	2,9	2,5	6,8	2,5	11,7
20180115	5,8	5,2	3,8	1,7	2,6	2,6	3,3	5,0	4,3	5,5	7,4	8,4	7,5	8,2	7,2	6,0	7,3	6,4	6,8	7,2	4,9	6,3	5,4	4,6	5,6	1,7	8,4
20180116	4,9	4,8	4,9	3,8	2,0	4,1	8,2	9,6	9,3	10,2	9,5	8,6	9,3	7,6	7,1	7,2	7,8	7,2	6,9	6,3	4,7	6,1	3,9	4,3	6,6	2,0	10,2
20180117	4,1	4,4	3,6	2,7	2,7	2,9	3,1	3,1	4,1	4,5	4,6	4,8	4,3	4,4	5,3	5,7	5,4	4,2	5,1	4,0	4,0	2,8	2,1	2,8	3,9	2,1	5,7
20180118	2,8	3,9	4,7	3,7	4,6	5,1	3,1	3,1	3,2	5,2	7,8	8,5	8,8	8,4	7,7	7,4	7,6	8,1	6,4	5,2	3,6	4,2	2,9	4,0	5,4	2,8	8,8
20180119	3,0	1,1	1,5	2,9	3,1	5,7	5,5	8,4	10,5	10,2	10,0	11,2	8,2	7,9	6,8	7,4	7,3	6,8	7,2	8,1	2.e				6,6	1,1	11,2
MEDIA	3,2	3,2	3,2	3,1	3,4	4,0	4,4	4,7	5,3	5,9	6,4	6,7	6,4	6,2	5,7	5,6	5,5	5,3	4,9	4,9	4,1	3,8	3,3	3,2	4,7		
MÍNIMO	0,7	0,6	0,8	0,6	1,7	1,7	1,6	1,7	2,8	2,0	3,0	2,8	2,9	2,8	2,3	2,4	2,1	2,6	1,8	1,2	0,8	0,8	0,7	0,7		0,6	
MÁXIMO	5,8	5,5	5,3	6,2	6,9	8,6	11,3	10,8	11,5	11,7	11,2	11,2	9,6	9,5	8,6	8,4	7,8	8,1	7,3	8,5	8,7	6,8	7,6	6,2			11,7

DIRECCIÓN DEL VIENTO ESTACIÓN EDELMAG, DICIEMBRE 2017 UNIDAD: Grados

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20171214	293	293	287	292	281	296	295	289	293	285	285	277	273	273	275	270	258	244	264	286	302	299	313	308	285	244	313
20171215	287	284	293	289	287	286	284	175	227	294	297	296	300	300	304	286	160	167	191	198	205	226	226	225	258	160	304
20171216	235	252	276	284	255	265	268	265	268	258	250	260	238	256	268	250	247	247	270	258	267	278	307	225	260	225	307
20171217	183	262	277	311	295	305	305	312	322	320	314	309	295	290	288	282	278	290	290	288	290	290	289	290	293	183	322
20171218	281	291	298	283	283	278	282	274	282	275	267	265	261	267	270	267	259	262	273	302	340	289	231	333	279	231	340
20171219	303	341	323	329	333	321	268	257	264	99	28	28	37	22	16	39	117	321	306	286	275	268	220	184	323	16	341
20171220	263	298	278	280	183	Calma	93	184	333	278	270	265	271	274	270	274	275	275	293	291	300	314	307	315	280	93	333
20171221	308	301	308	313	310	304	307	308	288	285	286	289	284	287	283	290	286	278	281	296	293	284	288	287	293	278	313
20171222	289	281	288	290	278	283	287	273	273	275	281	267	259	251	249	251	247	234	251	273	266	267	261	264	268	234	290
20171223	270	287	307	295	295	305	303	297	298	275	273	267	275	276	270	278	286	287	292	307	308	307	308	300	290	267	308
20171224	289	291	287	275	267	265	249	228	227	212	224	234	241	243	246	242	240	246	247	225	209	269	248	241	247	209	291
20171225	256	281	267	270	259	266	259	256	259	244	252	256	265	256	251	260	274	269	264	265	272	268	264	263	262	244	281
20171226	275	254	249	266	277	285	293	269	269	274	274	265	259	280	276	264	274	276	279	2.e	2.e	285	305	323	276	249	323
20171227	336	332	332	345	40	7	63	267	303	318	313	315	304	300	294	286	287	280	256	285	233	302	280	275	306	7	345
20171228	266	243	248	180	101	302	336	338	340	324	291	282	286	295	276	279	281	286	287	236	206	279	283	312	283	101	340
20171229	257	291	313	294	302	323	311	298	288	292	289	284	287	283	277	274	276	278	282	281	281	269	266	272	286	257	323
20171230	270	265	261	262	263	260	263	260	260	268	263	267	255	255	264	267	278	277	280	285	286	283	271	265	268	255	286
20171231	268	268	256	265	257	244	281	274	276	275	269	272	268	276	266	254	252	255	264	273	276	275	275	286	268	244	286
MEDIA	277	282	287	285	285	294	287	271	285	279	283	280	278	280	276	272	263	269	273	276	276	284	278	280	279		
MÍNIMO	183	243	248	180	40	7	63	175	227	99	28	28	37	22	16	39	117	167	191	198	205	226	220	184		7	
MÁXIMO	336	341	332	345	333	323	336	338	340	324	314	315	304	300	304	290	287	321	306	307	340	314	313	333			345

DIRECCIÓN DEL VIENTO ESTACIÓN EDELMAG, ENERO 2018 UNIDAD: Grados

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20180101	253	275	264	265	267	261	250	248	235	263	275	283	272	291	282	124	301	197	160	152	165	182	297	206	247	124	301
20180102	236	266	255	257	244	204	207	226	204	180	184	182	62	86	97	98	99	105	108	110	144	247	260	257	187	62	266
20180103	245	224	228	254	345	343	4	9	18	24	10	356	317	279	261	171	58	283	223	164	329	313	330	308	312	4	356
20180104	333	313	306	288	325	291	296	287	307	309	308	298	292	296	286	273	277	237	189	174	241	300	250	200	283	174	333
20180105	267	274	230	240	211	205	229	232	235	250	241	230	237	234	228	226	253	259	229	221	230	17	310	268	242	17	310
20180106	287	12	354	314	290	300	311	312	304	295	289	294	294	306	302	313	316	311	313	313	294	287	231	241	302	12	354
20180107	140	90	115	335	312	325	20	335	327	314	313	314	304	309	311	305	17	43	42	355	234	309	330	32	339	17	355
20180108	34	29	14	7	10	333	6	204	20	345	12	39	31	33	12	334	317	314	321	318	289	278	251	330	348	6	345
20180109	323	343	318	280	290	298	302	335	311	317	325	320	320	318	314	305	305	308	312	313	325	12	342	340	318	12	343
20180110	329	325	15	343	324	315	44	346	357	9	3	350	351	348	341	7	343	351	344	337	335	332	318	320	345	3	357
20180111	333	325	333	353	0	4	38	47	62	4	8	9	352	338	327	335	315	322	310	311	285	279	237	234	337	0	353
20180112	284	280	257	246	264	285	295	295	300	315	304	310	309	297	291	275	272	270	274	280	282	279	283	297	285	246	315
20180113	310	303	321	327	353	320	308	306	300	290	276	268	253	252	275	260	282	277	284	288	273	283	286	309	291	252	353
20180114	329	356	29	346	301	292	286	280	279	279	278	273	275	275	267	262	264	259	241	237	271	268	251	302	283	29	356
20180115	2/4	267	267	220	295	309	319	306	329	324	321	319	305	290	310	317	317	325	310	313	318	318	336	328	307	220	336
20180116	325	315	302	307	354	323	305	304	301	300	291	281	277	271	274	274	281	283	284	282	275	271	273	281	293	271	354
20180117	292	290	305	319	324	328	328	355	323	334	338	345	345	326	298	296	276	229	285	264	239	265	296	334	307	229	355
20180118	22	27	14	34	10	11	17	13	326	300	291	282	277	274	276	267	265	260	263	254	256	249	245	264	302	10	326
20180119	279	230	3	30	39	318	320	331	328	326	319	309	295	295	291	284	281	286	285	280	2.e				309	3	331
MEDIA	301	309	315	308	318	309	320	310	314	312	310	307	306	300	295	289	300	285	281	278	272	289	284	290	301		$\overline{}$
MİNIMO	22	12	3	7	0	4	4	9	18	4	3	9	31	33	12	7	17	43	42	110	144	12	231	32		0	
MAXIMO	333	356	354	353	354	343	328	355	357	345	338	356	352	348	341	335	343	351	344	355	335	332	342	340			357

ROSA DE VIENTOS HORARIA ESTACIÓN EDELMAG, DICIEMBRE 2017

	0:00 - 0:59	1:00 - 1:59	2:00 - 2:59	3:00 - 3:59	4:00 - 4:59	5:00 - 5:59	6:00 - 6:59	7:00 - 7:59	8:00 - 8:59	9:00 - 9:59	10:00 - 10:59	11:00 - 11:59
N	0,0	0,0	0,0	0,0	0,0	5,6	0,0	0,0	0,0	0,0	0,0	0,0
NNE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	5,3	0,0	5,3	5,3
NE	0,0	0,0	0,0	0,0	5,3	5,6	0,0	0,0	0,0	0,0	0,0	0,0
ENE	0,0	0,0	0,0	0,0	5,3	0,0	5,3	0,0	0,0	0,0	0,0	0,0
E	0,0	0,0	0,0	0,0	5,3	0,0	5,3	0,0	0,0	5,3	0,0	0,0
ESE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
SE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
SSE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
S	5,3	0,0	0,0	5,3	5,3	0,0	5,3	10,5	0,0	0,0	0,0	0,0
SSO	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	5,3	0,0	0,0
SO	5,3	0,0	0,0	0,0	0,0	0,0	0,0	5,3	10,5	0,0	5,3	5,3
oso	10,5	21,1	15,8	5,3	15,8	5,6	10,5	10,5	0,0	10,5	10,5	5,3
О	36,8	21,1	26,3	31,6	21,1	27,8	21,1	42,1	36,8	42,1	36,8	47,4
ONO	26,3	47,4	26,3	36,8	31,6	27,8	31,6	15,8	31,6	21,1	26,3	21,1
NO	10,5	0,0	26,3	10,5	5,3	27,8	15,8	10,5	5,3	15,8	10,5	15,8
NNO	5,3	10,5	5,3	10,5	5,3	0,0	5,3	5,3	10,5	0,0	5,3	0,0
TOTAL	100	100	100	100	100	100	100	100	100	100	100	100
											22:00 - 22:59	
N	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
NNE	0,0	5,3	5,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
NE	5,3	0,0	0,0	5,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
ENE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
E	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
ESE	0,0	0,0	0,0	0,0	5,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0
SE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
SSE	0,0	0,0	0,0	0,0	5,6	5,3	0,0	0,0	0,0	0,0	0,0	0,0
S	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	5,0
SSO	0,0	0,0	0,0	0,0	0,0	0,0	5,0	5,3	15,8	0,0	0,0	0,0
SO	0,0	0,0	0,0	0,0	0,0	5,3	0,0	10,5	5,3	5,0	15,0	10,0
oso	15,8	26,3	16,7	22,2	27,8	21,1	15,0	5,3	0,0	0,0	5,0	5,0
О	42,1	31,6	55,6	50,0	38,9	42,1	45,0	21,1	31,6	40,0	30,0	25,0
ONO	26,3	31,6	22,2	22,2	22,2	21,1	30,0	47,4	31,6	40,0	20,0	25,0
NO	10,5	5,3	0,0	0,0	0,0	5,3	5,0	10,5	10,5	15,0	30,0	25,0
NNO	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	5,3	0,0	0,0	5,0
TOTAL	100	100	100	100	100	100	100	100	100	100	100	100

ROSA DE VIENTOS HORARIA ESTACIÓN EDELMAG, ENERO 2018

						ILKU 20	<u> </u>					
	0:00 - 0:59	1:00 - 1:59	2:00 - 2:59	3:00 - 3:59	4:00 - 4:59	5:00 - 5:59	6:00 - 6:59	7:00 - 7:59	8:00 - 8:59	9:00 - 9:59		11:00 - 11:59
N	0,0	5,3	10,5	10,5	26,3	10,5	10,5	10,5	5,3	10,5	15,8	15,8
NNE	5,3	15,8	21,1	5,3	0,0	0,0	10,5	5,3	10,5	5,3	5,3	0,0
NE	5,3	0,0	0,0	5,3	5,3	0,0	10,5	5,3	0,0	0,0	0,0	5,3
ENE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	5,3	0,0	0,0	0,0
E	0,0	5,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
ESE	0,0	0,0	5,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
SE	5,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
SSE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
S	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	5,3	5,3	5,3
SSO	0,0	0,0	0,0	0,0	5,3	10,5	5,3	5,3	5,3	0,0	0,0	0,0
SO	5,3	10,5	10,5	5,3	0,0	0,0	5,3	10,5	10,5	0,0	0,0	5,3
oso	10,5	0,0	10,5	21,1	5,3	0,0	5,3	5,3	0,0	5,3	5,3	0,0
0	15,8	26,3	10,5	10,5	10,5	5,3	0,0	5,3	5,3	10,5	15,8	15,8
ONO	15,8	10,5	5,3	5,3	21,1	26,3	21,1	10,5	15,8	21,1	15,8	21,1
NO	15,8	21,1	21,1	15,8	21,1	31,6	26,3	21,1	26,3	31,6	31,6	26,3
NNO	21,1	5,3	5,3	21,1	5,3	15,8	5,3	21,1	15,8	10,5	5,3	5,3
TOTAL	100	100	100	100	100	100	100	100	100	100	100	100
											9 22:00 - 22:59	
N	10,5	0,0	0,0	5,3	0,0	5,3	0,0	5,3	0,0	0,0	0,0	0,0
NNE	5,3	5,3	5,3	0,0	5,3	0,0	0,0	0,0	0,0	11,1	0,0	5,6
NE	0,0	0,0	0,0	0,0	0,0	5,3	5,3	0,0	0,0	0,0	0,0	0,0
ENE	5,3	0,0	0,0	0,0	5,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0
E	0,0	5,3	5,3	5,3	5,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0
ESE	0,0	0,0	0,0	0,0	0,0	5,3	5,3	5,3	0,0	0,0	0,0	0,0
SE	0,0	0,0	0,0	5,3	0,0	0,0	0,0	0,0	5,6	0,0	0,0	0,0
SSE	0,0	0,0	0,0	0,0	0,0	0,0	5,3	10,5	5,6	0,0	0,0	0,0
S	0,0	0,0	0,0	5,3	0,0	0,0	5,3	5,3	0,0	5,6	0,0	0,0
SSO	0,0	0,0	0,0	0,0	0,0	5,3	0,0	0,0	0,0	0,0	0,0	11,1
SO	0,0	5,3	5,3	5,3	0,0	5,3	10,5	5,3	11,1	0,0	5,6	5,6
oso	10,5	5,3	0,0	0,0	5,3	15,8	5,3	10,5	16,7	11,1	27,8	11,1
0	21,1	21,1	26,3	31,6	31,6	15,8	10,5	15,8	16,7	33,3	11,1	11,1
ONO	15,8	26,3	31,6	10,5	15,8	15,8	21,1	10,5	22,2	16,7	22,2	16,7
NO	26,3	21,1	15,8	21,1	26,3	26,3	26,3	26,3	11,1	16,7	11,1	16,7
NNO	5,3	10,5	10,5	10,5	5,3	0,0	5,3	5,3	11,1	5,6	22,2	22,2
TOTAL	100	100	100	100	100	100	100	100	100	100	100	100

TEMPERATURA ESTACIÓN EDELMAG, DICIEMBRE 2017 UNIDAD: °C

															_												
	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20171214	7,3	7,1	6,3	5,9	5,3	5,7	7,2	8,0	8,2	7,2	9,2	7,6	9,7	10,8	10,4	10,8	11,4	10,2	9,5	8,1	7,0	6,4	5,9	5,6	7,9	5,3	11,4
20171215	6,3	6,1	6,1	6,0	6,1	6,6	7,1	8,1	8,5	8,7	9,1	9,4	9,3	9,7	9,9	9,8	8,8	8,2	6,4	6,5	5,5	5,3	5,5	5,4	7,4	5,3	9,9
20171216	5,1	4,2	4,5	4,4	4,6	5,1	6,0	7,5	8,0	8,9	9,9	10,4	10,0	7,8	9,9	8,8	9,6	9,8	8,4	7,9	5,8	5,2	4,6	4,6	7,1	4,2	10,4
20171217	4,3	5,3	5,2	4,9	5,7	5,9	7,0	8,1	8,8	10,3	12,5	13,5	13,8	12,9	11,8	11,4	10,3	9,8	9,6	9,4	8,5	6,9	6,5	5,9	8,7	4,3	13,8
20171218	5,2	4,8	5,1	5,5	5,6	6,3	7,3	7,0	8,6	9,0	8,8	9,6	10,9	12,0	12,4	13,0	13,3	12,5	11,7	11,8	9,9	8,8	8,0	8,8	9,0	4,8	13,3
20171219	9,4	9,4	9,4	8,9	9,3	9,1	8,9	9,7	12,9	13,9	13,6	14,2	13,6	13,7	14,1	16,6	16,3	19,2	19,3	18,7	16,0	15,1	13,6	12,6	13,2	8,9	19,3
20171220	11,3	9,9	9,4	10,0	9,7	9,7	10,1	10,3	11,0	9,2	9,4	11,1	11,3	11,9	12,6	11,5	11,5	9,5	9,4	9,1	8,4	7,5	7,1	6,7	9,9	6,7	12,6
20171221	6,4	6,1	6,0	5,8	6,2	6,6	6,8	7,4	8,4	8,8	8,7	9,7	10,6	11,1	11,1	11,7	10,9	10,3	9,7	7,4	7,1	6,5	6,2	5,7	8,1	5,7	11,7
20171222	5,4	5,3	4,9	4,8	5,0	5,3	5,3	5,8	6,9	7,9	8,1	9,3	9,8	11,0	12,6	12,0	10,3	10,8	10,5	8,9	7,3	6,7	6,6	6,2	7,8	4,8	12,6
20171223	6,2	6,1	5,9	6,0	6,1	6,8	7,5	7,8	8,6	8,4	9,3	10,0	10,8	11,6	11,3	12,4	12,8	12,8	12,2	11,7	10,4	9,6	9,8	9,8	9,3	5,9	12,8
20171224	10,3	10,3	9,6	9,4	9,9	9,9	9,5	9,3	9,0	9,5	10,6	13,0	13,8	14,4	14,8	14,3	13,6	12,7	11,7	11,6	9,8	6,9	6,3	6,1	10,7	6,1	14,8
20171225	5,9	5,1	4,8	4,6	4,1	4,9	6,7	7,9	8,3	9,3	9,7	11,1	10,0	10,3	11,2	10,0	9,6	9,2	9,7	9,3	8,2	7,4	6,5	5,8	7,9	4,1	11,2
20171226	5,6	6,4	6,8	6,8	6,5	7,0	8,2	9,6	9,9	9,8	9,3	9,2	10,2	10,6	11,4	11,7	11,1	11,7	11,1	2.e	2.e	9,5	9,4	9,3	9,1	5,6	11,7
20171227	8,6	8,5	8,3	7,9	7,4	8,4	9,1	10,5	12,4	13,7	15,8	16,7	17,8	18,4	18,7	16,8	16,0	15,1	13,8	12,9	11,8	10,5	9,8	9,4	12,4	7,4	18,7
20171228	9,0	8,9	6,9	6,8	6,1	7,2	8,7	12,1	14,4	15,5	13,6	13,9	12,3	12,0	12,4	9,5	11,1	12,4	12,5	11,9	10,5	9,3	9,2	8,1	10,6	6,1	15,5
20171229	7,8	7,5	7,6	7,4	7,8	8,3	9,4	10,0	9,5	7,4	9,9	10,6	11,7	11,8	11,3	11,8	10,3	9,0	7,6	6,4	6,8	6,8	7,0	6,4	8,7	6,4	11,8
20171230	6,6	6,7	6,8	6,8	6,9	7,1	8,2	9,3	9,3	8,7	9,0	9,5	11,4	12,4	12,9	12,8	11,3	9,5	8,3	7,7	7,3	7,3	7,7	7,7	8,8	6,6	12,9
20171231	7,9	7,7	7,6	7,4	7,0	7,1	7,7	8,3	8,5	10,5	10,8	10,2	12,2	13,3	13,1	13,7	13,6	13,3	12,5	9,4	7,9	7,3	7,7	7,3	9,7	7,0	13,7
MEDIA	7,1	7,0	6,7	6,6	6,6	7,0	7,8	8,7	9,5	9,8	10,4	11,1	11,6	12,0	12,3	12,1	11,8	11,4	10,8	9,9	8,7	7,9	7,6	7,3	9,3		
MÍNIMO	4,3	4,2	4,5	4,4	4,1	4,9	5,3	5,8	6,9	7,2	8,1	7,6	9,3	7,8	9,9	8,8	8,8	8,2	6,4	6,4	5,5	5,2	4,6	4,6		4,1	
MÁXIMO	11,3	10,3	9,6	10,0	9,9	9,9	10,1	12,1	14,4	15,5	15,8	16,7	17,8	18,4	18,7	16,8	16,3	19,2	19,3	18,7	16,0	15,1	13,6	12,6			19,3

TEMPERATURA ESTACIÓN EDELMAG, ENERO 2018 UNIDAD: °C

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20180101	6.8	6.4	6,3	6.3	6.4	6,9	7,5	9,4	10,8	10,9	10.1	9,6	10.7	11.4	10,9	9,4	10.3	9,5	8,8	8.9	7.7	7.3	6,7	6.6	8,6	6,3	11,4
20180102	5,7	5,2	4,5	4,3	4,3	5,6	8,1	9,7	9,5	10,3	11,0	12,1	9,9	9,8	9,5	9,6	10,1	9,5	9,5	9,1	8,8	7,2	6,2	5,9	8,1	4,3	12,1
20180103	5,9	6,4	6,7	6,6	6,4	6,1	6,3	6,5	6,6	6,8	7,4	8,5	9,4	11,4	13,5	13,0	11,9	12,3	11,2	9,7	9,2	9,0	8,5	8,4	8,7	5,9	13,5
20180104	7,8	7,1	7,8	8,3	7,7	8,2	8,5	9,3	10,2	10,5	10,9	12,6	12,4	12,9	14,0	12,8	13,1	12,5	10,4	10,2	8,9	9,0	9,0	8,5	10,1	7,1	14,0
20180105	8,0	8,2	8,3	8,4	7,3	8,6	9,1	10,0	11,0	11,7	12,7	12,9	12,2	13,4	12,4	12,5	12,6	12,6	12,2	11,2	9,7	8,9	8,9	9,1	10,5	7,3	13,4
20180106	9,0	7,8	7,1	8,0	8,7	8,6	8,6	9,1	10,1	11,6	13,3	13,7	14,1	14,6	14,4	14,2	14,7	15,1	14,8	13,8	12,8	12,6	12,2	12,1	11,7	7,1	15,1
20180107	12,0	11,7	11,2	11,1	11,1	11,4	12,2	12,9	14,2	15,3	15,5	16,3	16,6	17,1	18,7	19,1	17,0	16,1	15,8	15,8	15,0	14,1	14,0	13,3	14,5	11,1	19,1
20180108	12,6	11,8	11,6	11,3	12,4	13,5	13,5	12,7	15,6	17,2	18,1	16,0	15,8	15,6	17,1	19,7	20,4	20,8	20,5	17,3	15,5	14,4	13,4	13,0	15,4	11,3	20,8
20180109	13,0	13,0	12,9	12,2	11,8	11,8	12,3	12,7	14,6	15,0	15,3	15,3	16,3	16,7	16,6	16,8	16,9	16,7	16,6	16,1	15,2	14,5	14,0	13,8	14,6	11,8	16,9
20180110	13,2	12,7	12,5	13,0	13,6	14,0	12,4	13,5	14,6	15,1	16,1	17,7	18,3	19,3	19,0	19,1	19,4	19,4	19,5	19,1	18,8	18,2	17,6	16,9	16,4	12,4	19,5
20180111	16,3	16,0	15,7	15,1	14,8	14,1	13,9	14,0	14,3	16,7	18,0	19,0	22,2	23,4	23,4	22,6	21,2	21,0	19,7	19,2	16,1	12,9	11,6	10,8	17,2	10,8	23,4
20180112	9,6	9,0	8,3	8,0	8,0	8,1	9,2	10,3	10,8	11,5	11,8	12,6	10,9	11,1	12,7	13,3	12,7	12,6	11,3	10,5	9,2	8,7	8,6	8,1	10,3	8,0	13,3
20180113	7,7	7,7	7,2	7,2	7,2	7,9	8,6	8,8	9,4	11,4	13,2	14,4	15,1	14,9	14,2	14,8	14,3	13,9	12,9	12,5	12,2	12,0	12,1	10,7	11,3	7,2	15,1
20180114	10,2	9,9	10,1	10,3	10,4	10,9	11,9	12,6	13,2	13,5	14,4	14,5	14,9	15,4	15,4	15,1	14,9	14,2	13,9	13,1	12,2	11,6	11,0	10,7	12,7	9,9	15,4
20180115	10,7	10,7	10,4	10,0	9,6	9,2	9,3	9,8	10,2	11,5	12,3	12,7	13,3	13,6	14,6	14,2	13,9	13,6	12,7	11,6	11,1	10,8	10,5	10,2	11,5	9,2	14,6
20180116	10,1	10,1	9,9	10,1	9,5	9,3	9,9	10,5	10,7	11,5	12,3	13,6	14,3	14,7	14,9	14,4	13,1	12,9	11,7	11,1	10,6	10,1	9,5	9,2	11,4	9,2	14,9
20180117	8,8	8,2	8,0	7,4	7,2	7,3	7,8	8,6	8,7	8,5	8,3	7,9	8,3	9,7	11,4	12,9	13,7	12,4	13,0	12,5	10,8	9,7	9,0	9,5	9,6	7,2	13,7
20180118	1,9	7,8	8,3	8,2	9,3	10,0	10,2	11,1	12,8	13,8	14,2	15,5	17,2	18,3	18,3	18,5	18,5	17,8	16,7	15,5	14,5	13,2	12,8	12,9	13,5	7,8	18,5
20180119	12,8	12,3	12,0	9,8	9,5	12,7	13,3	14,1	16,2	18,0	19,3	20,1	19,7	20,1	20,0	19,2	18,6	16,4	16,5	15,9	2.e				15,8	9,5	20,1
MEDIA	9,9	9,6	9,4	9,2	9,2	9,7	10,1	10,8	11,8	12,7	13,4	13,9	14,3	14,9	15,3	15,3	15,1	14,7	14,1	13,3	12,1	11,3	10,9	10,5	12,2		igsquare
MINIMO	5,7	5,2	4,5	4,3	4,3	5,6	6,3	6,5	6,6	6,8	7,4	7,9	8,3	9,7	9,5	9,4	10,1	9,5	8,8	8,9	7,7	7,2	6,2	5,9		4,3	L
MÁXIMO	16,3	16,0	15,7	15,1	14,8	14,1	13,9	14,1	16,2	18,0	19,3	20,1	22,2	23,4	23,4	22,6	21,2	21,0	20,5	19,2	18,8	18,2	17,6	16,9			23,4

HUMEDAD RELATIVA ESTACIÓN EDELMAG, DICIEMBRE 2017

UNIDAD: %

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20171214	67	69	75	77	80	79	75	71	65	73	60	75	58	52	55	46	45	51	56	64	74	76	76	77	66	45	80
20171215	73	72	76	74	70	68	66	60	58	56	54	54	51	46	49	53	63	69	81	79	79	77	71	65	65	46	81
20171216	66	72	66	64	62	62	60	54	52	48	49	47	53	59	53	57	45	41	51	49	58	58	62	64	56	41	72
20171217	69	72	76	79	75	74	69	64	63	57	50	47	45	47	51	53	61	60	57	58	62	71	76	80	63	45	80
20171218	81	81	81	79	77	76	70	74	61	67	69	62	54	50	48	46	43	47	47	49	60	69	74	69	64	43	81
20171219	65	64	64	65	58	62	61	60	46	49	53	53	56	56	53	50	50	43	43	46	57	58	67	71	56	43	71
20171220	81	83	79	78	85	89	91	90	83	63	55	47	44	45	40	48	48	59	61	59	63	68	71	74	67	40	91
20171221	72	73	74	75	70	66	67	65	58	56	57	52	49	51	51	46	51	51	52	71	67	71	73	71	62	46	75
20171222	73	74	76	76	75	76	78	70	64	59	54	49	51	48	41	44	55	52	50	57	63	67	67	69	62	41	78
20171223	71	72	73	73	71	70	66	65	65	70	68	64	60	58	59	52	49	49	51	55	60	64	61	62	63	49	73
20171224	61	65	71	73	70	69	75	68	62	58	50	43	38	33	33	32	32	33	37	34	40	53	58	59	52	32	75
20171225	61	65	65	64	65	60	50	46	48	43	42	38	40	41	36	39	44	45	42	44	51	60	64	62	51	36	65
20171226	58	61	64	65	76	78	74	61	57	59	70	72	69	66	59	57	58	56	57	2.e	2.e	62	61	62	64	56	78
20171227	71	69	66	69	71	66	66	61	55	51	46	44	41	41	41	52	51	55	61	64	67	71	75	60	59	41	75
20171228	66	60	72	80	83	86	80	71	64	58	71	64	67	63	64	75	67	58	55	57	62	69	71	76	68	55	86
20171229	75	75	76	72	70	68	62	61	61	74	61	53	46	43	49	43	49	55	69	83	77	72	65	68	64	43	83
20171230	67	64	62	62	65	66	60	53	53	55	54	53	44	40	40	42	53	64	70	77	75	75	71	68	60	40	77
20171231	67	68	66	67	69	70	71	66	65	58	54	59	50	46	46	44	44	41	46	69	72	73	69	69	60	41	73
MEDIA	69	70	71	72	72	71	69	65	60	59	56	54	51	49	48	49	51	52	55	60	64	67	68	68	61		
MÍNIMO	58	60	62	62	58	60	50	46	46	43	42	38	38	33	33	32	32	33	37	34	40	53	58	59		32	
MÁXIMO	81	83	81	80	85	89	91	90	83	74	71	75	69	66	64	75	67	69	81	83	79	77	76	80			91

HUMEDAD RELATIVA ESTACIÓN EDELMAG, ENERO 2018

UNIDAD: %

	۸	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
	U		200							900																	=
20180101	75	74	72	69	69	69	67	58	49	48	54	58	55	54	57	67	66	67	74	70	74	75	79	77	66	48	79
20180102	79	70	71	71	71	66	56	50	50	45	42	38	56	60	60	61	64	66	67	68	67	75	80	81	63	38	81
20180103	82	80	79	81	82	79	82	83	85	86	88	86	78	65	53	58	62	54	63	75	79	76	77	76	76	53	88
20180104	79	82	76	73	76	70	70	67	63	59	56	47	51	50	47	47	48	56	66	63	77	77	73	78	65	47	82
20180105	78	76	71	67	71	66	67	64	57	50	41	39	39	38	39	40	45	44	43	42	50	59	63	64	55	38	78
20180106	68	78	83	80	79	83	87	86	82	72	64	60	57	54	54	56	54	53	55	62	67	68	69	70	68	53	87
20180107	71	73	76	77	79	78	74	73	64	57	56	51	49	47	44	42	50	52	54	56	64	72	75	83	63	42	83
20180108	87	82	82	85	84	81	82	81	74	69	66	80	84	85	84	71	62	58	58	67	68	59	60	63	74	58	87
20180109	67	69	69	67	55	55	55	56	53	54	55	56	53	52	51	50	49	50	52	52	56	59	60	61	57	49	69
20180110	64	66	63	56	53	52	62	58	55	53	50	45	43	43	46	48	46	46	46	48	50	53	58	62	53	43	66
20180111	66	68	70	74	76	82	79	78	75	67	62	58	46	41	42	43	48	50	52	54	63	67	66	64	62	41	82
20180112	66	68	69	64	64	67	62	57	52	48	48	49	61	53	45	44	46	47	54	56	61	59	57	63	57	44	69
20180113	70	72	77	75	73	70	69	75	73	68	60	55	48	47	48	45	48	51	55	57	61	63	64	79	63	45	79
20180114	84	85	83	79	78	72	64	61	56	53	48	47	46	44	45	45	45	48	49	49	52	53	57	58	58	44	85
20180115	53	52	55	57	59	65	69	68	68	63	61	60	60	56	52	51	52	54	56	59	62	64	68	71	60	51	71
20180116	73	74	73	72	77	79	74	70	71	65	61	51	45	44	43	45	48	48	52	53	56	54	56	57	60	43	79
20180117	61	64	68	72	74	78	75	73	70	74	76	77	77	71	60	53	48	54	51	49	56	62	66	66	66	48	78
20180118	86	90	89	91	88	85	86	86	81	74	68	60	52	46	46	45	43	43	45	50	53	57	58	59	66	43	91
20180119	59	63	66	80	83	65	66	67	61	57	57	54	56	52	51	52	52	61	52	49	2.e				60	49	83
MEDIA	72	73	73	73	73	72	71	69	65	61	59	56	56	53	51	51	52	53	55	57	62	64	66	69	63		
MÍNIMO	53	52	55	56	53	52	55	50	49	45	41	38	39	38	39	40	43	43	43	42	50	53	56	57		38	
MÁXIMO	87	90	89	91	88	85	87	86	85	86	88	86	84	85	84	71	66	67	74	75	79	77	80	83			91

ANEXO V CERTIFICADOS DE CALIBRACIÓN ANALIZADORES GASES

	atos Ge		es						
	mbre Est			Fecha		Operado		Tº A	
	Delm	05	13	12/17	Avi	el He	veur	2	2
2. E	lemento	s de C	Calibrac	ión					
				CILI	NDRO		1		
Concer	ntración	Vig	encia	Tolerancia	Presi	ón Marca	Nº de Cilindro	Prote	ocolo
295	53	26/0	4/24	\$0,7	200) Airoz	081674	E	02
	-				RADOR				
Fech	Ultima			Marca		odelo		e Serie	
	20 (1211:	7	Eledric		100	110	1+	
Fecha	Ultima	Mante	nción	GENERADO Marca	The second second	zERO odelo	Nº d	e Serie	
	05/		-	Teledene		0)	412		
			,	I KEL XV/E	1		000		
3. Da	atos Mo	nitor							
	Marc	а		Modelo	Nº	de Serie	R	ango	
Te	ledyn	e		T300	17	26	0-	50	
. Ca	libració	in							
			lujo		Va	alor Analizado	or		
Hora Inicio	Conc. deseada	Aire Lpm	Gas	Sin Calibrar	Error	Hora Calib.	Calibrado	Error	Hora termino
0.03	0	5	-	-0,3	0,7	10:18	0,0	0	10:25
0:26	40	3	41	383	4,2	_	-	-	10:56
9:56	30	3	30.7	28,9	3,6	-	-	1-	11:06
.06	20	3	10,4	20,0	0	-	-	-	11:16
1:16	10	3	10	10,5	5	-		1	11:26
								1	
	ones:								

100	itos Ger					Operado	ir.	TO A	mb.
1-1	ibre Esta	1000000		Fecha	1	-	ven		9
ED	eluze	-	18	12/17	Hv	0 5121	Overce	1 0	
2. El	emento	s de Ca	librac	ión					
				CILIN	IDRO		Nº de	1000	
Concen	tración	Vige	ncia	Tolerancia	Presid	on Marc	Cilindro	Prote	ocolo
295	3	2604	1/24	107	200	O Airoz	cu8/674	(E	02
				CALIBE				Serie	1
	Ultima			Marca		odelo			
3	20/12	2117		TELEVIE		200	119-	1	
Fecha	GENERADOR AIRE ZERO a Ultima Mantención Marca Modelo N 05 2 1	Nº de	Serie						
410000000		1 4	Ciou.	/			417	Nº de Serie	
	10 110	11-		1 ecceptio	1 1		-10		
3. Datos Monitor Marca						0.000			
			Modelo	Nº	de Serie	Ra	ango	-	
1		- "	T300	10	126	0-	50	_	
4. Ca	libració	in							
4. 00	IIIDI acic		ujo		V	alor Analizad	or		1
Hora Inicio	Conc. deseada	Aire Lpm	Gas ccm	Sin Calibrar	Error	Hora Calib.	Calibrado	Error	termi
201.10	0	5	-	0,0	0	-	-	-	20:
20:39	40	3	41	#0=1313	6,7	20:54	40,1	0,25	20:5
									-
							-		
		4						-	
									1
Observa	ciones:								

1.		os Gen								
	Nomb	re Esta	ción		Fecha	-	Operador		Tº A	mb
	Ede	luza)	26	12/12	Avie	el Me-	hiere	20	9
2.	Elei	mentos	de Ca	librac	ión					
					CILI	NDRO		Nº de	1 200	
Cor	centr	ación	Viger	ncia	Tolerancia	Presió	n Marca	Cilindro		oco
2	95	3	26/0	4/24	#0,7	2000	Aires	C481621	1 E	PZ
F	echal	Ultima (Calibra	ión	Marca	BRADOR	odelo	Nº d	le Serie	
			2/17		Televie		200	11	97	
		0 1 1	C11+		GENERADO					
F	echa	Ultima I	Manten	ción	Marca	Mo	odelo		le Serie	
	0	15/ r	2/17		Keledync	. 7	01	Uli	24_	_
3.	Da	tos Mo	nitor							
		Marc	а		Modelo	Nº c	de Serie	F	Rango	
Ť	1	eledy	ne		1300	17	26	0-	50	
4.		libracio								
			F	ujo		Va	lor Analizado		1	1
	dora nicio	Conc. deseada	Aire Lpm	Gas	Sin Calibrar	Error	Hora Calib.	Calibrado	Error	te
-	7:14	0	5	-	-0,04	0,1		-	-	17
-	7:26	40	3	u	ugy			_	-	1-
	1.00							_	+	+
									-	+
										-
				-						
		alones.			1					
0	bserva	ciones:								

Fecha OI /18 ón CILIN Tolerancia	IDRO	Nº de	T° Amb.
ón CILIN Tolerancia	Anel Ma	Arue	
ón CILIN Tolerancia	IDRO		
CILIN Tolerancia	Harrison Harry	Nº de	
Contract of the last of the la	Presión Ma		
		rca Cilindro	Protocol
10,7	2000 Air	25 (48/67)	1 Ep
CALIBR		No de	Serie
		u-1	T
Marca	Modelo	Nº de	e Serie
Tobolnic.	701	41	24
Modelo T300	Nº de Serie		ango -30
		ador	
Sin Calibrar	Error Calib.	Calibrado	Error te
0,03	0,07 -		- 1
41,2	.3 -	-	- 18
	Marca Velone GENERADOR Marca Velone Modelo 7300 Sin Calibrar 0,03	Marca Modelo Televino T200 GENERADOR AIRE ZERO Marca Modelo Televino Z01 Modelo Nº de Serie T300 1226 Valor Analiz Sin Calibrar Error Hora Calib. 0,03 0,02 —	Marca Modelo Nº de Velovo T200 119 GENERADOR AIRE ZERO Marca Modelo Nº de Velovo 701 41 Modelo Nº de Serie Re T300 1226 0- Valor Analizador Sin Calibrar Error Hora Calib. Calibrado

1. Da	tos Ger	nerales								
Nom	bre Esta	ación		Fecha	Facility.	C	perador		To	Amb.
E	Delinz	2	nd	01/18	Auc	1	Mahr	eve	1	20
	mento	\smile	librac	ión						
					INDRO				ų.	
Concent	ración	Viger	ncia	Tolerancia	Presi	ón	Marca	Nº de Cilindro	Pro	tocolo
298	53	26/04	1/24	± 0,7	192	2	Airaza	(C481674	E	PZ
					BRADOR		71092			
Fecha	Ultima	Calibra	ión	Marca	M	odel	lo		Serie	
7	0/1	2/17		Televine	STATE OF THE PARTY	700		119	7	
Fecha	Ultima	Manten	ción	GENERAD		ZER		Nº de	Serie	
	56/1	1		Teledina		01		ч		
	tos Mo			1 (000)						
3. Da	Marc			Modelo	Nº (le S	erie	Ra	ingo	
1	eledy			T300		26		0-5		
				130		26				
4. Ca	libracio		ıjo		Va	lor A	nalizador			
Hora Inicio	Conc. deseada		Gas	Sin Calibrar		Н	ora	Calibrado	Error	Hora termi
19:48	0	5	-	0,1	0,2	-		_	-	19:5
20:21	40	3	41	40,4	1			-	-	20:4
-										
Observa	ciones:			1						

L. Dat	os Gen	erales							
Nomb	re Esta	ión		Fecha	1	Operade	· ·	_	Amb.
E)elmi	23	19	01/18	Av	id Me	treux	2	0°
2. Elei	mentos	de Ca	libraci	ón					
				CILI	NDRO		NO de		
Concent	ación	Viger	icia	Tolerancia	Presió	n Marc	a Nº de Cilindro	Pro	tocolo
299	53	26/0	4/24	±0,7	1980	Airaz	s curilly	1 E	PZ
					RADOR				l.
Fecha	Ultima (Calibra	ción	Marca		delo		e Serie	
2	20/12	117		Tredme	TA)(97	
Fecha	Ultima N	/anten	ción	GENERADO Marca		delo	Nº d	e Serie	
- C-C-03-31	05/12	1		Teledine		0(418	24	
	Marca	•		Modelo		le Serie	0 - S	ango	
	elec)W		+	T300	1 (0	ce			
4. Ca	IIDI'acio		ujo		Va	lor Analizad	or		Hora
Hora Inicio	Conc. deseada	Aire Lpm	Gas	Sin Calibrar	Error	Hora Calib.	Calibrado	Error	termir
18:48	0	5	-	0,18	0,4	-	-		18:58
19:16	400	3	41	39,7	07		_		19:2
-									
Observa	ciones:								

Al	gorit	mo	5.	Algori	Fich	a de	Calib	ones A ración x-NO ₂ -	Allanz	ador	s SpA.		Ri3-6000 Rev. 00 ha:08/2	
1. D	atos Ge	nera	les										To Am	
	Nombre l	Estac	ion	-	echa			A	Operad	1	-		20	
	Edel,	128		13	121	17		Avi	el l	121	vens	_	20	
2. E	lemento	-		ación										
						CI	LIND	RO						
Con	centraci	ón	Vigen	cia	Tole	eranci	a	Presión	Mar	ca	Nº de Cilind		Protoc	colo
A COLUMN	51115		26 D4	-	+	1,4-	,	2000	Aio	-	CC4816	74	Epe	
_	51,45	13	cle ler	1104	F		LIBRA		nig				4	
F	echa Ulti	ma C	alibrac	ión	1	farca	-	Mod	lelo			de S		
	20	112	117		Tel	edy	u	TA			1	19	+	
		-			GE	NERA	DOR	AIRE ZE		-	NIC.	de S	erie	
Fe	echa Ulti	ma M	antend	ión	-	Marca		Mod		1	_			
	05	112	117		Tel	edy	ue	7	01	-		112	1	
-	Datos M	onite												
3. 1		200,000	-	-	М	odelo		Nº de	Serie			Rang	go	
	-1	larca						27.	12		0	-5	20	
	Tele	es) XI	e	_	16	00		01		+				
4.	Calibrac	ión												
		Valo	res del I	llutor		200	- 400		en el An	alizac		orado		Hora
iora	Conc. deseada	493	Flujo	Ozono	100	-310	NOX	Error	Hora Calib	NO	Error	NOX	Error	Termino
iicio	descua	Aire Lpm	ccpm	03	NO	Error	-29	-	10:18	-D. I	ODZ	00	0	10:25
0.08	0	5	-	-	415	57	407		-	-	-	-	-	11:51
29	400	3	13,5		500	0	299	0,3		-	-	-	-	12:05
1.51	300		11,7	-		0,5	200	0	-	-	-	-	-	12:16
205	200	3	58	-	101	1	102	2	1-	-	-	-	-	12 0
216	100	2	5,0										1	
bserv	vaciones:												1 114	

A.	Datos G	-										-	W. A	6 1
	Nombre	-	-20-06		Fech		-		Operad				70 Am	
_	Edel	mzi	>	18	12	17	-	Ane	1 M	tue	ur-	-	00	
2.	Element	os de	e Calib	ración										
						C	ILINI	ORO	-	-	Nº de			
Co	ncentrac	ión	Vigen	cia	Tol	eranc	ia	Presión	Mar	ca	Cilind		Protoc	
	51,45	1	26/04	(24)	1	- 1,4		2000	Aire	95	01316	74	Eq.	2
-	echa Ult	l	a librar	TA's		CA Marca		ADOR Mod	elo		N	de S	erie	
		1	2/17			Ledx		170				197		
		110	clit					AIRE ZE		1				
F	echa Ult	ima N	lanten	ción		Marca		Mod	_			de S		
	05	5/11	2/17		Te	edu	e	20	1		_	4124		
3	Datos M	onit	or											
3.		Marca	7.4		M	odelo		Nº de	Serie	1		Rang	10	
		(ed)			x	200	,	223	18	IV.	0	- 50	6	
		-	ru-											
4.	Calibrac		-					Valores	en el An	allzad	or	=		
ora	Conc.	Valo	res del I Flujo	Ollutor		Sin	Calibra		Hora			orado		Hora Termina
icio	deseada	Aire	Gas	Ozono O3	NO	Error	NOX	Error	Callb.	NO	Error	NOX	Error	
10	0	Lpm 5	ccpm	-		OPZ	00	0	-	-	-	-	=	20:20
.22	400	3	3,5	-	401	0,2	915	3,7	-		-			
										-				
5057	aciones:				-	-	-							
SULV	acionica.													

	Nombre	Esta	ción		Fect				Opera	dor			To An	ıb.
	Ede	Inz	9	26	/12	2/12	-	Air	el t	(de	nue		20	-
2.	Element	os de	Calib	ración	1									
						(ILIN	DRO			***			
Co	ncentrac	ión	Viger	cia	To	leran	cia	Presió	n Ma	rca	Nº 6		Proto	colo
	51,45		212/2	1/2/1	-	++(14	2000	A	225	C4816	74	D	7
	01,00		as les	1124	-			ADOR	1+116	you	OL LOR	,,,,,	Ep	-
F	echa Ult	ima C	alibrac	ión		Marca			delo		N	o de S	erie	
	20	112	14		1	ledy	he	TH	00			197		
		1 10	10-1		GE	ENERA	ADOR	AIRE Z						
F	echa Ulti	ima M	lanten	ción		Marca	-		delo		N	o de S	Serie	
	05	12	117		X	ledx	u.	70	1			4124		
		110	117		10	NO A	00			_				
3.	Datos M	onite	or											
	N	/arca			M	lodelo)	Nº de	e Serie			Rang	go	1
	Teles)in	-		+	200		23	48		0-	-50	0	
	1000	, pre												
4.	Calibrac	ión												
	200	Valo	res del I	Dilutor			- 100		en el An	alizad	E 100 1			U incom
Hora	Conc. deseada	Aire	Flujo	Ozono			Calibra		Hora Calib.	1.00		orado	2000	Hora Termino
		Lpm		03	NO	THE REAL PROPERTY.	NOX		Cumb.	NO	Error	NOX	Error	10.01.
17:14	0	5	8,5		0,1	202	011	0,02						17:24
7:41	400	3	23,5	-	412	47	402	5.5	17:54	404	1	403	0,7	18:06
	400	0	1											
	100													
Observ	aciones:												_	
Juseiv	actories.													

Inicio deseada Aire Gas Ozono NO Error NOX Error Calib. NO Error NOX Error 18:22 O 5 8	A	lgorit	mo	S	Algo			e Cal	iciones ibració IO _x -NO	n Ana				Ri3-66 Rev. Fecha:08	00
22 Elementos de Calibración CILINDRO Concentración Vigencia Tolerancia Presión Marca Nº de Cilindro 51,45 26 04 24 1,47. 2000 Aigs (14864) Epz CALIBRADOR Fecha Ultima Calibración Marca Modelo Nº de Serie 20 12 12 12 12 12 194 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie 05 12 14 12 12 12 12 12 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1. [atos Ge	enera	les											
Concentración Vigencia Tolerancia Presión Marca Nº de Cilindro Protocol 51,45 26 24 4 14,42 200 Acg Cuybla Epe CALIBRADOR Fecha Ultima Calibración Marca Modelo Nº de Serie 20 12 12 Teluna Teon 1194 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie 05 12 14 Teluna Teon 1194 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie 05 12 14 Teluna Teon 1194 3. Datos Monitor Marca Modelo Nº de Serie Rango 10 12 12 Teluna Teon 1194 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie 05 12 14 Teluna Teon 1194 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie 05 12 14 Teluna Teon 1194 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie 05 12 14 Teluna Teon 1194 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie 05 12 14 Teluna Teon 1194 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie Calibración Teluna Teon 1194 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie Calibración Teluna		Nombre	Estac	ión		Fec	ha			Oper	ador	1		Tº A	mb.
CONCENTRACIÓN Vigencia Tolerancia Presión Marca Cilindro Protocol 51,45 26 0424 ± 1,47 2000 Aigs (44844 Epe CALIBRADOR Fecha Ultima Calibración Marca Modelo Nº de Serie 20 12 12 Epuna T200 1194 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie 05 12 14 Epuna T200 1194 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie 05 12 14 Epuna T200 1194 3. Datos Monitor Marca Modelo Nº de Serie Rango 7200 7428 0 - 500 4. Calibración Valores del Dilutor Valores en el Analizador Flujo Sin Calibrar Hora Calib. NO Error NOX Error Elijo O Sin Calibrar Calib. NO Error NOX E		Edely	129		05	101	18		Arie	21 P	zh	ene		22	0
Concentración Vigencia Tolerancia Presión Marca Nº de Cilindro 51,45 26 04 24 1,47 2000 Aigs Cuyaldu Ege CALIBRADOR Fecha Ultima Calibración Marca Modelo Nº de Serie 20 12 17 Colva T200 1197 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie 05 12 17 Telebrac 701 4124 3. Datos Monitor Marca Modelo Nº de Serie Rango Telebración Valores en el Analizador Inicio Marca Sin Calibrar Hora Calibrado Aire Gas Ozono No Error NOX Error Calib NO Error NOX Error 18:22 0 5 44 0,3 0,9 0,2 8 8 18:45 400 3 3,5 - 311 2,2 393 1,7 8	2. E	lement	os de	Calib	ració	n									
Concentracion Vigencia Tolerancia Presión Marca Cilindro Protocol 51,45 26 0424 ± 1,47, 2000 Aigs (L48144 Epz CALIBRADOR Fecha Ultima Calibración Marca Modelo Nº de Serie 20 12 17 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie 05 12 17 GENERADOR AIRE ZERO Marca Modelo Nº de Serie Rango Al Calibración Marca Modelo Nº de Serie Rango Valores del Dilutor Valores en el Analizador Hora Conc. Flujo Sin Calibrar Hora Calibrado Tecepm O3 NO Error NOX Error Calib. NO Error NOX Error Extended Aire Gas Ozono NO Error NOX Error Calib. NO Error NOX Er				302360				CILIN	DRO						
Fecha Ultima Calibración Marca Modelo Nº de Serie 20 12 17 Tewwo Troo 1197 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie 05 12 17 Tewwo Troo 1197 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie 05 12 17 Tewwo Troo 1197 3. Datos Monitor Marca Modelo Nº de Serie Rango Telware Troo 2728 0-500 4. Calibración Valores del Dilutor Valores en el Analizador Hora Conc. Flujo Sin Calibrar Hora Calibrado Terror Gais Osono No Error NOX Error Calib. No Error NOX Error 1282 0 5 40,3 09 0,2 88 18:20 0 5 40,3 09 0,2 88 18:21 00 3 13,5 - 311 2,2 343 1,7 88	Cor	centraci	ón	Vigen	cia	To	leran	cia	Presió	n M	arca			Proto	colo
Fecha Ultima Calibración Marca Modelo Nº de Serie 20 12 12 Tecuno T200 1194 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie 05 12 12 Tecuno T200 1194 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie 05 12 12 Tecuno T200 1194 3. Datos Monitor Marca Modelo Nº de Serie Rango 72 12 12 Tecuno T200 1194 4. Calibración Valores del Dilutor Valores en el Analizador Tinicio deseada Aire Gas Ozono NO Error NOX Error Calib. NO Error NOX Error Reservo Calib. NO Error NOX Error Reservo Calib. NO Error NOX Error Reservo Calib. NO Error NOX Error Reservo Calibrato Tale. 18 22 0 5 40 0,3 09 0,2 8 8 18 4 400 3 73,5 31 2,2 393 1,3 8 18		51,45	0	alou	1211	4	14	-/	2000	A	35	Carrier .		E	12
Fecha Ultima Calibración Marca Modelo Nº de Serie 20 12 12 GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie 05 12 14 ELLUME 701 U124 3. Datos Monitor Marca Modelo Nº de Serie Rango Yeleume 7200 2728 0-500 4. Calibración Valores del Dilutor Valores en el Analizador Fiujo Sin Calibrar Hora Calibrado Technologo Os Calibrado No Error Nox Error Calib. No Error Nox Error 1822 0 5 14 0,3 09 0,2 8 1845 4000 3 73,5 - 311 2,2 393 1,2 185		., .	-	4	100					711	90				
GENERADOR AIRE ZERO Fecha Ultima Mantención Marca Modelo Nº de Serie OS V2 14 Velevine 701 VI24 3. Datos Monitor Marca Modelo Nº de Serie Rango Televine T200 2428 0-500 4. Calibración Hora Conc. Flujo Sin Calibrar Hora Calibrado Inicio deseada Aire Gas Ozono Lpm ccpm O3 NO Error NOX Error Calib. NO Error NOX Error 1822 0 5 140,3 09 0,2 88 1845 4000 3 73,5 - 391 2,2 393 1,7 88	F	echa Ulti	ma C	alibrac	ión			-	-	delo		N	lo de	Serie	
Fecha Ultima Mantención Marca Modelo Nº de Serie		20/	12	112									719=	7	
3. Datos Monitor Marca Modelo Nº de Serie Rango						G							10.1	C-ul-	
3. Datos Monitor Marca Modelo Nº de Serie Rango Televina T200 2778 0-500 4. Calibración Hora Conc. Flujo Sin Calibrar Hora Calibrado Inicio deseada Aire Gas Ozono NO Error NOX Error Calib. NO Error NOX Error 1822 0 5 8 1845 400 3 23,5 - 311 2,2 393 1,7 8	F	_	1	1	cion		11	_			-			Serie	-
Marca Modelo Nº de Serie Rango Xelevine 7200 2778 0-500 4. Calibración Valores del Dilutor Valores en el Analizador Hora Conc. Flujo Sin Calibrar Hora Calibrado Inicio deseada Aire Gas Ozono Ozono Calibrado Calibrado	_	05	12	117		Te	levy	ne	70	01		4	124		_
Valores del Dilutor Valores en el Analizador Conc. Flujo Sin Calibrar Hora Calibrado Tenicio deseada Aire Capm O3 NO Error NOX Error Calib. NO Error NOX Error Error NOX Error N	3. 1	Datos M	onito	or											
4. Calibración Hora Conc. Flujo Sin Calibrar Hora Calibrado Technologia Conc. Technologia Conc.		N	larca			N	todelo	5	Nº de	e Serie			Ran	go	
Valores del Dilutor Valores en el Analizador Inicio Conc. Flujo Sin Calibrar Hora Calibrado Te Calibrado Te Calibrado Te Calibrado Conc.		Tele	Du	10		72	00		27:	28		Ð	-50	∞	
Valores del Dilutor Valores en el Analizador Inicio Conc. Flujo Sin Calibrar Hora Calibrado Te Calibrado Te Calibrado Te Calibrado Conc. Company			ión												
Hora Conc. Flujo Sin Calibrar Hora Calibrado Te	-	Calibrac	JUIL		ilutor				Valores	s en el A	nalizad	lor		_	
	4.	Calibrac	Valo	res del D			Sin	Calibra				200	brado		Hora
18:45 400 3 23,5 - 391 2,2 393 1,7 18	Hora	Conc.	Valo	Flujo	mutor		_			C-III	100000	Farme	NOY	Frenc	Temm
	Hora	Conc.	Aire	Flujo	Ozono	NO	1	10000		Calib.	NO	ELLOL	MOX	Liver	
Observaciones:	Hora Inicio	Conc. deseada	Aire Lpm	Flujo Gas ccpm	Ozono	-14	0,3	-0,9	0,2	Calib.	NO -	Error	_	-	18.3
Observaciones:	Hora Inicio	Conc. deseada	Aire Lpm	Flujo Gas ccpm	Ozono	-14	0,3	-0,9	0,2	Calib.	NO -	Error	-	=	18:3
Observaciones:	Hora Inicio	Conc. deseada	Aire Lpm	Flujo Gas ccpm	Ozono	-14	0,3	-0,9	0,2	Calib.	NO -	Error	1 1	=	
Observaciones:	Hora Inicio	Conc. deseada	Aire Lpm	Flujo Gas ccpm	Ozono	-14	0,3	-0,9	0,2	Calib.	NO -	Error	1	-	
An-	Hora Inicio	Conc. deseada	Aire Lpm	Flujo Gas ccpm	Ozono	-14	0,3	-0,9	0,2	Calib.	NO -	Error	(1	=	
P da	Hora Inicio	Conc. deseada	Aire Lpm	Flujo Gas ccpm	Ozono	-14	0,3	-0,9	0,2	Calib.	NO -	Error	(-		
1 do	Hora Inicio	Conc. deseada	Aire Lpm	Flujo Gas ccpm	Ozono	-14	0,3	-0,9	0,2	Calib.	NO -	Error		-	
	Hora Inicio	Conc. deseada	Aire Lpm	Flujo Gas ccpm	Ozono	-14	0,3	-0,9	0,2	Calib	NO -		7	-	
1 ATO	Hora Inicio	Conc. deseada	Aire Lpm	Flujo Gas ccpm	Ozono	-14	0,3	-0,9	0,2	Calib.	NO		-	da	

A	lgorit	mo	5			ha de	Cali	ciones de bración O _x -NO ₂	Anali				Ri3-600 Rev. 00 echa:08/	0
1. [Datos G	enera	ales											
	Nombre	-	_		Fech				Opera				To An	
	Edel	W2	9	12	1011	18		Aviel	16	tire	we		20)
2. 1	Element	os de	e Calib	ración	1									
				2000000		C	ILIN	DRO						
Cor	centraci	ión	Vigen	cia	Tol	erano	ia	Presión	Ma	rca	Nº c		Proto	colo
	51,45		ralpe	1/24	4	1,4	14	1980	Air	200	(018)	674	Ex	2
					-	_		ADOR	17 14	7				
F	echa Ulti					Marca		Mod	delo	+		o de s		-1
	20	4	1121	7		edm		T7			- 1	197		_
F	echa Ulti	ma N	lanten	rión		Marca		AIRE ZE	delo	1	N	o de s	Serie	
	05	1	2/17			Ledy	_	70	-		-	4174	1	
	03	1 10	111		118	EOX	ac	-10						
3. 1	Datos M	onite	or						-	_		-		
	P	Marca		_	M	lodelo)	-	Serie	-		Ran		
	Tola	dyn	e		T	200)	27	78	_	0	-50		
4.	Calibrac	ión												
		Valo	res del l	Dilutor					en el A	nalizac				Hora
ora	Conc. deseada	Aire	Flujo	Ozono	110	Error	NOX	Error	Hora Calib.	NO	Error	NOX	Error	Termino
		Lpm	100000000000000000000000000000000000000	03	Service Co.	0,3				-		-		19:58
148	1100	3	23,5	-	403	9,7	408		-	-	-	-	-	10.21
										-		-		
											-			
									_	-	-			
bserv	aciones:													
													1	
												1	#	-
												48	At	

-	Nombre			1		200	-	_	Onora	don			To An	.h
			-	10	Fech			Aire	Opera	-	Rue			
-	Edel	ME	3	119	101	118		Aue	(1	270	Rue	-	20	
2. E	lement	os de	Calibi	ación	1									
						C	ILIN	DRO	-		Nº d			
Cor	centraci	ón	Vigen	cia	Tol	erand	ia	Presión	n Mai	rca	Cilind		Proto	colo
2	51,45	7	6 du	/24	±	1.4	1-1	1980	Aire	224	(C48)	674	Exz	
		10		((_	No. of Concession, Name of Street, or other Designation, or other	ADOR		-				
F	echa Ulți	ma C	alibrac	ión		Marca	1	Mo	delo	+		o de s		-
	20	12	117		Te	lady	ne	THE				1192		
					GE	NERA	DOR	AIRE Z	THE REAL PROPERTY.			0 -1 - 1	Corio	
F	echa Ulti	ma M	lantend	ión		Marca	3		delo		- 000		Serie	
	05	12/	17		Te	ledy	nic	20) (1124	1	_
3 1	Datos M	onito	or											
	100000000000000000000000000000000000000	larca			M	odelo		Nº de	Serie			Ran	go	
	Telec	-	40		7	200	2	22	178		0	-50	00	
	100	you			- 0									
4.	Calibrac	ión							7 20 20	-				
		Valo	res del C	ilutor		Cin	Calibra		en el Ar	alizad	200	orado		Но
Hora Inicio	Conc. deseada	Aire	Flujo	Ozono	NO	Error	The state of	Error	Hora Calib.	NO	Error	NOX	Error	Terr
	0	Lpm	ccpm	03	X	Section 2	-1,3	A STATE OF THE PARTY OF THE PAR	-	-	-	-	-	18:
18:59	400	5	3,5	-	396	1	390		-	-	-	=	_	19:1
001													-	
									_			_	-	
Obser	vaciones:													
				_	_	-	-			-	-	1		-
												//	h -	/

Airgas

CERTIFICATE OF ANALYSIS **Grade of Product: EPA Protocol**

Airgas, Inc.

600 Union Landing Road Cinnaminson, NJ 08077 856-829-7878 Fax: 856-829-6576 www.airgas.com

Part Number: Cylinder Number: Laboratory:

E03NI99E15A0338 CC481674

ASG - Riverton - NJ

Reference Number: 82-124548366-1 Cylinder Volume Cylinder Pressure:

144.4 CF 2015 PSIG 660

Valve Outlet: Certification Date:

Apr 26, 2016

PGVP Number: Gas Code:

B52016 CO,NO, JOX, BALN

Expiration Date: Apr 26, 2024

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapasca

		ANALYTI	CAL RESUI	LTS	
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
NOX	50.00 PPM	51.45 PPM	G1	+/- 1.4% NIST Traceable	04/19/2016, 04/26/2016
NITRIC OXIDE	50.00 PPM	51.39 PPM	G1	+/- 1.3% NIST Traceable	04/19/2016, 04/26/2016
CARBON MONOXIDE	3000 PPM	2953 PPM	G1	+/- 0.7% NIST Traceable	04/20/2016
NITROGEN	Balance				

		CA	LIBRATION STANDARDS		
Туре	Lot ID	Cylinder No	Concentration	Uncertainty	Expiration Date
NTRMplus	13061010	CC423187	99.86 PPM NITRIC OXIDE/NITROGEN	+/- 0.8%	Nov 19, 2019
PRM	12312	680179	10.01 PPM NITROGEN DIOXIDE/NITROGEN	+/- 2.0%	Oct 15, 2014
NTRM	13061037	CC423408	99.86 PPM NITRIC OXIDE NITROGEN	+/- 0.8%	Nov 19, 2019
GMIS	124206889121	CC323027	4.514 PPM NITROGEN DIC (IDE/NITROGEN	TY- 2.070	Oct 13, 2017
NTRM	00052519	SG9197291BAL	1985 PPM CARBON MONOXIDE/NITROGEN	+/- 0.6%	Aug 17, 2016
- 0011 001	LA DOM Lad above	is anhour reference to the	ZMIS used in the assay and not part of the analysis		

Instrument/Make/Model	ANALYTICAL EQUIPMENT Analytical Principle	Last Multipoint Calibration
Siemens Ultramat 6 N1C8180 COHIGH	NDIR	Mar 24, 2016
Nicolet 6700 APW1100391 NO	FTIR	Apr 14, 2016
Nicolet 6700 APW1100391 NO2	FTIR	Apr 14, 2016

Triad Data Available Upon Request

Approved for Release

Page 1 of 82-124548366-1

CAMPAÑA DE MONITOREO DE CALIDAD DEL AIRE Y METEOROLOGÍA, PROYECTO EMPRESA ELÉCTRICA DE **MAGALLANES S.A.**

Preparado por:

Para:

Abril, 2019

INFORME DE RESULTADOS MCA 159-18

CAMPAÑA DE MONITOREO DE CALIDAD DEL AIRE Y METEOROLOGÍA, PROYECTO EMPRESA ELÉCTRICA DE MAGALLANES S.A.

Preparado para:

	Versión del Docum	ento	1
Responsable	Elaboración	Revisión	Aprobación
Nombre:	Francisca Pavez	Pía Astudillo	Susan Saldaña
Cargo:	Ingeniero de Proyecto	Encargado de Proyectos	Jefe de Unidad de Monitoreo Atmosférico
Fecha:	16-05-2019	17-05-2019	17-05-2019
Firma:	Land	Co A.G.	Sugal dans

Abril, 2019

www.algoritmospa.com

ÍNDICE DE CONTENIDOS

Resume	en	1
1	Introducción	4
2	Objetivos	5
El obje	tivo del presente informe de seguimiento ambiental es entregar los resultados del monitoreo de calidad del aire realizado por la Estación Edelmag en la ciudac de Punta Arenas para el periodo de Abril - Mayo 2019	t
3	Materiales y Métodos	6
3.1	Descripción del Área de Estudio	6
3.2	Ubicación	6
3.3	Parámetros utilizados para caracterizar el estado y evolución de las variables ambientales	8
3.4	Metodología de Muestreo, Medición, Análisis y/o Control	10
3.5	Equipamiento utilizado en el monitoreo	11
3.6	Fecha de Monitoreo	13
4	Resultados	14
4.1	Material Particulado Fino Respirable MP-2,5	14
4.2	Monóxido de Carbono	17
4.3	Dióxido de Nitrógeno	20
4.4	Meteorología	23
4.4.1	Velocidad del Viento	24
4.4.2	Dirección del Viento	26
4.4.3	Temperatura	30
4.4.4	Humedad Relativa	32
5	DISCUSIONES	34
5.1	Norma Primaria de Calidad de Aire para Material Particulado Fino Respirable MP 2,5	
5.2	Norma Primaria de Calidad de Aire para Monóxido de Carbono (CO) y Dióxido de Nitrógeno (NO_2)	
5.3	Meteorología	
6	CONCLUSIONES	38
7	DEFEDENCIAS	20

ÍNDICE DE FOTOGRAFÍAS

Fotografía N°	1 Estación Edelmag
	ÍNDICE DE FIGURAS
Figura N° 1	Ubicación espacial de Estación de Monitoreo, Proyecto Empresa Eléctrica de Magallanes
Figura N° 2	Rosa de los Vientos Estación Edelmag, Abril – Mayo 2019 27
Figura N° 3	Rosa de Viento Horario de 00:00 a 11:59, Abril – Mayo 2019 28
Figura N° 4	Rosa de Viento Horario de 12:00 a 23:59, Abril – Mayo 2019 29
	ÍNDICE DE TABLAS
Tabla Nº 1	Resumen de Concentración de Gases Monitoreados, Abril 2019
Tabla N° 2	Resumen de Concentración de Gases Monitoreados, Mayo 2019
Tabla N° 3	Resultados diarios Meteorología, Abril 2019
Tabla N° 4	Resultados diarios Meteorología, Mayo 2019
Tabla N° 5	Identificación Estaciones de Monitoreo
Tabla Nº 6	Normativa nacional aplicable
Tabla N° 7	Valores normados en la legislación ambiental
Tabla N° 8	Equipamiento en Estación de Monitoreo1
Tabla N° 9	Promedio Diario de MP-2,5, Abril - Mayo 2019 14
Tabla N° 10	Concentración de CO, Abril – Mayo 2019 17
Tabla N° 11	Concentración de NO ₂ , Abril – Mayo 2019
Tabla N° 12	Resumen de Variables Meteorológicas, Estación Edelmag, Abril 2019 23
Tabla Nº 13	Resumen de Variables Meteorológicas, Estación Edelmag, Mayo 2019 23
Tabla Nº 14	Dirección del Viento Estación Edelmag, Abril – Mayo 2019
Tabla N° 15	Dirección de Viento según Rango de Velocidades Estación Edelmag, Abril – Mayo 2019
Tabla Nº 16	Resumen de concentraciones Material Particulado MP-2,5, Estación
	Edelmag, periodo diciembre 2015 – enero 2016, diciembre 2017- enero
	2019 y abril - mayo 2019 34
Tabla Nº 17	Resumen de concentraciones Gases, Estación Edelmag, periodo diciembre
	2015 – enero 2016, diciembre 2017 – enero 2018 y abril – mayo 2019. 3
Tabla N° 18	Resultados de Meteorología, Estación Edelmag, Abril - Mayo 2019 36
Tabla Nº 19	Resultados de Predominancia de vientos, Estación Edelmag, Abril – Mayo

ÍNDICE DE GRÁFICOS

Gráfico Nº 1	Concentración de Material Particulado Fino Respirable MP-2,5 Estación Edelmag Abril – Mayo 2019
Gráfico Nº 2	Ciclo Diario Material Particulado Fino Respirable MP-2,5 Estación Edelmag Abril – Mayo 2019
Gráfico Nº 3	Concentración de Monóxido de Carbono Estación Edelmag Abril – Mayo 2019
Gráfico N° 4 Gráfico N° 5	Ciclo Diario Monóxido de Carbono Estación Edelmag Abril – Mayo 2019 19 Concentración de Dióxido de Nitrógeno Estación Edelmag, Abril – Mayo 2019
Gráfico Nº 6	Ciclo Diario de Dióxido de Nitrógeno Estación Edelmag, Abril – Mayo 2019
Gráfico N° 7 Gráfico N° 8	Velocidad del Viento Estación Edelmag, Abril – Mayo 2019
Gráfico Nº 9 Gráfico Nº 10 Gráfico Nº 11 Gráfico Nº 12	Temperatura Estación Edelmag, Abril – Mayo 2019
	ÍNDICE DE ANEXOS
ANEXO I	NOMENCLATURA PARA INVALIDACIÓN O PÉRDIDA DE DATOS SEGÚN DTO. Nº 61
ANEXO II	TABLAS DE CONCENTRACIÓN DE MATERIAL PARTICULADO MP-2,5 42
ANEXO III	TABLAS DE GASES ESTACIÓN EDELMAG, ABRIL - MAYO 2019 44
ANEXO IV	TABLAS DE VARIABLES METEOROLÓGICAS, ESTACIÓN EDELMAG ABRIL – MAYO 2019
ANEXO V	CERTIFICADOS DE CALIBRACIÓN ANALIZADORES GASES

Resumen

El presente documento corresponde al Informe de Resultados de la "Campaña de Monitoreo de Calidad de Aire y Meteorología, Proyecto Empresa Eléctrica de Magallanes S.A.", el cual informa sobre los resultados obtenidos durante el periodo correspondiente a Abril - Mayo de 2019.

A continuación en la Tabla N° 1 y Tabla N° 2 se presenta un resumen de los resultados registrados de material particulado fino respirable MP-2,5, monóxido de carbono CO y dióxido de nitrógeno NO_2 , durante el mes de Abril – Mayo 2019 respectivamente.

Tabla N° 1 Resumen de Concentración de Gases Monitoreados, Abril 2019

Contominanto	Estadístico	Concer	Newse	
Contaminante	Estadistico	Valor	Unidad	Norma
	Promedio del Periodo	2		20 ^a
MP - 2,5	Percentil 98, promedio diario	11	μg/m³	50ª
со	Promedio Mensual	0,2		
	Máximo Promedio Diario	0,4	mg/m³N	
	Máximo Horario Mensual Percentil 99	0,6		30 ^b
	Máximo Promedio Móvil 8 Hrs. Mensual	0,5		10 ^b
NO ₂	Promedio Mensual	4,2		100 ^c
	Máximo Promedio Diario	11,0	μg/m³N	
	Máximo Horario Mensual Percentil 99	28,3		400 ^c

1/65

^a D.S. Nº 12 Norma primaria de calidad ambiental para material particulado fino respirable MP-2,5. Publicada en el Diario Oficial el día 09 de junio 2011.

^b D.S. Nº 115/02 del Ministerio Secretaría General de la Presidencia de la República.

^c D.S. Nº 114/02 del Ministerio Secretaría General de la Presidencia de la República.

Tabla N° 2 Resumen de Concentración de Gases Monitoreados, Mayo 2019

Contominanto	Estadística	Conce	News	
Contaminante	Estadístico	Valor	Unidad	Norma
	Promedio del Periodo	2	. 3	20 ^d
MP - 2,5	Percentil 98, promedio diario	27	μg/m³	50 ^d
со	Promedio Mensual	0,2		
	Máximo Promedio Diario	0,2	mg/m³N	
	Máximo Horario Mensual Percentil 99	0,3		30 ^e
	Máximo Promedio Móvil 8 Hrs. Mensual	0,3		10 ^e
NO ₂	Promedio Mensual	3,7		100 ^f
	Máximo Promedio Diario	4,3	μg/m³N	
	Máximo Horario Mensual Percentil 99	18,1	1	400 ^f

La Tabla N° 3 y Tabla N° 4 muestran un resumen de los valores de meteorología durante los meses Abril y Mayo 2019 respectivamente.

Tabla N° 3 Resultados diarios Meteorología, Abril 2019

Variable Monitoreada	Media Mensual	Mínima Horaria	Máxima Horaria
Velocidad del Viento (m/s)	3,8	0,6	11,5
Temperatura (°C)	6,2	0,2	13,5
Humedad Relativa (%)	72	24	99

2/65

^d D.S. Nº 12 Norma primaria de calidad ambiental para material particulado fino respirable MP-2,5. Publicada en el Diario Oficial el día 09 de junio 2011.

^e D.S. Nº 115/02 del Ministerio Secretaría General de la Presidencia de la República.

f D.S. Nº 114/02 del Ministerio Secretaría General de la Presidencia de la República.

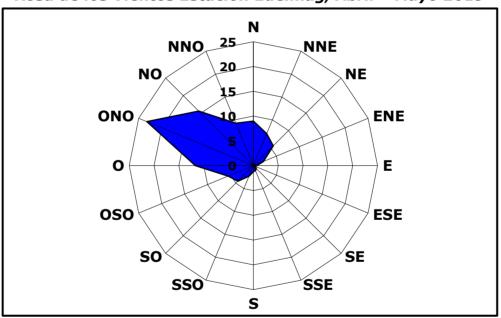


Tabla N° 4 Resultados diarios Meteorología, Mayo 2019

Variable Monitoreada	Media Mensual	Mínima Horaria	Máxima Horaria
Velocidad del Viento (m/s)	4,3	0,7	14,7
Temperatura (°C)	4,2	-3,3	11,9
Humedad Relativa (%)	73	43	98

Durante el periodo Abril – Mayo 2019 en la Estación Edelmag se presentaron vientos provenientes principalmente del oeste - noroeste (ONO) y en menor medida del noroeste (NO) y oeste (O).

Rosa de los Vientos Estación Edelmag, Abril - Mayo 2019

1 Introducción

El presente documento corresponde al Informe de Resultados de la "Campaña de Monitoreo de Calidad de Aire y Meteorología, Proyecto Empresa Eléctrica de Magallanes S.A.", el cual informa sobre los resultados obtenidos durante el periodo correspondiente Abril - Mayo 2019.

A través de este documento se cumple con el compromiso voluntario de Edelmag de monitorear una vez al año o cada 2 años en la etapa de operación del proyecto "Instalación y Operación Turbogenerador Solar Titan 130", aprobado ambientalmente favorable de acuerdo a la RCA Nº 144 del año 2007, considerando 7.1.

En el entorno del Proyecto, se instaló el equipamiento requerido para realizar los monitoreos comprometidos, el cual consistió en:

- Analizador de Material Particulado Fino Respirable MP-2,5,
- Analizador de Monóxido de Carbono (CO),
- Analizador de Dióxido de Nitrógeno (NO₂)
- Estación de Meteorología

Cabe señalar que los Analizadores de gases cumplen con las exigencias definidas por la agencia ambiental *USEPA* (*Environmental Protection Agency*) para este tipo de equipos. El equipo cuenta con certificación Nº MC090158/01 otorgado por la Empresa Europea de Servicios de Certificación SIRA.

La Estación Edelmag cumple con las exigencias definidas por la Organización Meteorológica Mundial WMO (World Meteorological Organization), para los sensores considerados en las mediciones.

El analizador de MP-2,5, los analizadores de gases y los sensores de meteorología, en adelante Estación Edelmag, se instalaron el día 02 de Abril, comenzando sus operaciones en forma continua el día 02 de Abril para el analizador de MP-2,5 y gases, mientras que los sensores meteorológico comenzaron a medir en forma continua el día 12 Abril.

Algoritmos SpA realiza la instalación, operación e informe de resultados de la estación de monitoreo de calidad del aire.

2 Objetivos

El objetivo del presente informe de seguimiento ambiental es entregar los resultados del monitoreo de calidad del aire realizado por la Estación Edelmag en la ciudad de Punta Arenas para el periodo de Abril - Mayo 2019.

3 Materiales y Métodos

3.1 Descripción del Área de Estudio

La estación de monitoreo fue instalada en sector considerado representativo de las zonas pobladas más cercanas al Proyecto Empresa Eléctrica de Magallanes, los cuales se encontraban libres de elementos naturales y artificiales que pudieran alterar las concentraciones de gases. La estación se ubicó en la comuna de Punta Arenas.

3.2 Ubicación

La ubicación de la estación se definió en conjunto entre Algoritmos SpA. y el cliente Empresa Eléctrica Magallanes S.A.

Las coordenadas⁹ de la estación Edelmag se indican en la Tabla N° 5:

Tabla N° 5^h Identificación Estaciones de Monitoreo

Dunto	Coordenadas UTM (m)		
Punto	Este	Norte	
Estación Edelmag	373.196	4.114.860	

A continuación, en la Figura Nº 1 se presenta la ubicación espacial de la estación de monitoreo.

_

⁹ Coordenadas utilizando como Datum: WGS84 (Referente Datum). Huso 19 F

^h La estación es de punto fijo.

370500E 372000E 373500E 375000E 376500E 378000E Simbología División Comunal División Regional Estación Edelmag DATOS CATOGRÁFICOS Y GEODÉSICOS Datum WGS 84. Proyección Universal Transversal Mercator (UTM). Huso 19 Sur. Imagen Satelital Google Earth Pro. **PUNTA ARENAS**

Figura N° 1 Ubicación espacial de Estación de Monitoreo, Proyecto Empresa Eléctrica de Magallanes

373500E

372000E

370500E

376500E

378000E

375000E

3.3 Parámetros utilizados para caracterizar el estado y evolución de las variables ambientales

Los parámetros aplicables se presentan en la Tabla Nº 6, mientras que en la Tabla Nº 7 se presenta los valores normados en la legislación nacional.

Tabla N° 6 Normativa nacional aplicable

Parámetro	Tipo Norma	N° Decreto/Año	Organismo	Nombre
Operación Estación		61/2008	Ministerio Salud	Reglamento de Estaciones de Medición de Contaminantes Atmosféricos
MP-2,5	Primaria	12/2011	Ministerio Secretaría General de la República	Establece norma de calidad primaria para material particulado fino respirable MP _{2.5} , en especial de los valores que definen situaciones de emergencia.
NO ₂	Primaria	114/2002	Ministerio Secretaría General de la Presidencia	Establece norma primaria de calidad de aire para dióxido de nitrógeno (NO ₂).
СО	Primaria	115/2002	Ministerio Secretaría General de la Presidencia	Establece norma primaria de calidad de aire para monóxido de carbono (CO).

Tabla Nº 7 Valores normados en la legislación ambiental

Davidosakos	Tipo	N° Decreto	Valor	Candiaiana Comanaián Namo
Parámetro	Norma	/Año	Norma	Condiciones Superación Norma
MP – 2,5	Primaria	12/2011	50 μg/m ³ N, como concentración de 24 horas.	 El percentil 98 de las concentraciones de 24 horas registradas durante un periodo anual, sea mayor o igual a 50 (μg/m³N). En un período anual de mediciones, se registrare un número de días con mediciones sobre el valor de 50 μg/m³N mayor que siete (7).
			20 µg/m³N como concentración anual.	 La concentración anual calculada como promedio aritmético de tres años calendario consecutivos, sea mayor o igual que 20 μg/m³N.
NO_2	Primaria	114/2002	100 µg/m ³ N, como concentración anual.	• Cuando el promedio tri-anual de las concentraciones anuales sea mayor o igual a 100 µg/m³N.
NO ₂	riiiiaiia	114/2002	400 µg/m³N, como concentración horaria.	• Cuando el promedio tri-anual de percentil 99, de los máximos diarios en forma anual, sea mayor o igual a 400 µg/m³N.
СО	Primaria	115/2002	10 mg/m ³ N, como concentración de 8 horas.	 Cuando el promedio tri-anual de percentil 99, de los máximos diarios de concentración de 8 horas sea mayor o igual a 10 mg/m³N.
	riiiidild	113/2002	30 mg/m ³ N, como concentración horaria.	 Cuando el promedio tri-anual de percentil 99, de los máximos diarios de concentración de 1 hora sea mayor o igual a 30 mg/m³N.

El Decreto N°61/2008 rige las condiciones de instalación y funcionamiento de las estaciones de medición de contaminantes atmosféricos, para efectos de que sus mediciones sean consideradas válidas para la autoridad respectiva. Este decreto además establece que en caso de existir datos inválidos o datos perdidos, éstos se deberán informar en una base o planilla diferente a la de los datos válidos, creada para tal efecto, que contenga solamente los códigos de aquellas horas o días en que se produjo la invalidación o pérdida de la información.

3.4 Metodología de Muestreo, Medición, Análisis y/o Control

3.4.1 Material Particulado Fino Respirable MP-2,5 (Atenuación Beta)

Los electrones que emana una fuente de C14 son conocidos como rayos Beta y el proceso en el cual se utilizan para medir se conoce como atenuación de radiación Beta. Cuando la materia se coloca entre la fuente radiactiva y un componente capaz de detectar la radiación beta, los rayos beta son absorbidos y su energía disminuye. Esto implica una disminución de la cantidad de partículas Beta detectadas. La magnitud de la reducción es una función de la masa del material absorbente situado entre la fuente y el detector. El número de partículas beta que pasan por el material absorbente, como el polvo depositado en una cinta de papel, decrece de una manera prácticamente exponencial con la masa a través de la cual debe pasar.

3.4.2 Monóxido de Carbono CO

El monitoreo de monóxido de carbono (CO) utiliza un analizador continuo basado en la Ley de Beer, es decir, define como una longitud de onda es absorbida por las moléculas de un gas en particular a cierta distancia. El analizador es controlado por un microprocesador que determina la concentración del monóxido de carbono, mediante el paso de una muestra de gas a través del instrumento. Éste, necesita que las muestras de gas y los gases de calibración sean suministrados a presión atmosférica, a fin de estabilizar el flujo en la cámara de muestra, lugar donde se mide la capacidad de los gases para absorber radiación infrarroja. Así, el microprocesador utiliza los valores de la calibración, las medidas de absorción de infrarrojos realizadas con la muestra de gas en relación a los datos de las medidas de temperatura y presión de la muestra de gas, para calcular la concentración de CO.

Los datos de los equipos fueron almacenados en un *datalogger* interno, el cual guardó los promedios en una frecuencia de 5 minutos.

3.4.3 Dióxido de Nitrógeno NO₂

El monitoreo de dióxido de nitrógeno (NO₂) utiliza un analizador continuo basado en la detección fotométrica de la quimioluminiscencia que resulta de la reacción de la fase gaseosa del Ozono (O₃) con el óxido de nitrógeno (NO). En esta reacción la intensidad de la luz emitida es proporcional a la concentración de NO presente y es aplicable a la medición directa de este compuesto. Por su parte, la detección de las concentraciones de dióxido de nitrógeno (NO₂) se realiza indirectamente. En la práctica, el NO₂ presente en una muestra de aire primero es reducido a NO utilizando un dispositivo convertidor. Todo el NO presente en la muestra de aire no sufre transformaciones al pasar por el convertidor, por lo

tanto, la concentración resultante obtenida de NO_x es igual a $NO + NO_2$, Una parte de la muestra de aire es también combinada con el ozono sin hacerla pasar por el convertidor, lo cual proporciona la concentración de NO. Esta última medición de NO es restada a la determinación previa de NO_x para definir la medición final de NO_2 .

Los datos de los equipos fueron almacenados en un *datalogger* interno, el cual guardó los promedios en una frecuencia de 5 minutos.

3.4.4 Meteorología

La estación meteorológica fue instalada en un mástil a 10 metros de altura, cumpliendo así con el estándar de la *WMO*. En la estación se instalaron los siguientes sensores:

- Sensor de Velocidad y Dirección del Viento
- Sensor de Temperatura y Humedad Relativa

Los datos de estos sensores, fueron almacenados en un datalogger, el cual guardó los promedios en una frecuencia de cada 15 minutos.

3.5 Equipamiento utilizado en el monitoreo

En la Tabla N° 8 se presentan los equipos utilizados en el monitoreo.

Tabla N° 8 Equipamiento en Estación de Monitoreo

Estación	Equipo	Tipo	Monitoreo
	Met One BAM 1020	MP 2,5	Continuo
	Teledyne T-300	CO	Continuo
	Teledyne T-200	NO ₂	Continuo
Edelmag	Young 5103	Velocidad y Dirección del Viento	Continuo
	Vaisala HMP60	Temperatura y Humedad relativa	Continuo

En la Fotografía Nº 1 se presenta la Estación de monitoreo Edelmag.

3.6 Fecha de Monitoreo

El periodo de monitoreo corresponde a un mes calendario completo, específicamente para el presente informe desde el día 03 de Abril hasta el 03 de Mayo para el caso de los gases CO y NOx, desde el día 05 de Abril hasta el 05 de Mayo para el Material Particulado MP-2,5 y del 13 Abril hasta el 13 de Mayo para la meteorología.

Es importante mencionar que los equipos de monitoreo cumplen con el horario GMT-4 establecido en el DTO N° 61/2008.

4 Resultados

4.1 Material Particulado Fino Respirable MP-2,5

La Tabla N° 9 muestra el promedio diario de los valores de MP-2,5 registrados durante el periodo Abril – Mayo de 2019.

Tabla N° 9 Promedio Diario de MP-2,5, Abril - Mayo 2019

Fecha de Monitoreo Concentración de 2 hrs (μg/m³) 05-04-2019 1 06-04-2019 2 07-04-2019 6 08-04-2019 4 09-04-2019 1 10-04-2019 6 12-04-2019 4 13-04-2019 1 15-04-2019 1 16-04-2019 1 17-04-2019 1 18-04-2019 1 18-04-2019 1	4
05-04-2019 1 06-04-2019 2 07-04-2019 6 08-04-2019 4 09-04-2019 1 10-04-2019 6 12-04-2019 4 13-04-2019 1 15-04-2019 1 16-04-2019 1 17-04-2019 1 18-04-2019 1 18-04-2019 1	
06-04-2019 2 07-04-2019 6 08-04-2019 4 09-04-2019 1 10-04-2019 6 12-04-2019 4 13-04-2019 1 15-04-2019 1 16-04-2019 1 17-04-2019 1 18-04-2019 1	
07-04-2019 6 08-04-2019 4 09-04-2019 1 10-04-2019 1 11-04-2019 6 12-04-2019 1 14-04-2019 1 15-04-2019 1 16-04-2019 1 17-04-2019 1 18-04-2019 1	
08-04-2019 4 09-04-2019 1 10-04-2019 1 11-04-2019 6 12-04-2019 4 13-04-2019 1 15-04-2019 1 16-04-2019 1 17-04-2019 1 18-04-2019 1	
09-04-2019 1 10-04-2019 1 11-04-2019 6 12-04-2019 4 13-04-2019 1 15-04-2019 1 16-04-2019 1 17-04-2019 1 18-04-2019 1	
10-04-2019 1 11-04-2019 6 12-04-2019 4 13-04-2019 1 15-04-2019 1 16-04-2019 1 17-04-2019 1 18-04-2019 1	
11-04-2019 6 12-04-2019 4 13-04-2019 1 14-04-2019 1 15-04-2019 1 17-04-2019 1 18-04-2019 1	
12-04-2019 4 13-04-2019 1 14-04-2019 1 15-04-2019 1 17-04-2019 1 18-04-2019 1	
13-04-2019 1 14-04-2019 1 15-04-2019 1 16-04-2019 1 17-04-2019 1 18-04-2019 1	
14-04-2019 1 15-04-2019 1 16-04-2019 1 17-04-2019 1 18-04-2019 1	
15-04-2019 1 16-04-2019 1 17-04-2019 1 18-04-2019 1	
16-04-2019 1 17-04-2019 1 18-04-2019 1	
17-04-2019 1 1 1 1	
18-04-2019 1	
19-04-2019 1	
20-04-2019 1	
21-04-2019 1	
22-04-2019 2	
23-04-2019 5	
24-04-2019 3	
25-04-2019 2	
26-04-2019 2	
27-04-2019 4	
28-04-2019 1	
29-04-2019 1	
30-04-2019 1	
01-05-2019 1	
02-05-2019 1	
03-05-2019 6	
04-05-2019 1	
05-05-2019 1	

Los resultados obtenidos durante Abril – Mayo 2019 son presentados en el Gráfico Nº 1, en donde se muestra el promedio diario de los valores de concentración de Material Particulado Fino Respirable MP-2,5.

El Gráfico Nº 2 muestra el ciclo diario de los valores de concentración de este contaminante.

Gráfico Nº 1 Concentración de Material Particulado Fino Respirable MP-2,5 Estación Edelmag Abril – Mayo 2019

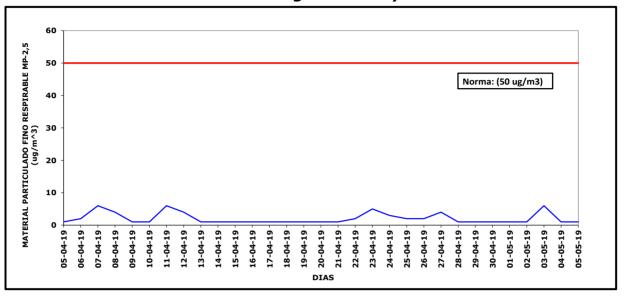
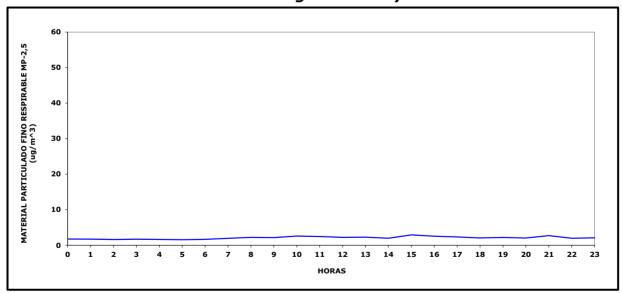



Gráfico Nº 2 Ciclo Diario Material Particulado Fino Respirable MP-2,5 Estación Edelmag Abril – Mayo 2019

4.2 Monóxido de Carbono

La Tabla Nº 10 muestra el promedio, el máximo horario y el valor máximo promedio móvil de 8 horas diarios de los valores de concentración de monóxido de carbono registrados en Abril – Mayo 2019.

Tabla Nº 10 Concentración de CO, Abril – Mayo 2019

			Máximo Promedio
Fecha de Monitoreo	Concentración de 24 hrs (mg/m ³ N)	Máximo Horario (mg/m³N)	Móvil 8hrs
			(mg/m ³ N)
03-04-2019	0,0	0,1	0,1
04-04-2019	0,1	0,2	0,2
05-04-2019	0,2	0,2	0,2
06-04-2019	0,1	0,1	0,1
07-04-2019	0,2	0,2	0,2
08-04-2019	0,2	0,2	0,2
09-04-2019	0,2	0,3	0,3
10-04-2019	0,2	0,9	0,3
11-04-2019	0,2	0,3	0,3
12-04-2019	0,2	0,3	0,2
13-04-2019	0,1	0,2	0,2
14-04-2019	0,1	0,2	0,2
15-04-2019	0,1	0,2	0,2
16-04-2019	0,1	0,1	0,1
17-04-2019	0,1	0,1	0,1
18-04-2019	0,2	0,2	0,2
19-04-2019	0,2	0,2	0,2
20-04-2019	0,2	0,2	0,2
21-04-2019	0,1	0,2	0,2
22-04-2019	0,0	0,1	0,1
23-04-2019	0,2	0,5	0,4
24-04-2019	0,4	0,5	0,4
25-04-2019	0,3	0,5	0,5
26-04-2019	0,4	0,6	0,4
27-04-2019	0,3	0,5	0,4
28-04-2019	0,4	0,5	0,5
29-04-2019	0,2	0,3	0,4
30-04-2019	0,2	0,3	0,3
01-05-2019	0,2	0,2	0,2
02-05-2019	0,2	0,3	0,3
03-05-2019	0,1	0,3	0,3

El Gráfico N° 3 muestra el promedio, el máximo horario y el valor máximo promedio móvil cada 8 hrs. diarios de los valores de concentración de monóxido de carbono registrados durante el periodo Abril – Mayo 2019. Por otra parte el Gráfico N° 4, muestra el ciclo diario de los valores de concentración de monóxido de carbono registrado, correspondiente a la estación Edelmag.

Gráfico Nº 3 Concentración de Monóxido de Carbono Estación Edelmag Abril – Mayo 2019

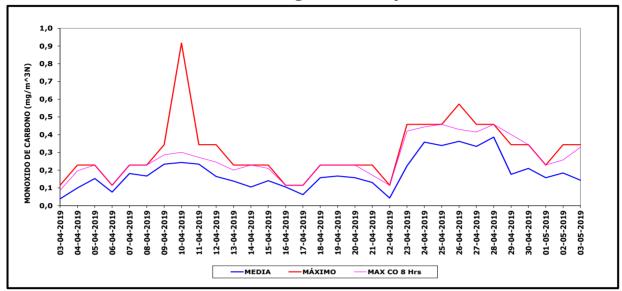
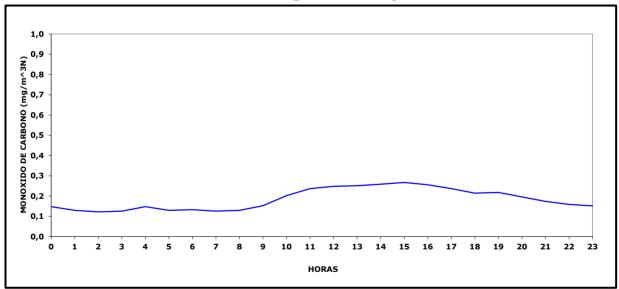



Gráfico Nº 4 Ciclo Diario Monóxido de Carbono Estación Edelmag Abril – Mayo 2019

4.3 Dióxido de Nitrógeno

La Tabla Nº 11 muestra el valor promedio y máximo horario diario de los valores de concentración de dióxido de nitrógeno registrados en Abril – Mayo 2019.

Tabla N° 11 Concentración de NO₂, Abril – Mayo 2019

		-
Fecha de Monitoreo	Concentración de 24 hrs (µg/m³N)	Máximo Horario (μg/m³N)
03-04-2019	0,5	0,6
04-04-2019	3,9	20,5
05-04-2019	4,5	27,8
06-04-2019	7,1	24,5
07-04-2019	4,9	18,0
08-04-2019	3,4	7,2
09-04-2019	4,7	10,8
10-04-2019	4,0	13,9
11-04-2019	3,4	11,7
12-04-2019	3,6	8,3
13-04-2019	3,0	11,4
14-04-2019	2,6	5,0
15-04-2019	1,9	4,7
16-04-2019	1,9	12,5
17-04-2019	5,3	22,2
18-04-2019	7,5	20,4
19-04-2019	5,3	19,7
20-04-2019	3,5	28,3
21-04-2019	2,0	5,5
22-04-2019	3,8	11,7
23-04-2019	1,2	4,4
24-04-2019	4,4	15,7
25-04-2019	3,9	8,8
26-04-2019	6,5	27,9
27-04-2019	4,9	19,3
28-04-2019	6,7	14,3
29-04-2019	11,0	29,6
30-04-2019	2,1	6,0
01-05-2019	3,0	13,7
02-05-2019	3,7	18,1
03-05-2019	4,3	12,3

El Gráfico Nº 5 muestra el promedio y el máximo horario de los valores de concentración de dióxido de nitrógeno, registrados durante el mes de Abril - Mayo 2019, correspondiente a la estación Edelmag.

El Gráfico Nº 6 muestra el ciclo diario de los valores de concentración de este contaminante para dicha estación.

Gráfico Nº 5 Concentración de Dióxido de Nitrógeno Estación Edelmag, Abril – Mayo 2019

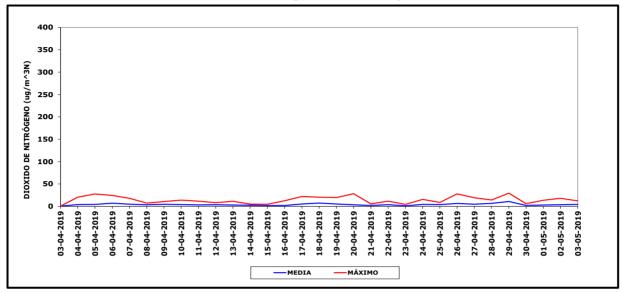
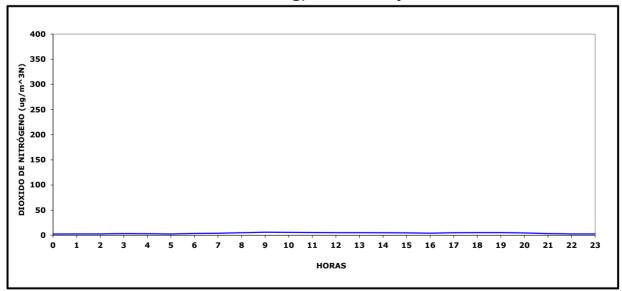



Gráfico Nº 6 Ciclo Diario de Dióxido de Nitrógeno Estación Edelmag, Abril – Mayo 2019

4.4 Meteorología

La Tabla Nº 12 y Tabla Nº 13 muestran el promedio, el valor máximo y mínimo de las variables meteorológicas; Velocidad del Viento, Temperatura y Humedad Relativa, calculados en base a los valores registrados durante Abril – Mayo 2019 en la estación Edelmag.

Tabla Nº 12 Resumen de Variables Meteorológicas, Estación Edelmag, Abril 2019

Variable	Media Mensual	Mínima Horaria	Máxima Horaria
Velocidad del Viento (m/s)	3,8	0,6	11,5
Temperatura (°C)	6,2	0,2	13,5
Humedad Relativa (%)	72	24	99

Tabla Nº 13 Resumen de Variables Meteorológicas, Estación Edelmag, Mayo 2019

Variable	Media Mensual	Mínima Horaria	Máxima Horaria
Velocidad del Viento (m/s)	4,3	0,7	14,7
Temperatura (°C)	4,2	-3,3	11,9
Humedad Relativa (%)	73	43	98

4.4.1 Velocidad del Viento

La velocidad del viento registrada en la estación Edelmag durante el periodo Abril – Mayo 2019 se presenta en el Gráfico N° 7, en el cual se muestra el promedio diario, así como el valor mínimo y máximo horario de cada día.

Gráfico Nº 7 Velocidad del Viento Estación Edelmag, Abril – Mayo 2019

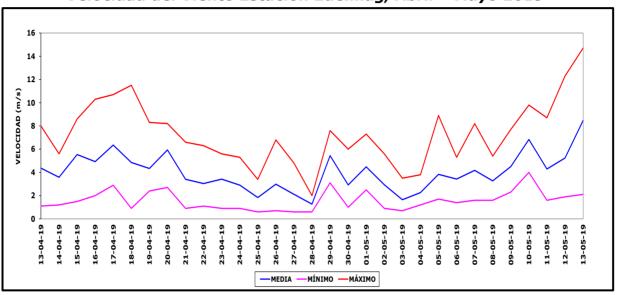
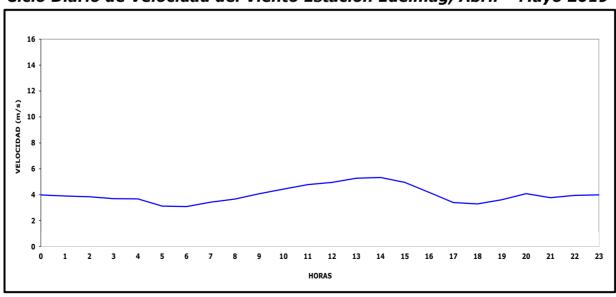



Gráfico Nº 8 Ciclo Diario de Velocidad del Viento Estación Edelmag, Abril – Mayo 2019

En el Gráfico N° 8 se observa el ciclo de la velocidad del viento durante el día, en el cual la menor velocidad se presenta a las 05:00 y 06:00 hrs., instante a partir del cual la velocidad del viento comienza a aumentar hasta las 13:00 y 14:00 hrs., luego la velocidad comienza a descender.

4.4.2 Dirección del Viento

Durante el periodo Abril – Mayo 2019 la estación Edelmag, presenta vientos provenientes principalmente del oeste -noroeste (ONO) y en menor medida del noroeste (NO) y oeste (O).

El detalle de la ocurrencia de vientos provenientes de cada dirección se presenta en la Tabla N° 14, mientras que en la Tabla N° 15 se presentan las direcciones de los vientos según el rango de velocidades, los cuales fueron definidos en base al mayor valor horario de velocidad del viento registrado en la estación Edelmag.

La rosa de viento de Abril – Mayo 2019 se presenta en la Figura N° 2. Seguidamente, en la Figura N° 3 y Figura N° 4 se presentan las rosas de viento según período del día para la estación Edelmag.

Tabla Nº 14 Dirección del Viento Estación Edelmag, Abril – Mayo 2019

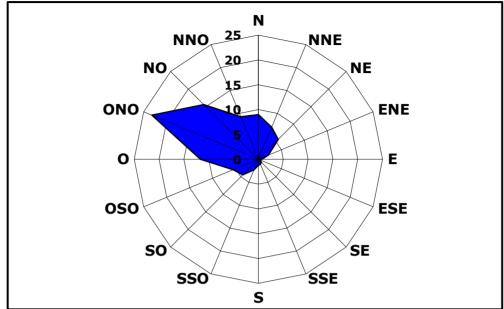

Dirección del viento	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSO	so	oso	0	ONO	NO	NNO
% Ocurrencia	9,0	7,0	5,6	2,2	0,7	0,4	0,8	1,1	1,2	2,3	4,4	5,5	11,7	23,3	15,6	9,3

Tabla Nº 15 Dirección de Viento según Rango de Velocidades Estación Edelmag, Abril – Mayo 2019

Dirección	Velocidad (m/s)								
del Viento	0,5 - 1	1 – 2	2 – 3	3 – 4	> 4				
N	0,3	1,2	2,7	3,0	1,9				
NNE	0,3	1,2	2,8	1,5	1,2				
NE	0,3	0,8	1,6	1,9	1,1				
ENE	0,3	0,5	0,7	1,9 0,3	0,4				
E	0,1	0,4	0,0	0,0	0,1				
ESE	0,0	0,4	0,0	0,0	0,0				
SE	0,0	0,5	0,3	0,0	0,0				
SSE	0,1	0,7	0,3	0,0	0,0				
S	0,1			0,3	0,0				
SSO	0,3 0,8 0,5		0,3	0,4					
SO	0,4	1,5	0,7	0,7	1,2				
OSO	0,4	0,7	0,8	1,3	2,3				
0	0,3	1,6	0,9	1,7	7,1				
ONO	0,1	2,7	2,3	2,2	16,0				
NO	0,3	0,9	3,6	2,4	8,3				
NNO	0,1	1,5	2,7						
TOTAL (%)	3,4	15,9	20,3	17,3	3,1 43,1				

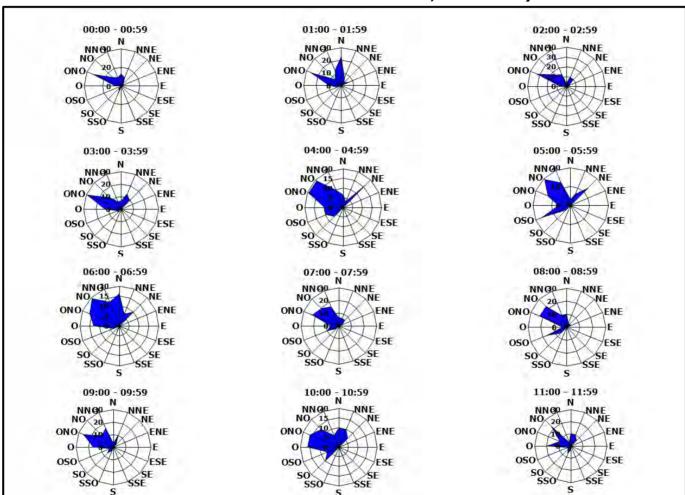
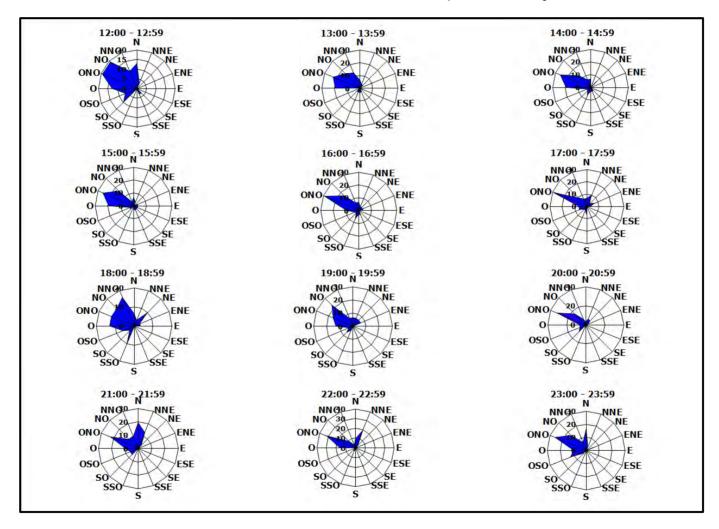



Figura N° 3 Rosa de Viento Horario de 00:00 a 11:59, Abril – Mayo 2019

Figura N° 4 Rosa de Viento Horario de 12:00 a 23:59, Abril – Mayo 2019

4.4.3 Temperatura

El comportamiento de la Temperatura registrada en la estación Edelmag durante el periodo Abril – Mayo 2019 se presenta en el Gráfico Nº 9 en donde se muestra el promedio diario, así como el valor mínimo y máximo horario de cada día.

Gráfico Nº 9 Temperatura Estación Edelmag, Abril – Mayo 2019

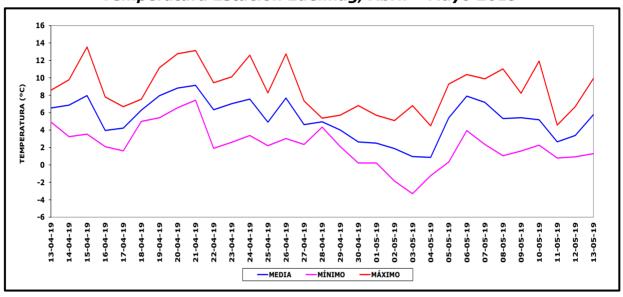


Gráfico Nº 10 Ciclo Diario de Temperatura Estación Edelmag, Abril – Mayo 2019

En el Gráfico Nº 10, se observa el comportamiento típico del ciclo de la temperatura durante el día, donde la hora de menor temperatura se presenta a las 00:00 hrs., instante en el cual la temperatura comienza a aumentar producto de la creciente insolación hasta las 13:00 hrs., luego la temperatura comienza a descender.

4.4.4 Humedad Relativa

El comportamiento de la Humedad Relativa registrada en la estación Edelmag se presenta en el Gráfico N° 11 en donde se muestra el promedio diario, el valor mínimo y máximo horario de cada día. El Gráfico N° 12 muestra el comportamiento horario de la Humedad Relativa.

Gráfico Nº 11 Humedad Relativa Estación Edelmag, Abril – Mayo 2019

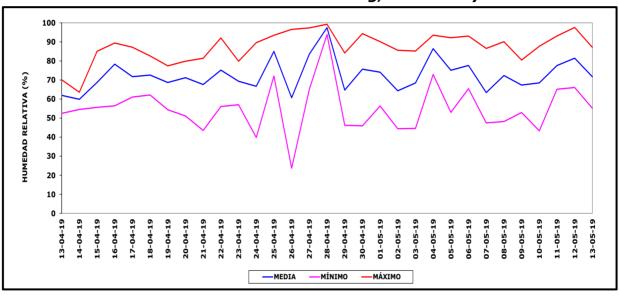
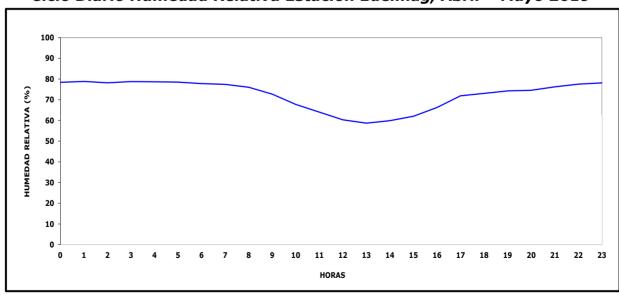



Gráfico Nº 12 Ciclo Diario Humedad Relativa Estación Edelmag, Abril – Mayo 2019

Según se observa en el gráfico anterior, la Humedad Relativa del aire también describe su ciclo característico durante el día, el cual se caracteriza por dibujar una curva inversa a la curva de la Temperatura, con mayor humedad durante las horas de la noche, mientras que durante el día la humedad va disminuyendo a medida que aumenta la Temperatura.

Las Tablas de las variables meteorológicas se muestran en el ANEXO IV de este documento.

5 DISCUSIONES

5.1 Norma Primaria de Calidad de Aire para Material Particulado Fino Respirable MP-2,5.

La Tabla Nº 16 muestra un resumen de las concentraciones de MP-2,5 registradas durante la campaña de monitoreo del periodo diciembre 2015 – enero 2016, el periodo diciembre 2017 – enero 2018 y el periodo abril – mayo 2019, comparado con la norma respectiva.

Tabla Nº 16
Resumen de concentraciones Material Particulado MP-2,5,
Estación Edelmag, periodo diciembre 2015 – enero 2016, diciembre 2017enero 2019 y abril - mayo 2019

		Concentración MP-2,5 (µg/m³)							
Contaminante	Estadístico	Diciembre 2015	Enero 2016	Diciembre 2017	Enero 2018	Abril 2019	Mayo 2019	Norma	
MD 2 F	Promedio Mensual	7	7	7	3	2	1	20 ⁱ	
MP-2,5	Percentil 98, promedio diario	9	12	25	7	11	27	50	

Como se observa en la Tabla Nº 16 el promedio mensual de material particulado fino respirable MP-2,5 de mayor concentración se presentó en los meses de diciembre 2015, enero 2016 y diciembre 2017 con un valor de 7 μ g/m³, este valor es inferior al límite establecido por el Dto. Nº 12 (20 μ g/m³). La comparación que se realiza es referencial debido a que la norma exige un promedio de concentración anual y de tres años sucesivos.

El valor del percentil 98 de los promedios diarios de material particulado fino respirable MP-2,5 de mayor concentración se presentó en el mes de mayo 2019 con un valor de 27 $\mu g/m^3$, este valor es inferior en un 46% del límite establecido por el Dto. N° 12 (50 $\mu g/m^3$). La comparación que se realiza es referencial debido a que la norma exige un valor de percentil 98 de los promedios diarios registrados durante un año de monitoreo.

34/65

ⁱ D.S. Nº 12 Norma primaria de calidad ambiental para material particulado fino respirable MP-2,5. Publicada en el Diario Oficial el día 09 de junio 2011.

5.2 Norma Primaria de Calidad de Aire para Monóxido de Carbono (CO) y Dióxido de Nitrógeno (NO₂)

La Tabla N° 17 muestra un resumen de las concentraciones de los gases CO y NO_2 registradas durante la campaña de monitoreo del periodo diciembre 2015 – enero 2016, el periodo diciembre 2017 – enero 2018 y el periodo abril – mayo 2019, comparado con la norma respectiva.

Tabla N° 17 Resumen de concentraciones Gases, Estación Edelmag, periodo diciembre 2015 – enero 2016, diciembre 2017 – enero 2018 y abril – mayo 2019

Contaminante	Estadístico	Diciembre 2015	Enero 2016	Diciembre 2017	Enero 2018	Abril 2019	Mayo 2019	Norma
	Promedio Mensual	0,2	0,2	0,1	0,1	0,2	0,2	
со	Máximo Promedio Diario	0,3	0,3	0,2	0,2	0,4	0,2	
(mg/m³N)	Máximo horario Mensual Percentil 99 Máximo Promedio Móvil 8 Hrs. Mensual	0,3	0,5	0,2	0,2	0,6	0,3	30 ^j
		0,4	0,4	0,2	0,2	0,5	0,3	10
	Promedio Mensual	2,5	5,4	12,6	5,1	4,2	3,7	100 ^k
ΝΟ ₂ (μg/m³N)	Máximo Promedio Diario	4,9	14,2	47,6	15,9	11,0	4,3	-
((() () () ()	Máximo horario Mensual Percentil 99	(10,0)	<mark>45,9</mark>	(149,6)	40,2	28,3	18,1	400

Como se observa en la Tabla N° 17 los valores registrados para el monóxido de carbono (CO) no sobrepasan los valores límites establecidos por el Dto. N° 115. Al respecto, el máximo horario percentil 99 de mayor concentración se registró en abril 2019 con un valor de 0,6 mg/m³N, inferior en un 98,0% del valor límite permisible (30 mg/m³N). Así mismo, el valor máximo del promedio móvil de 8 horas de mayor concentración se registró en abril 2019 con un valor de 0,5 mg/m³N, siendo inferior en un 95,0% del valor límite permisible (10 mg/m³N). Ambos valores límites permisibles son establecidos por el D.S. N° 115/02, del Ministerio Secretaría General de la Presidencia. Es importante señalar que comparación con norma es referencial debido a que la exigencia es para un periodo de 3 años sucesivos.

^j D.S. Nº 115/02 del Ministerio Secretaría General de la Presidencia de la República.

^k D.S. Nº 114/02 del Ministerio Secretaría General de la Presidencia de la República.

En relación al dióxido de nitrógeno (NO_2) el promedio mensual de mayor concentración se presentó en el mes de diciembre 2017 con un valor de 12,6 $\mu g/m^3 N$, siendo inferior en un 87,4% del valor límite permisible (100 $\mu g/m^3 N$). Así mismo el máximo horario mensual percentil 99 de mayor concentración se presentó en diciembre 2017 con un valor de 149,6 $\mu g/m^3 N$, siendo inferior en un 62,6% del límite permisible (400 $\mu g/m^3 N$). Ambos valores límites permisibles son establecidos por el D.S. N^o 114/02, del Ministerio Secretaría General de la Presidencia. Es importante señalar que comparación con norma es referencial debido a que la exigencia es para un periodo de 3 años sucesivos.

5.3 Meteorología

La Tabla Nº 18 y Tabla Nº 19 presentan los resultados de meteorología y predominancia de vientos para el periodo Abril – Mayo 2019.

Tabla Nº 18 Resultados de Meteorología, Estación Edelmag, Abril – Mayo 2019

		<u>- </u>	
Variable I	Meteorológica	Valor	Fecha registrada
	Promedio Mensual	4,0	N/A
Velocidad del Viento (m/s)	Mínimo Mensual	0,6	25 abril 06:00, 09:00 y 21:00 hrs. 27 abril 09:00 y 19:00 hrs. 28 abril 11:00 hrs.
	Máximo Mensual	14,7	13 mayo a las 15:00 hrs.
	Promedio Mensual	5,4	N/A
Temperatura (°C)	Mínimo Mensual	-3,3	03 mayo a las 01:00 hrs.
	Máximo Mensual	13,5	15 abril a las 11:00 y 12:00 hrs.
	Promedio Mensual	73	N/A
Humedad Relativa (%)	Mínimo Mensual	mo Mensual 24 26 abril a las 13:00 y	
	Máximo Mensual	99	28 abril a las 02:00 a 09:00 hrs.

El porcentaje del periodo en que se produjeron estados de **Calma** corresponde al 0 % de las horas monitoreadas.

Tabla Nº 19 Resultados de Predominancia de vientos, Estación Edelmag, Abril – Mayo 2019

Componente	Ocurrencia
Oeste - noroeste (ONO)	23,3
Noroeste (NO)	15,6
Oeste (O)	11,7

6 CONCLUSIONES

Al comparar de manera referencial los valores de material particulado fino respirable MP-2,5, no se presenta superación de la norma en los periodos monitoreados tanto en la norma anual como en el percentil 98 de los promedios diarios.

Al comparar de manera referencial los valores mensuales medidos de monóxido de carbono CO en la estación Edelmag con la normativa aplicable, se podría concluir que las concentraciones no sobrepasan el valor límite establecido por la norma respectiva.

Al comparar de manera referencial los valores mensuales medidos de dióxido de nitrógeno NO_2 en la estación Edelmag con la normativa aplicable, se podría concluir que las concentraciones no sobrepasan el valor límite establecido por la norma respectiva.

El comportamiento de las variables meteorológicas; velocidad del viento, dirección del viento, temperatura y humedad relativa, medidas en la estación Edelmag, se comportan de acuerdo a lo esperado para la época del año.

7 REFERENCIAS

- Resolución Exenta Nº 144/2007. Califica Ambientalmente Favorable el proyecto "Instalación y Operación Turbogenerador Solar Titan 130". CONAMA de la XII Región de Magallanes y la Antártica Chilena.
- CHILE, MINISTERIO DE SALUD. Reglamento de Estaciones de Medición de contaminantes Atmosféricos. DTO. Nº 61. Santiago 2008.
- CHILE, MINISTERIO DEL MEDIO AMBIENTE. Norma de Calidad Primaria para Material Particulado Fino Respirable MP-2,5. DTO. N° 12. Santiago 2011.
- CHILE, MINISTERIO SECRETARIA GENERAL DE LA PRESIDENCIA DE LA REPÚBLICA. Norma Primaria de Calidad de Aire para Monóxido de Carbono (CO). D.S. Nº 115. Santiago 2002.
- CHILE, MINISTERIO SECRETARIA GENERAL DE LA PRESIDENCIA DE LA REPÚBLICA. Norma Primaria de Calidad de Aire para Dióxido de Nitrógeno (NO₂). D.S. Nº 114. Santiago 2002.
- EE.UU. Met One Instruments. Manual de operación Analizador de material particulado Modelo BAM-1020. Junio 2003.
- EE.UU. Teledyne Advanced Pollution Intrumentation. Manual de operación Analizador de monóxido de carbono Teledyne Modelo T300. Febrero 2012.
- EE.UU. Teledyne Advanced Pollution Intrumentation. Manual de operación Analizador de dióxido de nitrógeno Teledyne Modelo T200. Febrero 2012.

ANEXO I NOMENCLATURA PARA INVALIDACIÓN O PÉRDIDA DE DATOS SEGÚN DTO. Nº 61

Códigos Utilizados

Código	Significado	Justificación
2.a	Dato inválido	Por falla de energía
2.b	Dato inválido	Por falla de equipo
2.c	Dato inválido	Fuera de rango de temperatura de operación
2.d	Dato inválido	Por cambio de equipo
2.e	Dato inválido	Por mantención en terrero
2.f	Dato inválido	Por tiempo mínimo de muestreo
2.g	Dato inválido	Por exceso de tiempo de muestreo
2.h	Dato inválido	Valor fuera de rango
3.a	Sin dato	Por falla general de equipo
3.b	Sin dato	Por precipitación

ANEXO II¹ TABLAS DE CONCENTRACIÓN DE MATERIAL PARTICULADO MP-2,5 ESTACIÓN EDELMAG ABRIL – MAYO 2019

¹ Los códigos de invalidación están detallados en el Anexo I

MATERIAL PARTICULADO RESPIRABLE MP-2,5, ESTACIÓN EDELMAG, ABRIL – MAYO 2019 UNIDAD: μg/m³

																									,		
	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20190405	1	1	1	1	1	1	1	0	0	1	1	1	1	3	1	1	1	0	0	0	2	4	3	3	1	0	4
20190406	2	2	2	1	2	1	2	2	1	3	3	3	2	1	3	2	2	2	2	1	1	1	1	2	2	1	3
20190407	2	3	3	5	6	7	6	6	7	7	7	7	6	5	4	5	5	6	5	6	6	6	6	5	6	2	7
20190408	4	3	3	4	4	4	4	4	4	5	4	4	4	4	4	4	5	5	5	5	5	4	3	3	4	3	5
20190409	2	2	1	1	0	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	0	2
20190410	0	0	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
20190411	1	1	1	1	1	1	3	9	8	8	8	7	8	7	8	7	8	8	8	7	7	7	7	6	6	1	9
20190412	6	5	5	3	3	4	6	6	6	4	5	6	7	4	4	4	2	2.e	2	1	1	1	1	1	4	1	7
20190413	1	1	1	1	0	1	1	1	1	0	1	1	1	1	1	5	1	2	2	2	1	1	1	1	1	0	5
20190414	0	0	0	0	0	1	1	2	1	2	1	1	1	1	1	0	0	0	0	1	0	0	1	1	1	0	2
20190415	0	1	1	2	3	3	3	2	1	1	1	1	1	1	0	2.e	2.e	1	1	1	1	1	1	1	1	0	3
20190416	3	3	3	3	2	1	1	1	3	1	2	2	1	2	2	1	0	0	0	0	0	0	0	0	1	0	3
20190417	0	0	0	0	0	0	1	1	1	2	2	3	1	1	1	1	0	1	1	1	1	0	0	0	1	0	3
20190418	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	3	2	2	2	0	1	1	1	1	0	3
20190419	1	1	0	0	0	0	0	0	1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
20190420	1	0	0	1	1	2	2	2	1	2	2	2	2	0	2	2	2	2	3	2	1	1	1	1	1	0	3
20190421	1	1	1	1	1	0	0	1	1	1	1	1	1	1	0	2	2	2	1	1	1	1	1	0	1	0	2
20190422	0	0	1	1	1	1	1	2	2	3	3	2	1	1	1	1	3	3	2	4	5	7	8	9	2	0	9
20190423	10	11	9	6	7	7	5	5	3	4	5	3	2	3	2	3	5	4	3	3	3	3	4	4	5	2	11
20190424	4	3	3	3	3	3	3	2	2	1	1	1	0	2	0	1	13	7	2	2	1	1	3	1	3	0	13
20190425	1	1	1	1	1	1	1	1	1	2	3	5	6	5	2	3	3	5	5	3	2	1	1	1	2	1	6
20190426	1	2	2	3	1	1	0	1	3	1	1	0	0	1	1	1	1	1	3	8	6	6	6	6	2	0	8
20190427	6	6	6	5	5	4	4	2	1	3	8	8	4	7	6	4	4	3	3	3	3	3	2	1	4	1	8
20190428	1	1	2	2	2	1	3	0	0	0	0	0	1	0	0	0	0	1	1	1	1	1	1	0	1	0	3
20190429	0	0	0	1	1	0	0	0	2	3	2	1	1	2	2	2	2	3	3	2	2	1	1	1	1	0	3
20190430	1	1	1	1	1	1	1	0	1	1	2	0	0	0	0	1	3	2	1	1	2	1	1	0	1	0	3
20190501	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	1	1	9	1	0	9
20190502	2	2	2	1	0	0	0	1	0	1	1	1	1	1	1	2	2	2	2	3	3	2	2	2	1	0	3
20190503	2	2	1	1	1	1	1	4	12	6	11	10	11	11	7	27	4	3	2	2	2	23	1	0	6	0	27
20190504	1	1	1	4	0	1	0	1	1	2	2	2	2	2	2	1	2	1	1	1	0	0	0	0	1	0	4
20190505	0	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
MEDIA	2	2	2	2	2	2	2	2	2	2	3	2	2	2	2	3	3	2	2	2	2	3	2	2	2		
MÍNIMO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	
MÁXIMO	10	11	9	6	7	7	6	9	12	8	11	10	11	11	8	27	13	8	8	8	7	23	8	9			27

ANEXO III^m TABLAS DE GASES ESTACIÓN EDELMAG, ABRIL – MAYO 2019

^m Los códigos de invalidación están detallados en el Anexo I.

MONÓXIDO DE CARBONO, ABRIL - MAYO 2019, UNIDAD: mg/m³N

														97													
	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20190403	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1
20190404	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	2.e	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,1	0,0	0,2
20190405	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,0	0,0	0,0	0,2	0,0	0,2
20190406	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20190407	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20190408	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20190409	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,1	0,1	0,1	0,2	0,1	0,3
20190410	0,1	0,1	0,1	0,1	0,9	0,2	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,2	0,2	0,2	0,5	0,2	0,2	0,2	0,2	0,1	0,9
20190411	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,2	0,1	0,3
20190412	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,2	2.e	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,3
20190413	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,2
20190414	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,0	0,2
20190415	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	2.e	2.e	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1	0,0	0,2
20190416	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20190417	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20190418	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,0	0,1	0,2	0,0	0,2
20190419	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,2
20190420	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,2
20190421	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	2.b	2.b	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2
20190422	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1
20190423	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	2.e	2.e	0,3	0,3	0,5	0,5	0,5	0,5	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,0	0,5
20190424	0,3	0,3	0,2	0,2	0,2	0,3	0,2	0,3	0,3	0,3	0,3	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,3	0,3	0,3	0,3	0,3	0,3	0,4	0,2	0,5
20190425	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,3	0,3	0,3	0,2	0,3	0,2	0,5
20190426	0,2	0,2	0,2	0,3	0,2	0,3	0,3	0,3	0,3	0,3	0,5	0,5	0,5	0,5	0,5	0,5	0,3	0,3	0,3	0,6	0,5	0,3	0,3	0,2	0,4	0,2	0,6
20190427	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,5	0,5	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,5	0,5	0,5	0,5	0,5	0,3	0,2	0,5
20190428	0,5	0,5	0,5	0,5	0,5	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,5	0,5	0,5	0,5	0,3	0,3	0,3	0,4	0,3	0,5
20190429	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,0	0,0	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,0	0,3
20190430	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,1	0,1	0,2	0,1	0,3
20190501	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2	0,1	0,1	0,1	0,1	0,2	0,1	0,2
20190502	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,3	0,2	0,2	0,2	0,2	0,2	0,3	0,2	0,2	0,2	2.e	0,2	0,2	0,2	0,1	0,0	0,0	0,2	0,0	0,3
20190503	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,3	0,1	0,1	0,1	0,1	0,1	0,0	0,3
MEDIA	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2		
MÍNIMO	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		0,0	
MÁXIMO	0,5	0,5	0,5	0,5	0,9	0,3	0,3	0,3	0,3	0,3	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,6	0,5	0,5	0,5	0,5			0,9
		7-		<i>(</i> -	1-	1-	7-			- 1-	,-	,-	- 1-	1-		1-	,-	,-	1-	1-	,-	1-	1-	1-			

MONÓXIDO DE CARBONO PROMEDIO MÓVIL 8 HRS., ABRIL - MAYO 2019 UNIDAD: mg/m³N

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20190403	2.f	2.f	2.f	2.f	2.f	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,1
20190404	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,0	0,2
20190405	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,2	0,1	0,2
20190406	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20190407	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20190408	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20190409	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,3
20190410	0,2	0,2	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,1	0,3
20190411	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,3
20190412	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2	0,1	0,2
20190413	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,2
20190414	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,0	0,2
20190415	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,2	0,1	0,2
20190416	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
20190417	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1
20190418	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20190419	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20190420	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2	0,1	0,2
20190421	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2
20190422	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1	0,0	0,1
20190423	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,2	0,3	0,3	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,2	0,0	0,4
20190424	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,3	0,4
20190425	0,4	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,4	0,4	0,4	0,4	0,5	0,5	0,4	0,4	0,4	0,4	0,3	0,2	0,5
20190426	0,4	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,3	0,4
20190427	0,4	0,4	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,3	0,2	0,4
20190428	0,4	0,4	0,5	0,5	0,5	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,3	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,3	0,5
20190429	0,4	0,4	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2	0,1	0,4
20190430	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,1	0,3
20190501	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2
20190502	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,2	0,1	0,3
20190503	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,1	0,0	0,3
MEDIA	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2		
MÍNIMO	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0		0,0	
MÁXIMO	0,4	0,4	0,5	0,5	0,5	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,5	0,5	0,4	0,4	0,4	0,4			0,5

DIÓXIDO DE NITRÓGENO, ABRIL - MAYO 2019 UNIDAD: μg/m³N

														m 97													
	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20190403	0,6	0,5	0,6	0,6	0,6	0,5	0,5	0,5	0,6	0,6	0,6	0,6	0,6	0,5	0,5	0,6	0,5	0,5	0,5	0,5	0,5	0,6	0,5	0,6	0,5	0,5	0,6
20190404	0,6	0,5	0,6	0,5	2.b	1,1	1,1	1,2	1,1	1,1	1,1	1,2	2.e	2.e	2.e	2.e	2.e	14,8	18,0	20,5	4,0	0,0	0,5	2,6	3,9	0,0	20,5
20190405	0,6	0,8	0,3	0,2	0,6	2,9	1,3	1,5	0,4	0,6	7,6	0,8	0,8	0,7	0,8	0,8	0,7	13,8	27,8	19,0	15,6	2,4	5,2	1,5	4,5	0,2	27,8
20190406	1,1	3,5	1,1	4,0	1,1	2,8	3,5	5,0	11,8	12,2	24,5	14,0	8,0	8,6	10,8	15,7	2,0	1,4	1,3	2,3	6,5	11,4	10,3	7,7	7,1	1,1	24,5
20190407	13,6	18,0	16,9	13,5	3,7	3,9	2,9	2,5	2,4	1,8	3,5	2,2	4,4	3,8	3,8	1,5	2,1	2,3	1,6	2,3	1,6	2,6	3,8	2,8	4,9	1,5	18,0
20190408	3,1	2,6	2,2	2,2	3,4	3,1	3,4	5,3	6,8	7,2	4,6	4,7	3,7	3,4	3,1	2,8	2,9	2,7	2,8	2,3	2,5	2,4	2,4	2,8	3,4	2,2	7,2
20190409	2,3	2,7	2,2	2,4	2,3	3,5	4,9	7,6	5,1	4,8	4,2	4,9	5,3	3,6	6,7	10,1	10,8	10,5	5,0	3,6	2,8	3,5	1,6	1,6	4,7	1,6	10,8
20190410	6,5	1,7	1,7	5,3	6,2	5,3	3,8	2,5	3,5	3,2	2,8	2,4	2,0	2,9	13,9	5,2	2,9	2,1	1,9	1,9	6,3	3,3	4,1	4,0	4,0	1,7	13,9
20190411	2,5	1,9	1,4	2,7	1,6	1,5	2,0	3,4	2,7	2,6	3,9	4,1	6,4	11,7	4,6	4,4	2,0	2,4	3,9	3,2	2,6	4,7	2,7	1,6	3,4	1,4	11,7
20190412	3,3	2,8	3,2	2,6	1,9	2,2	4,0	7,1	7,3	4,4	4,3	2,8	3,4	3,5	4,8	8,3	3,0	2.e	4,3	5,6	3,2	0,2	0,4	0,7	3,6	0,2	8,3
20190413	0,2	0,3	0,5	0,5	0,6	0,7	1,7	5,3	2,6	2,3	1,5	1,2	5,8	9,1	11,4	6,0	1,7	3,0	3,6	3,9	2,1	3,0	2,4	3,2	3,0	0,2	11,4
20190414	2,5	2,5	5,0	2,3	4,8	3,1	2,9	3,3	1,7	1,2	0,9	1,6	1,8	1,8	1,9	2,5	2,8	3,2	3,1	3,6	2,4	2,5	2,7	2,7	2,6	0,9	5,0
20190415	3,0	2,8	2,6	3,1	3,0	2,9	4,5	3,1	2,2	1,7	1,6	4,7	2,2	1,4	0,5	1,1	2.e	0,5	0,5	0,4	0,4	0,2	0,1	0,3	1,9	0,1	4,7
20190416	0,2	0,5	0,3	0,7	1,4	0,8	1,7	1,8	12,5	3,2	1,2	2.b	0,6	0,8	1,6	0,7	5,7	0,8	0,4	4,1	2,0	1,7	0,7	0,6	1,9	0,2	12,5
20190417	0,3	0,6	1,3	5,0	2,8	0,9	13,5	1,4	2,6	22,2	0,9	1,0	1,7	3,6	10,5	7,8	3,3	0,6	0,7	0,6	9,7	11,9	8,1	16,2	5,3	0,3	22,2
20190418	11,6	15,1	12,5	20,4	16,9	6,5	10,3	13,1	5,4	3,3	2,4	3,0	1,4	3,0	3,8	4,9	4,7	6,3	7,4	6,4	7,4	5,2	3,5	5,4	7,5	1,4	20,4
20190419	4,0	4,2	4,0	1,7	0,7	0,8	1,4	4,4	3,7	6,8	6,9	4,9	6,0	0,5	4,7	3,5	4,1	7,9	7,0	19,7	17,8	10,4	2,0	0,6	5,3	0,5	19,7
20190420	0,6	2,0	3,4	9,1	10,8	6,0	1,3	0,7	0,7	0,4	1,2	0,4	4,3	28,3	4,5	3,2	0,5	0,7	3,1	0,5	0,5	0,4	0,7	0,4	3,5	0,4	28,3
20190421	0,4	2,7	0,5	2,9	2,0	5,5	5,5	2,5	4,2	4,4	2,9	1,2	2.b	1,5	0,3	1,4	1,9	1,3	0,3	1,1	1,0	1,3	0,9	1,2	2,0	0,3	5,5
20190422	1,4	0,5	0,1	0,4	0,9	0,7	1,7	10,7	11,7	9,8	8,6	5,8	2,4	1,5	0,5	2,3	1,0	0,4	5,2	5,4	8,7	9,3	0,3	1,1	3,8	0,1	11,7
20190423	1,2	1,8	1,5	3,0	0,5	0,6	0,2	0,4	0,9	2.e	1,1	1,1	0,1	0,6	1,0	1,0	1,0	2,7	4,4	0,1	1,5	0,5	0,4	1,3	1,2	0,1	4,4
20190424	1,6	0,4	0,3	0,1	0,1	1,1	1,3	1,3	3,0	4,8	5,5	8,0	15,7	4,9	15,2	3,6	7,3	9,8	1,7	3,4	1,5	1,5	7,5	5,5	4,4	0,1	15,7
20190425	3,0	0,2	0,3	0,6	0,8	0,9	5,0	7,4	3,7	3,1	5,2	7,4	4,7	3,6	3,7	6,2	8,8	7,9	4,8	2,4	6,0	4,3	2,9	1,4	3,9	0,2	8,8
20190426	1,9	2,0	2,6	4,0	2,7	4,3	1,2	1,4	3,1	8,3	15,9	27,9	19,6	18,4	9,0	0,4	5,6	0,6	7,4	7,9	4,2	2,0	2,6	1,9	6,5	0,4	27,9
20190427	1,6	0,7	0,2	0,5	0,4	2,1	3,9	1,5	5,4	9,8	19,3	12,0	7,1	3,7	4,1	2,6	3,0	3,8	3,6	5,0	5,2	6,9	6,1	8,4	4,9	0,2	19,3
20190428	6,6	5,6	3,8	6,1	5,2	4,3	14,3	5,4	4,5	3,5	4,4	5,9	8,0	6,2	6,4	8,6	8,0	13,2	13,2	10,4	5,8	4,7	5,1	2,5	6,7	2,5	14,3
20190429	0,4	0,2	9,3	6,1	9,7	6,1	9,1	2.b	29,6	22,2	22,0	29,4	25,8	14,3	9,5	14,0	12,4	12,9	6,5	7,8	2,3	1,8	0,9	0,3	11,0	0,2	29,6
20190430	0,8	1,6	0,2	0,2	0,6	0,5	0,5	0,6	2,0	6,0	5,0	3,7	0,7	4,6	4,8	2,7	1,5	1,5	1,5	4,4	4,8	2,2	0,8	0,4	2,1	0,2	6,0
20190501	0,2	0,3	0,2	3,3	0,3	0,3	0,2	0,3	0,5	3,4	5,3	0,9	4,7	6,0	4,9	5,8	5,4	8,2	13,7	4,4	4,2	0,6	0,2	0,1	3,0	0,1	13,7
20190502	0,8	1,3	0,3	1,0	0,6	1,3	5,4	17,1	6,2	18,1	1,3	1,5	1,0	1,2	1,8	1,9	2,1	2.e	0,8	6,3	7,3	1,1	2.b	2,4	3,7	0,3	18,1
20190503	0,8	1,5	1,0	0,9	7,3	0,6	1,4	1,2	7,3	9,2	7,1	4,8	2,6	2,3	1,8	10,3	12,3	11,5	9,7	5,2	2,6	1,6	0,3	0,6	4,3	0,3	12,3
MEDIA	2,5	2,6	2,6	3,4	3,1	2,5	3,7	4,0	5,0	6,1	5,7	5,5	5,2	5,2	5,0	4,7	4,1	5,1	5,3	5,3	4,6	3,4	2,7	2,7	4,1		
MÍNIMO	0,2	0,2	0,1	0,1	0,1	0,3	0,2	0,3	0,4	0,4	0,6	0,4	0,1	0,5	0,3	0,4	0,5	0,4	0,3	0,1	0,4	0,0	0,1	0,1		0,0	
MÁXIMO	13,6	18,0	16,9	20,4	16,9	6,5	14,3	17,1	29,6	22,2	24,5	29,4	25,8	28,3	15,2	15,7	12,4	14,8	27,8	20,5	17,8	11,9	10,3	16,2			29,6

ANEXO IVⁿ TABLAS DE VARIABLES METEOROLÓGICAS, ESTACIÓN EDELMAG ABRIL - MAYO 2019

ⁿ Los códigos de invalidación están detallados en el ANEXO I

VELOCIDAD DEL VIENTO ESTACIÓN EDELMAG, ABRIL - MAYO 2019 UNIDAD: m/s

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20190413	8.0	6.7	5.8	5.8	5.6	4.0	2.3	3.3	4.9	2.9	5.1	5.6	7.0	6.4	4.6	5.0	4.0	1.1	1.4	2.2	3.0	2.5	4.1	3.5	4.4	1.1	8.0
20190414	5,6	4,6	4,7	3,0	1,3	2,1	1,2	1,5	5,4	5,1	5,6	5,1	4,6	4,9	3,9	4,0	2,6	2,6	2,0	2,8	3,8	3,3	3,2	3,1	3,6	1,2	5,6
20190415	2.2	2,4	2.0	3.0	2,4	2.3	1,5	3,6	7.7	7,2	7.8	8.6	7,3	7.4	8.1	6.9	7,0	6,3	6.4	5,7	6.0	7,0	6.6	7.4	5,5	1,5	8,6
20190416	5.2	3.0	3.8	3.0	2.4	2.6	2.5	2.8	2.0	3.1	6.0	8.4	9.7	9.0	8.3	10.3	6.0	6.5	5.9	2,4	3.4	2.6	3.5	5.9	4.9	2.0	10,3
20190417	7,5	8,0	7,6	4,7	5,6	4,2	5,3	2,9	3,3	6,3	6,7	7,4	6,8	6,5	4,4	4,5	6,2	6,1	6,0	6,2	7,4	8,6	9,6	10,7	6,4	2,9	10,7
20190418	11,5	11,1	11,5	10,5	5,8	2,8	5,2	5,5	4,9	2,3	2,7	3,0	3,5	3,1	2,6	1,4	1,7	1,2	0,9	1,2	5,3	7,5	6,9	4,3	4,9	0,9	11,5
20190419	2,6	3,5	4,0	4,5	4,5	2,4	2,7	4,2	3,2	3,3	4,8	5,5	3,7	5,9	4,9	4,1	4,2	3,4	3,4	5,6	4,6	6,5	8,3	4,3	4,3	2,4	8,3
20190420	3,2	2,8	2,7	4,9	7,4	4,7	3,1	3,1	2,7	5,2	6,1	7,0	6,5	6,7	7,2	7,8	7,6	7,2	7,8	7,9	8,0	7,2	8,2	7,4	5,9	2,7	8,2
20190421	6,6	6,5	6,2	6,0	5,6	5,6	4,1	2,0	2,6	1,9	4,2	3,2	3,1	2,8	4,4	1,3	1,2	2,5	3,7	0,9	2,4	1,6	2,4	1,0	3,4	0,9	6,6
20190422	2,1	1,7	3,3	3,2	2,2	3,2	2,4	1,4	2,3	2,2	2,6	2,3	1,9	2,9	4,5	4,9	6,3	5,1	3,3	3,4	4,2	3,9	2,5	1,1	3,0	1,1	6,3
20190423	0,9	1,7	2,6	3,1	2,7	2,8	3,9	3,3	3,7	4,0	3,5	4,4	4,2	4,5	4,5	4,0	2,8	2,2	3,0	5,0	5,6	4,3	2,7	2,7	3,4	0,9	5,6
20190424	2,2	3,8	3,9	3,4	3,2	2,0	2,4	2,6	3,0	3,4	3,7	5,0	4,8	3,4	5,3	4,6	2,4	1,0	3,2	1,4	1,7	1,3	0,9	1,2	2,9	0,9	5,3
20190425	2,6	3,4	2,9	1,4	2,9	2,3	0,6	1,5	1,6	0,6	1,0	1,9	2,2	2,6	2,6	2,7	2,6	1,8	1,2	1,4	1,3	0,6	1,0	1,3	1,8	0,6	3,4
20190426	1,2	0,7	0,9	1,5	2,2	1,1	2,5	3,3	4,2	5,4	5,2	5,0	4,7	4,7	5,5	6,8	4,4	4,1	1,7	0,7	1,7	1,5	1,4	1,2	3,0	0,7	6,8
20190427	2,2	3,3	3,0	4,8	3,7	1,4	0,9	2,2	1,2	0,6	0,8	2,5	4,1	3,6	3,4	2,7	2,1	1,8	0,9	0,6	0,9	1,4	1,2	1,5	2,1	0,6	4,8
20190428	1,2	1,4	1,1	0,7	1,1	1,0	1,1	1,0	1,5	1,2	0,8	0,6	1,6	1,4	1,3	1,5	1,5	1,5	1,5	1,1	1,5	1,7	1,1	2,0	1,3	0,6	2,0
20190429	4,2	6,1	6,1	5,2	5,4	4,9	4,4	5,7	6,0	4,4	5,6	6,0	7,1	6,4	6,6	6,4	4,6	4,4	3,1	7,6	6,3	5,7	4,9	3,5	5,4	3,1	7,6
20190430	1,9	1,3	3,2	3,1	3,0	2,8	2,9	2,8	1,8	2,2	2,1	3,2	3,9	4,4	6,0	3,5	3,5	2,5	1,0	1,1	1,7	3,2	3,4	5,5	2,9	1,0	6,0
20190501	5,3	5,1	5,1	4,7	4,7	4,2	6,8	7,3	3,6	4,4	2,8	2,5	4,4	4,8	5,1	5,3	5,6	4,9	3,9	3,6	4,1	3,4	2,8	3,1	4,5	2,5	7,3
20190502	2,1	3,7	2,4	0,9	2,4	1,6	2,5	2,1	1,9	4,1	5,0	4,8	5,6	5,4	5,6	5,0	3,1	2,1	2,4	2,3	1,9	1,8	1,0	0,9	2,9	0,9	5,6
20190503	0,7	0,8	1,2	1,3	1,6	1,5	1,5	1,9	1,2	0,7	0,7	1,4	2,2	3,5	3,2	1,8	1,6	1,5	1,8	2,6	2,1	1,1	1,9	1,8	1,7	0,7	3,5
20190504	1,8	1,3	1,8	2,0	2,0	1,9	2,1	2,6	2,6	2,5	2,6	3,8	3,1	3,0	3,2	3,5	1,5	1,5	1,7	1,4	2,1	1,2	1,6	3,5	2,3	1,2	3,8
20190505	4,7	4,2	2,5	2,5	2,8	3,3	2,4	2,8	2,9	5,6	8,2	8,9	6,9	7,2	4,6	2,6	3,3	2,9	2,8	3,0	2,2	2,1	1,9	1,7	3,8	1,7	8,9
20190506	2,7	2,7	2,6	3,3	5,3	3,0	4,6	3,6	3,7	2,7	3,0	3,8	2,7	4,2	4,6	4,9	4,6	1,7	1,4	3,5	3,1	3,3	3,1	4,1	3,4	1,4	5,3
20190507	2,6	2,9	4,5	6,4	7,1	6,1	2,4	1,8	3,5	6,2	5,4	3,5	3,7	4,9	8,2	6,4	7,1	3,3	2,0	1,6	3,2	2,3	2,8	2,3	4,2	1,6	8,2
20190508	2,5	2,1	1,6	2,1	3,2	3,3	2,3	2,4	1,7	3,1	3,7	4,6	4,7	3,4	3,0	3,4	2,1	3,3	4,7	5,3	5,4	2,0	4,1	4,5	3,3	1,6	5,4
20190509	5,3	3,7	3,1	3,9	3,3	3,8	5,0	6,0	5,9	6,0	4,2	6,2	6,4	7,7	6,5	5,4	4,0	2,6	2,5	2,3	2,3	2,9	3,9	5,2	4,5	2,3	7,7
20190510	7,6	6,3	7,2	4,0	4,3	5,0	6,7	9,8	7,6	8,7	8,7	7,4	7,5	9,2	9,2	8,1	5,2	5,1	4,9	6,0	5,6	6,5	6,0	7,5	6,8	4,0	9,8
20190511	6,2	5,7	4,7	5,8	4,8	4,7	1,8	1,6	3,5	4,3	2,8	2,6	3,6	3,5	3,5	2,3	1,6	2,4	4,1	5,3	5,7	6,6	7,2	8,7	4,3	1,6	8,7
20190512	8,2	7,5	4,0	2,5	2,7	4,1	6,1	5,2	4,2	3,6	3,1	2,6	3,1	7,2	7,6	7,7	5,0	1,9	4,8	9,5	12,3	4,4	4,7	3,8	5,2	1,9	12,3 14.7
20190513	2,9	2,9	3,0	3,3	2,8	2,1	2,5	6,4	9,4	13,2	13,0	11,4	12,8	12,9	12,9	14,7	14,2	10,7	8,6	8,4	7,7	8,9	9,4	9,0	8,5	2,1	14,1
MEDIA	4,0	3,9	3,8	3,7	3,7	3,1	3,1	3,4	3,7	4,1	4,4	4,8	4,9	5,3	5,3	5,0	4,2	3,4	3,3	3,6	4,1	3,8	3,9	4,0	4,0	0.0	\square
MÍNIMO	0,7	0,/	0,9	0,7	1,1	1,0	0,6	1,0	1,2	0,6	0,7	0,6	1,6	1,4	1,3	1,3	1,2	1,0	0,9	0,6	0,9	0,6	0,9	0,9		0,6	14.7
MÁXIMO	11,5	11,1	11,5	10,5	7,4	6,1	6,8	9,8	9,4	13,2	13,0	11,4	12,8	12,9	12,9	14,7	14,2	10,7	8,6	9,5	12,3	8,9	9,6	10,7			14,7

DIRECCIÓN DEL VIENTO ESTACIÓN EDELMAG, ABRIL - MAYO 2019

UNIDAD: Grados

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20190413	300	296	302	309	307	308	38	29	325	339	307	304	288	282	251	284	295	8	329	346	302	336	295	260	312	8	346
20190414	288	280	286	276	287	190	288	328	305	299	304	306	305	308	311	319	329	344	1	29	323	330	329	317	310	1	344
20190415	334	337	330	303	346	37	341	309	324	326	322	319	325	318	300	316	307	301	304	308	309	299	301	296	319	37	346
20190416	312	3	323	12	39	309	317	317	325	348	316	315	322	329	318	301	288	295	297	359	355	354	353	321	329	3	359
20190417	296	287	291	276	229	227	263	306	248	266	295	293	296	298	285	295	305	326	351	307	292	288	286	283	287	227	351
20190418	284	282	281	277	249	243	248	248	243	262	231	218	222	189	164	116	98	70	101	271	286	287	287	288	249	70	288
20190419	263	261	263	288	291	287	298	274	297	252	250	243	281	300	271	281	294	270	204	278	265	279	284	336	276	204	336
20190420	345	4	285	282	284	288	311	356	348	307	299	304	288	265	290	286	303	306	319	313	299	297	291	290	304	4	356
20190421	292	285	287	283	276	272	266	246	238	198	220	212	224	202	208	98	268	247	292	240	298	15	25	256	258	15	298
20190422	30	328	339	53	52	45	325	51	61	18	28	14	347	321	293	289	284	281	255	215	246	265	309	359	338	14	359
20190423	196	138	300	266	317	326	304	308	310	327	319	305	305	313	304	311	323	14	50	321	321	327	19	59	321	14	327
20190424	42	1	18	356	2	22	15	325	3	297	264	280	276	295	261	280	203	81	267	292	294	326	270	265	314	1	356
20190425	319	299	306	326	317	322	11	329	293	234	162	127	130	156	172	175	192	211	263	268	266	264	268	286	263	11	329
20190426	306	352	42	30	54	118	346	303	291	278	276	262	250	272	283	293	286	285	208	306	191	2	271	249	294	2	352
20190427	352	336	319	318	316	328	21	295	230	343	163	51	18	37	47	61	76	70	68	67	217	230	225	226	359	18	352
20190428	215	239	233	234	224	261	288	296	312	18	45	175	156	116	131	141	162	191	195	213	231	240	260	334	221	18	334
20190429	296	292	270	284	280	253	262	249	251	260	270	259	258	272	285	278	272	274	264	282	288	287	293	295	274	249	296
20190430	290	337	301	300	312	325	325	332	10	354	11	268	303	269	236	258	300	302	33	69	50	35	15	324	327	10	354
20190501	338	350	344	342	339	347	347	339	353	290	278	279	281	262	278	261	254	243	249	260	243	237	294	301	296	237	353
20190502	287	271	305	241	265	237	204	226	217	227	223	213	215	215	205	222	235	230	225	218	217	228	203	238	231	203	305
20190503	207	311	300	288	289	292	295	283	275	285	21	53	5	330	327	153	185	283	278	287	282	303	303	304	296	5	330
20190504	288	288	312	302	311	324	321	307	301	303	341	2	340	335	349	342	5	20	348	356	338	4	31	9	335	2	356
20190505	353	7	43	52	339	253	331	267	247	266	253	274	271	282	289	320	309	315	340	29	12	24	5	15	324	5	353
20190506	21	45	67	53	40	50	54	27	38	19	43	27	4	28	41	32	50	39	45	41	20	360	321	264	31	4	360
20190507	276	353	337	308	293	297	4	339	333	282	284	317	302	266	277	268	259	178	283	159	64	7	19	359	310	4	359
20190508	1	24	51	32	39	34	35	41	15	42	28	12	3	353	326	9	9	349	348	343	329	27	3	7	13	1	353
20190509	16	62	6	330	252	252	270	285	295	296	280	286	288	287	273	280	290	295	311	324	325	9	11	9	308	6	330
20190510	356	20	32	15	4	7	2	352	339	346	357	346	311	302	280	302	310	296	317	306	321	317	323	310	335	2	357
20190511	301	312	287	289	296	312	7	66	315	313	329	1	341	4	10	7	27	18	35	37	34	27	44	59	355	1	341
20190512	66	77	99	140	242	327	297	287	295	286	357	6	351	332	330	325	336	348	331	301	283	306	265	247	320	6	357
20190513	305	281	19	1	22	18	358	303	301	305	303	305	307	306	304	294	295	297	301	299	301	294	295	297	312	1	358
MEDIA	315	327	324	316	313	311	325	314	307	304	305	305	301	298	288	298	296	310	310	310	301	319	314	307	309		
MÍNIMO	1	1	6	1	2	7	2	27	3	18	11	1	3	4	10	7	5	8	1	29	12	2	3	7		1	
MÁXIMO	356	353	344	356	346	347	358	356	353	354	357	346	351	353	349	342	336	349	351	359	355	360	353	359			360

ROSA DE VIENTOS HORARIA ESTACIÓN EDELMAG, ABRIL - MAYO 2019

	0:00 - 0:59	1:00 - 1:59	2:00 - 2:59	3:00 - 3:59	4:00 - 4:59	5:00 - 5:59	6:00 - 6:59	7:00 - 7:59	8:00 - 8:59	9:00 - 9:59	10:00 - 10:59	
N	12,9	22,6	3,2	6,5	6,5	3,2	16,1	6,5	9,7	3,2	9,7	9,7
NNE	9,7	6,5	9,7	12,9	3,2	6,5	6,5	6,5	3,2	9,7	9,7	9,7
NE	3,2	3,2	9,7	9,7	16,1	12,9	9,7	6,5	3,2	3,2	6,5	6,5
ENE	3,2	6,5	3,2	0,0	0,0	0,0	0,0	3,2	3,2	0,0	0,0	0,0
E	0,0	0,0	3,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
ESE	0,0	0,0	0,0	0,0	0,0	3,2	0,0	0,0	0,0	0,0	0,0	0,0
SE	0,0	3,2	0,0	3,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	3,2
SSE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	6,5	0,0
S	0,0	0,0	0,0	0,0	0,0	3,2	0,0	0,0	0,0	0,0	0,0	3,2
SSO	6,5	0,0	0,0	0,0	0,0	0,0	3,2	0,0	0,0	3,2	0,0	6,5
SO	3,2	0,0	3,2	3,2	6,5	3,2	0,0	3,2	6,5	6,5	9,7	3,2
OSO	0,0	3,2	0,0	3,2	9,7	16,1	3,2	9,7	16,1	3,2	6,5	3,2
0	6,5	9,7	6,5	12,9	9,7	6,5	12,9	6,5	3,2	16,1	16,1	19,4
ONO	32,3	25,8	32,3	29,0	19,4	12,9	16,1	22,6	22,6	25,8	16,1	9,7
NO	12,9	6,5	16,1	12,9	19,4	19,4	19,4	19,4	22,6	12,9	12,9	22,6
NNO	9,7	12,9	12,9	6,5	9,7	12,9	12,9	16,1	9,7	16,1	6,5	3,2
TOTAL	100	100	100	100	100	100	100	100	100	100	100	100
	12:00 - 12:59	13:00 - 13:59	14:00 - 14:59	15:00 - 15:59	16:00 - 16:59	17:00 - 17:59	18:00 - 18:59	19:00 - 19:59	20:00 - 20:59	21:00 - 21:59	9 22:00 - 22:59	23:00 - 23:59
N	12,9	6,5	6,5	6,5	6,5	6,5	6,5	6,5	3,2	19,4	9,7	16,1
NNE	3,2	3,2	0,0	3,2	3,2	9,7	3,2	6,5	6,5	12,9	19,4	3,2
NE	0,0	3,2	6,5	0,0	3,2	3,2	9,7	6,5	6,5	3,2	3,2	0,0
ENE	0,0	0,0	0,0	3,2	3,2	6,5	3,2	6,5	3,2	0,0	0,0	6,5
E	0,0	0,0	0,0	3,2	3,2	3,2	3,2	0,0	0,0	0,0	0,0	0,0
ESE	0,0	3,2	0,0	3,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
SE	3,2	0,0	3,2	3,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
SSE	3,2	3,2	3,2	3,2	3,2	0,0	0,0	3,2	0,0	0,0	0,0	0,0
S	0,0	3,2	3,2	3,2	3,2	6,5	0,0	0,0	3,2	0,0	0,0	0,0
SSO	0,0	3,2	6,5	0,0	6,5	3,2	9,7	3,2	0,0	0,0	3,2	0,0
SO	9,7	3,2	3,2	3,2	3,2	3,2	3,2	6,5	9,7	6,5	3,2	3,2
oso	6,5	0,0	3,2	3,2	3,2	6,5	6,5	3,2	6,5	6,5	0,0	12,9
0	12,9	19,4	19,4	19,4	9,7	6,5	12,9	12,9	6,5	9,7	16,1	9,7
ONO	19,4	22,6	25,8	25,8	29,0	29,0	12,9	16,1	32,3	22,6	32,3	25,8
NO	19,4	16,1	12,9	16,1	16,1	9,7	12,9	22,6	16,1	9,7	9,7	16,1
NNO	9,7	12,9	6,5	3,2	6,5	6,5	16,1	6,5	6,5	9,7	3,2	6,5
TOTAL	100	100	100	100	100	100	100	100	100	100	100	100

TEMPERATURA ESTACIÓN EDELMAG, ABRIL – MAYO 2019 UNIDAD: °C

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20190413	5,8	5,5	5,3	5,3	5,2	4,9	5,3	5,1	5,0	5,4	6,7	8,0	8,1	8,2	7,9	8,2	8,1	8,6	8,2	7,6	6,8	6,6	5,8	5,3	6,5	4,9	8,6
20190414	4,6	4,3	4,1	4,0	4,2	3,9	3,6	3,4	3,2	4,5	6,2	8,3	9,5	9,6	9,4	9,8	9,8	9,8	9,4	9,0	8,5	8,6	8,5	8,5	6,9	3,2	9,8
20190415	8,7	8,6	8,2	7,8	8,3	8,4	8,4	8,2	8,7	10,5	11,6	13,5	13,5	12,4	10,4	10,7	5,2	4,8	4,4	4,1	3,9	3,7	3,5	3,5	8,0	3,5	13,5
20190416	3,5	2,4	3,3	3,0	2,1	3,3	3,0	2,3	2,9	3,9	5,3	6,7	7,2	7,8	6,2	5,7	4,5	3,9	3,5	3,1	3,0	3,0	2,9	2,7	4,0	2,1	7,8
20190417	2,3	2,9	3,0	3,0	2,8	2,4	2,4	1,6	2,4	3,8	4,4	4,7	4,5	4,9	5,7	5,3	5,0	4,7	4,7	5,3	6,1	6,4	6,5	6,7	4,2	1,6	6,7
20190418	6,9	7,1	7,2	7,5	7,0	6,5	6,6	6,4	5,7	5,7	6,3	6,0	7,4	7,0	6,8	6,7	5,9	5,2	5,0	5,1	6,1	5,9	5,5	5,5	6,3	5,0	7,5
20190419	5,5	5,6	5,5	5,4	6,0	6,1	6,1	7,3	7,8	9,2	10,6	11,2	11,2	10,4	10,7	9,5	9,0	8,6	8,0	8,0	7,7	7,3	7,2	6,7	7,9	5,4	11,2
20190420	6,6	6,8	7,4	8,4	8,6	8,7	8,2	7,1	8,0	9,2	10,1	10,8	11,9	12,8	10,6	9,8	9,0	8,5	8,2	8,0	8,0	8,2	8,4	8,6	8,8	6,6	12,8
20190421	7,8	7,9	7,8	7,6	7,6	8,0	8,3	7,8	8,4	8,6	9,4	10,0	11,0	12,7	13,1	13,1	11,9	9,0	8,4	8,1	9,0	8,4	7,4	8,0	9,1	7,4	13,1
20190422	6,8	6,7	5,9	4,3	3,8	4,1	6,5	5,2	5,4	6,2	7,0	7,4	8,0	9,0	9,1	9,3	9,4	7,7	6,4	6,6	5,9	5,3	4,1	1,9	6,3	1,9	9,4
20190423	2,6	5,0	5,6	6,4	5,6	5,6	6,5	6,5	6,6	7,0	7,7	9,0	9,6	10,0	10,1	9,5	8,1	7,0	6,4	7,5	7,3	6,8	6,4	5,8	7,0	2,6	10,1
20190424	5,4	5,7	5,6	5,8	6,3	4,3	4,5	5,7	6,2	9,3	10,9	11,8	12,3	12,6	12,5	12,3	10,8	7,4	8,2	6,1	5,1	4,8	4,4	3,4	7,6	3,4	12,6
20190425	3,4	4,1	4,5	3,5	4,1	4,1	2,5	2,2	3,1	4,8	6,8	8,1	8,3	8,3	8,0	8,0	7,3	5,4	4,1	3,9	3,7	3,1	3,2	3,4	4,9	2,2	8,3
20190426	3,0	3,7	3,9	4,4	4,9	5,5	7,8	9,1	9,2	10,2	10,7	11,8	12,2	12,8	12,5	11,6	10,8	8,9	7,3	5,8	5,0	4,3	4,2	4,9	7,7	3,0	12,8
20190427	2,7	2,7	2,5	2,4	3,1	3,3	2,4	3,0	3,2	3,0	5,7	6,9	7,3	7,0	6,8	6,4	5,9	5,8	5,6	5,4	5,1	4,9	4,9	4,9	4,6	2,4	7,3
20190428	4,9	4,8	4,9	5,0	5,0	4,8	4,7	4,4	4,3	4,7	5,2	5,2	5,4	5,4	5,3	5,3	5,3	5,0	4,9	4,8	4,8	4,8	4,9	5,3	5,0	4,3	5,4
20190429	5,6	5,6	5,7	5,2	5,1	4,7	3,5	2,7	2,8	3,3	4,1	4,7	5,1	5,3	4,8	5,1	4,3	3,1	2,6	2,8	2,8	2,6	2,6	2,1	4,0	2,1	5,7
20190430	1,7	0,2	1,4	1,6	1,3	1,5	1,2	0,9	1,0	1,0	3,6	5,1	5,9	6,7	6,8	6,1	4,9	4,2	3,1	1,2	1,1	0,9	0,5	1,4	2,6	0,2	6,8
20190501	1,2	0,8	0,9	0,5	1,4	1,6	2,3	2,1	1,8	3,2	3,6	4,6	5,3	5,7	5,4	4,8	4,1	3,0	2,4	1,9	1,5	1,1	0,2	0,3	2,5	0,2	5,7
20190502	0,2	0,9	1,0	1,1	1,9	2,2	2,2	1,2	0,6	1,9	3,3	4,2	4,7	5,1	5,0	4,6	3,8	1,9	1,1	0,6	0,2	0,0	-0,8	-1,8	1,9	-1,8	5,1
20190503	-2,3	-3,3	-2,8	-3,1	-2,4	-2,4	-2,8	-2,3	-1,6	0,4	3,7	5,9	6,8	6,2	6,6	6,8	5,6	2,9	1,7	0,8	-0,1	-1,0	-0,7	0,5	1,0	-3,3	6,8
20190504	0,5	0,8	-0,7	-1,1	-0,9	-1,2	-1,1	-0,3	-0,5	0,9	2,1	3,0	4,2	4,5	3,6	3,2	2,8	0,8	0,9	-0,1	0,0	-0,7	-0,6	0,8	0,9	-1,2	4,5
20190505	1,6	1,6	0,3	0,5	3,0	5,2	4,7	4,8	5,0	6,3	7,7	8,4	9,0	9,3	9,3	8,9	8,2	7,3	6,2	4,8	4,5	4,7	4,5	3,8	5,4	0,3	9,3
20190506	3,9	4,4	5,6	6,7	6,9	6,3	6,2	6,9	7,1	7,9	9,0	10,1	10,4	9,6	9,9	9,8	9,2	8,1	7,2	7,8	8,4	9,1	9,4	9,5	7,9	3,9	10,4
20190507	8,4	7,6	7,9	8,4	8,0	7,9	6,6	4,9	6,1	7,4	8,5	9,6	9,6	9,9	9,7	9,4	8,7	7,2	6,7	6,1	5,6	2,9	2,4	2,7	7,2	2,4	9,9
20190508	2,3	2,7	2,5	2,6	2,0	2,0	1,1	1,6	1,5	3,7	4,9	7,5	9,0	10,8	11,0	10,5	7,8	6,9	6,7	6,0	6,9	5,5	6,0	6,5	5,3	1,1	11,0
20190509	6,3	5,5	5,4	6,5	6,6	6,3	5,9	5,2	4,7	5,0	6,2	6,9	7,5	7,8	8,2	7,8	6,8	5,2	4,4	3,6	2,6	2,0	2,1	1,6	5,4	1,6	8,2
20190510	2,8	2,9	2,9	2,3	2,4	2,7	4,3	6,2	6,4	6,8	8,6	9,9	11,6	11,9	7,6	5,6	5,3	4,6	4,0	4,2	2,7	3,2	2,9	2,9	5,2	2,3	11,9
20190511	2,9	2,6	2,9	3,0	3,2	2,4	1,3	0,8	1,4	1,9	3,0	3,0	4,3	4,5	4,6	3,5	2,0	1,6	2,7	3,4	3,2	2,0	1,5	1,8	2,6	0,8	4,6
20190512	1,4	1,2	0,9	1,4	1,1	2,8	2,4	3,0	3,2	4,4	4,5	4,6	6,1	5,8	6,7	5,9	5,3	4,0	3,9	3,0	2,7	2,6	2,4	1,9	3,4	0,9	6,7
20190513	1,4	2,4	2,1	2,3	2,3	1,3	2,6	4,9	6,3	7,0	7,8	8,8	9,9	9,9	9,2	8,7	7,9	6,7	6,0	6,0	5,7	6,1	6,3	6,6	5,8	1,3	9,9
MEDIA	3,8	3,9	3,9	3,9	4,1	4,1	4,1	4,1	4,4	5,4	6,6	7,6	8,3	8,5	8,2	7,8	6,9	5,7	5,2	4,9	4,6	4,3	4,1	4,1	5,4		<u> </u>
MÍNIMO	-2,3	-3,3	-2,8	-3,1	-2,4	-2,4	-2,8	-2,3	-1,6	0,4	2,1	3,0	4,2	4,5	3,6	3,2	2,0	0,8	0,9	-0,1	-0,1	-1,0	-0,8	-1,8		-3,3	Ь
MÁXIMO	8,7	8,6	8,2	8,4	8,6	8,7	8,4	9,1	9,2	10,5	11,6	13,5	13,5	12,8	13,1	13,1	11,9	9,8	9,4	9,0	9,0	9,1	9,4	9,5			13,5

HUMEDAD RELATIVA ESTACIÓN EDELMAG, ABRIL - MAYO 2019

UNIDAD: %

20190414 62 64 63 62 61 62 61 62 64 63 63 64 64 65 62 61 57 55 55 55 55 55 56 56 57 57 57 58 60 61 62 62 60 55 64 20190415 63 63 63 64 64 64 63 63 63 64 65 62 61 57 56 59 62 61 85 85 84 85 81 80 81 79 69 56 85 20190416 78 83 77 79 87 82 84 85 82 80 64 57 56 58 70 72 81 81 82 88 89 88 89 89 78 56 89 20190417 87 81 80 79 76 69 69 69 74 69 61 62 67 73 67 63 66 68 75 78 76 71 71 70 71 72 61 87 20190418 71 68 70 70 74 74 68 67 71 71 70 68 66 65 54 59 64 62 65 66 68 70 72 70 71 74 74 77 69 54 77 20190420 80 78 76 71 68 68 68 71 77 70 68 66 64 58 51 63 70 73 77 78 78 77 77 76 74 71 51 80 20190421 80 79 79 81 81 81 78 76 78 76 78 76 78 76 78 76 78 76 78 78 76 79 81 81 81 78 76 78 78 79 81 81 81 78 76 78 78 78 79 81 81 81 78 76 78 78 78 79 79 81 81 81 78 76 78 78 78 79 79 81 81 81 78 76 78 78 78 79 79 81 81 81 78 76 78 78 78 79 79 81 81 81 78 76 78 78 78 78 79 79 81 81 81 78 76 78 78 78 78 79 79 81 81 81 78 76 78 78 78 78 79 79 81 81 81 78 76 78 78 78 78 79 79 81 81 81 78 76 78 78 78 78 79 79 81 81 81 78 76 78 78 78 78 78 79 79 81 81 81 78 76 78 78 78 78 79 79 81 81 81 78 76 78 78 78 78 79 79 81 81 81 78 76 78 78 78 78 79 79 81 81 81 78 76 78 78 78 78 79 77 77 78 78 78 78 78 77 77 78 78 78 78													UIT	IDA		/0												
22199415 63 63 64 63 62 61 62 61 62 61 62 61 62 61 62 61 67 62 61 65 62 61 61 61 61 61 61 61 61 61 61 61 61 61		0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	MEDIA	MIN	MAX
20190417 87 81 83 87 77 79 87 82 84 85 82 80 64 57 75 56 59 62 61 85 85 84 85 88 88 89 89 87 75 56 89 20190417 87 81 80 79 79 87 82 84 85 862 80 64 57 75 56 58 70 72 81 81 82 88 88 88 89 89 89 78 56 89 20190417 87 81 82 88 89 89 89 78 56 89 89 89 78 56 89 89 89 89 89 89 89 89 89 89 89 89 89	20190413	70	70	70	69	68	68	66	66	67	66	66	63	61	59	56	54	53	52	54	55	57	57	59	61	62	52	70
20190417	20190414	62	64	63	62	61	62	61	62	64	63	61	57	55	55	56	56	57	57	57	58	60	61	62	62	60	55	64
22199417 87 81 80 90 79 76 69 69 74 69 69 74 69 67 77 75 74 74 68 67 77 75 74 74 68 67 77 75 74 74 68 67 77 75 74 74 68 67 77 75 74 74 73 67 68 62 65 66 68 69 74 80 82 83 79 78 78 77 78 77 73 62 83 79 78 79 79 79 79 79 79 79 79 79 79 79 79 79	20190415	63	63	63	64	64	63	63	64	65	62	61	57	56	59	62	61	85	85	84	85	81	80	81	79	69	56	85
29199418 71 68 70 70 70 74 74 74 68 67 71 71 71 69 75 62 65 68 68 70 72 72 70 71 74 77 73 62 83 72199419 75 75 75 76 77 77 75 74 74 73 67 68 62 65 64 89 75 62 65 68 68 70 72 77 77 76 74 71 51 80 79 79 19 81 81 78 76 78 73 71 66 61 65 64 68 68 71 77 78 78 78 77 77 76 74 71 51 80 79 79 79 81 81 81 78 76 78 73 71 66 61 55 47 44 49 53 66 67 69 56 59 50 65 75 69 68 44 81 20199422 80 79 79 81 81 81 78 76 78 73 71 66 61 55 47 44 49 53 66 67 69 56 56 56 75 69 68 68 44 81 20199422 80 80 79 79 81 81 81 78 76 78 73 71 66 61 55 47 44 49 53 66 67 69 56 59 60 65 75 69 68 44 81 20199422 80 69 69 69 69 69 69 69 73 80 87 87 87 87 87 87 87 87 87 87 87 87 87	20190416	78	83	77	79	87	82	84	85	82	80	64	57	56	58	70	72	81	81	82	88	89	88	89	89	78	56	89
201904219 75 75 76 77 77 77 78 74 77 78 74 77 69 54 77 79 79 79 79 79 79 7	20190417	87	81	80	79	76	69	69	74	69	61	62	67	73	67	63	66	68	75	78	76	71	71	70	71	72	61	87
20190422 80 78 76 71 68 68 71 77 70 68 66 64 58 51 63 70 73 77 78 78 78 77 77 76 74 71 51 80 20190421 80 79 79 81 81 81 76 78 73 71 66 66 61 55 47 44 44 89 53 66 67 69 56 59 57 61 61 75 75 56 89 69 40 69 56 69 56 75 69 75 61 75 75 56 89 69 70 70 70 70 70 70 70 70 70 70 70 70 70	20190418	71	68	70	70	74	74	68	67	71	71	69	75	62	65	68	69	74	80	82	83	79	78	78	77	73	62	83
21919422 75 73 82 92 92 92 78 87 87 87 88 84 84 81 76 77 70 66 66 69 66 73 76 78 75 70 64 59 57 70 66 69 66 73 76 78 75 70 64 59 77 70 70 70 70 70 70 7	20190419	75	75	76	77	75	74	73	67	68	62	56	54	59	64	62	65	66	68	70	72	70	71	74	77	69	54	77
20190422 75 73 82 92 92 92 78 87 87 87 84 84 84 81 76 71 67 70 65 69 69 56 59 57 61 75 75 56 92 20190423 80 69 69 69 69 69 69 69 69 69 69 69 69 67 80 72 76 69 77 74 85 99 87 86 65 55 49 47 44 42 44 53 74 55 78 88 92 91 88 88 89 89 89 89 89 99 99 99 99 99 99	20190420	80	78	76	71	68	68	71	77	70	68	66	64	58	51	63	70	73	77	78	78	77	77	76	74	71	51	80
20190423	20190421	80	79	79	81	81	78	76	78	73	71	66	61	55	47	44	49	53	66	67	69	62	65	75	69	68	44	81
20190424 77 70 69 72 74 85 90 87 86 65 55 49 47 44 42 40 53 74 56 68 70 71 75 81 67 40 90 20190425 81 88 90 89 87 85 91 93 93 93 92 81 73 72 72 74 75 78 88 92 91 88 88 89 88 85 72 93 92 20190427 76 80 81 83 82 79 83 78 75 81 70 63 60 49 87 86 87 70 83 78 87 88 89 92 91 88 88 89 89 85 72 93 80 89 87 87 87 88 89 92 91 88 88 89 89 85 72 93 80 89 89 89 89 89 89 89 89 89 89 89 89 89	20190422	75	73	82	92	92	92	78	87	87	84	84	81	76	71	67	70	65	69	69	56	59	57	61	75	75	56	92
20190425 81 88 90 89 87 86 91 93 93 93 92 81 73 72 72 74 75 78 88 92 91 88 88 89 89 85 72 93 20190426 93 95 95 97 94 99 1 80 78 70 63 60 49 36 24 24 31 31 36 39 46 50 55 58 60 61 24 97 20190427 76 80 81 81 83 82 79 83 78 77 81 73 73 73 74 86 87 97 97 97 97 97 97 97 84 97 97 97 84 96 65 97 20190428 97 97 97 99 99 99 99 99 99 99 99 99 99	20190423	80	69	69	66	73	80	73	76	78	75	70	64	59	57	57	61	66	73	76	63	65	66	72	76	69	57	80
20190426 93 95 95 97 94 91 80 78 70 63 60 49 36 24 24 31 31 36 39 46 50 55 58 60 61 24 97 20190427 76 80 81 83 82 79 83 78 75 81 73 73 65 75 82 87 89 91 94 93 95 97 97 97 97 84 65 97 20190428 97 97 99 99 99 99 99 99 99 99 99 99 99	20190424	77	70	69	72	74	85	90	87	86	65	55	49	47	44	42	40	53	74	56	68	70	71	75	81	67	40	90
20190427 76 80 81 83 82 79 83 78 75 81 73 73 65 75 82 87 89 91 94 93 95 97 97 97 97 84 665 97 20190428 97 97 97 99 99 99 99 99 99 99 99 99 99	20190425	81					85	91				81						78							89	85		_
20190428 97 97 99 99 99 99 99 99 99 99 99 99 99	\vdash	93	95	95	97	94	91	80	78	70	63	60	49	36	24	24	31	31	36	39	46	50	55	58	60	61	24	97
20190429 84 83 72 75 74 69 73 74 59 52 53 52 46 50 53 50 53 61 62 64 68 73 74 79 65 46 84 20190430 77 83 77 75 79 81 88 93 94 94 82 68 62 51 46 49 60 64 69 80 81 87 90 85 76 46 94 20190501 82 84 86 90 88 87 84 86 89 85 78 68 63 56 57 58 59 63 66 67 68 68 87 73 74 75 69 90 82 192 91 91 90 91 91 91 91 91 91 91 91 91 91 91 91 91	20190427	76	80	81	83	82	79	83	78	75	81	73	73	65	75	82	87	89	91	94	93	95	97	97	97	84	65	97
20190430 77 83 77 75 79 81 88 93 94 94 82 68 62 51 46 49 60 64 69 80 81 87 90 85 76 46 94 20190501 82 84 86 90 88 87 84 86 89 85 78 68 63 56 57 58 59 63 66 67 68 68 73 73 74 56 90 20190502 71 70 71 73 72 73 76 83 86 77 58 48 48 46 44 46 48 51 59 61 64 64 63 67 74 64 44 86 20190503 75 81 76 77 73 74 75 72 70 65 54 49 45 50 53 50 57 67 71 76 81 84 85 82 88 82 88 82 89 92 92 92 94 90 90 90 86 85 81 74 73 76 79 80 89 90 91 90 91 90 91 93 90 86 73 94 20190505 85 85 91 92 89 79 76 74 71 65 59 56 53 53 53 53 53 57 63 70 77 88 91 92 90 92 75 53 92 20190506 93 90 84 82 81 84 84 84 84 80 80 79 75 71 74 74 72 71 71 74 80 85 76 72 67 65 74 78 65 93 20190507 77 83 66 58 88 88 88 89 88 90 89 89 89 89 89 89 89 89 89 89 89 89 89	20190428	97	97	99	99	99	99	99	99	99	99	98	97	96	95	95	96	96	98	97	97	97	97	97	94	97	94	99
20190501 82 84 86 90 88 87 84 86 89 85 78 68 63 56 57 58 59 63 66 67 68 68 73 73 74 56 90 20190502 71 70 71 73 72 73 76 83 86 77 58 48 46 44 46 48 51 59 61 64 64 63 67 74 64 44 86 20190503 75 81 76 77 73 74 75 72 70 65 54 49 45 50 53 50 57 67 71 76 81 84 85 82 68 45 85 20190504 83 82 89 92 92 92 94 90 90 86 85 81 74 71 65 59 56 53 53 50 57 67 71 76 81 84 85 82 68 45 85 20190505 85 85 91 92 89 79 76 74 71 65 59 56 53 53 53 57 63 70 77 88 91 92 90 92 75 53 92 20190505 85 85 91 84 82 81 84 84 84 80 80 79 75 71 74 74 72 71 71 74 80 85 76 76 76 76 76 76 76 76 77 83 66 58 66 58 61 59 66 76 72 65 55 48 49 48 48 48 47 50 54 58 59 65 83 87 84 63 47 87 20190508 87 86 88 88 89 88 90 89 89 84 77 67 59 52 48 49 48 48 47 50 54 58 59 65 83 87 84 63 47 87 20190509 61 67 71 72 75 77 73 72 71 72 64 60 57 55 53 53 53 58 63 64 74 79 98 0 73 75 67 53 80 20190510 69 73 71 76 70 65 54 43 45 49 52 56 61 53 74 82 78 79 80 78 88 84 82 82 68 43 88 20190511 79 81 76 66 65 79 83 81 79 79 79 79 79 70 71 70 71 70 70 71 70 70 71 70 70 71 70 70 70 70 70 70 70 70 70 70 70 70 70		84	83	72	75	74	69	73	74	59	52	53	52	46	50	53	50	53	61	62	64	68	73	74	79	65	46	84
20190502 71 70 71 73 72 73 76 83 86 77 58 48 46 44 46 48 51 59 61 64 64 63 67 74 64 44 86 20190503 75 81 76 77 73 74 75 72 70 65 54 49 45 50 53 50 57 67 71 76 81 84 85 82 68 45 85 20190504 83 82 89 92 92 92 94 90 90 86 85 81 74 73 76 79 80 89 90 91 90 91 93 90 86 73 94 20190505 85 85 85 91 92 89 79 76 74 71 65 59 56 53 53 53 53 57 63 70 77 88 91 92 90 92 75 53 92 20190506 93 90 84 82 81 84 84 84 80 80 79 75 71 74 72 71 71 74 80 85 76 72 65 65 83 80 79 76 77 83 66 58 61 59 68 76 72 65 55 48 49 48 48 47 50 54 58 59 65 83 87 84 63 47 87 20190508 87 86 88 88 89 88 90 89 89 84 77 67 59 52 48 51 62 64 60 63 59 68 64 63 72 48 90 20190509 61 67 71 72 75 77 73 72 71 72 64 60 57 55 53 53 53 53 58 63 64 74 79 80 73 75 67 53 80 20190510 69 73 71 76 70 65 54 43 45 49 52 56 61 53 74 82 78 79 80 78 88 84 82 82 68 43 88 20190511 79 81 76 66 66 65 79 83 81 79 79 79 76 78 79 79 79 76 78 77 78 79 79 79 78 77 78 79 79 79 78 77 78 79 79 79 78 77 78 79 79 79 78 77 78 79 79 79 78 77 78 79 79 79 78 77 78 79 79 79 78 77 78 79 79 79 78 77 78 79 79 79 78 77 78 79 79 79 78 77 78 79 79 79 78 77 78 79 79 79 78 77 78 79 79 79 78 77 78 79 79 79 78 77 78 79 79 79 78 79 79 79 78 79 79 78 79 79 78 79 79 78 77 78 79 79 79 78 79 79 78 77 78 79 79 79 78 79 79 78 79 79 78 77 78 79 79 79 78 79 79 78 79 79 78 77 78 79 79 79 78 79 79 78 79 79 78 79 79 78 79 79 78 77 78 79 79 79 78 79 79 78 79 79 78 79 79 78 79 79 78 79 79 78 79 79 78 79 79 78 79 79 78 79 79 78 79 79 78 79 79 78 79 79 78 79 79 78 79 79 78 79 79 78 77 76 73 68 64 60 59 60 62 66 72 73 74 75 76 78 78 73 79 79 79 78 79 79 78 77 76 73 68 64 60 59 60 62 66 72 73 74 74 75 76 78 78 73 79 79 79 78 77 76 73 68 64 60 59 60 62 66 72 73 74 74 75 76 78 78 73 79 79 79 79 78 77 76 73 68 64 60 59 60 62 66 72 73 74 74 75 76 78 78 73 79 79 79 79 78 77 76 73 68 64 60 59 60 62 66 72 73 74 74 75 76 78 78 73 79 79 79 78 78 77 76 78 78 79 79 79 79 78 79 79 79 79 78 79 79 79 78 79 79 78 77 76 73 68 64 60 59 60 62 66 72 73 74 74 75 76 78 78 73 79 79 79 79 78 77 76 73 68 64 60 59 60 62 66 72 73 74 74 75 76 78 78			83		75	79	81	88		94	94	82	68	62		46	49	60	64	69	80	81	87	90	85	76		_
20190503 75 81 76 77 73 74 75 72 70 65 54 49 45 50 53 50 57 67 71 76 81 84 85 82 68 45 85 20190504 83 82 89 92 92 92 92 94 90 90 86 85 81 74 73 76 79 80 89 90 91 90 91 93 90 86 73 94 20190505 85 85 85 91 92 89 79 76 74 71 65 59 56 53 53 53 53 57 63 70 77 88 91 92 90 92 75 53 92 20190506 93 90 84 82 81 84 84 84 80 80 79 75 71 74 72 71 71 74 80 85 76 72 67 65 74 78 65 93 20190507 77 83 66 58 85 81 89 88 89 88 89 88 90 89 89 84 77 67 59 52 48 49 48 48 47 50 54 58 59 68 64 63 72 48 90 20190509 61 67 71 72 75 77 73 72 71 72 64 60 57 55 53 53 53 53 58 63 64 74 79 80 78 88 84 82 82 68 43 88 20190511 79 81 76 66 65 79 83 81 79 79 76 76 78 71 70 68 73 81 84 75 75 71 82 78 71 66 64 63 63 60 55 57 61 63 63 63 58 61 59 54 43 45 49 52 48 36 24 24 31 31 36 39 46 50 55 58 60 24	\vdash	82	84	86			87	84		89	85	78	68	63	56	57	58	59		66	67	68	68	73	73	74	56	_
20190504 83 82 89 92 92 92 92 94 90 90 86 85 81 74 73 76 79 80 89 90 91 90 91 90 91 93 90 86 73 94 20190505 85 85 91 92 89 79 76 74 71 65 59 56 53 53 53 57 63 70 77 88 91 92 90 92 75 53 92 20190506 93 90 84 82 81 84 84 84 80 80 79 75 71 74 72 71 71 74 80 85 76 72 67 65 74 78 65 93 20190507 77 83 66 58 61 59 68 76 72 65 55 48 49 48 48 47 50 54 58 59 65 83 87 84 63 47 87 20190508 87 86 88 88 89 88 90 89 89 84 77 67 59 52 48 51 62 64 60 63 59 68 64 63 72 48 90 20190509 61 67 71 72 75 77 73 72 71 72 64 60 57 55 53 53 58 63 64 74 79 80 73 75 67 53 80 20190510 69 73 71 76 70 65 54 43 45 49 52 56 61 53 74 82 78 79 80 78 88 84 82 82 68 43 88 20190511 79 81 76 66 65 79 83 81 79 79 79 76 78 71 70 61 53 74 82 78 71 66 64 63 60 55 57 61 63 67 72 82 85 88 83 76 72 66 81 60 98 20190513 69 66 70 76 77 82 78 71 66 73 68 64 60 59 60 55 57 61 63 67 72 82 85 88 83 76 72 66 81 60 98 20190513 69 66 70 76 77 82 78 71 76 73 68 64 60 59 50 59 60 62 66 72 73 74 75 76 78 78 73 74 75 76 78 78 79 79 79 78 79 79 79 79 78 79 79 79 78 79 79 79 78 79 79 78 79 79 79 78 79 79 79 78 79 79 78 79 79 79 78 79 79 79 78 79 79 79 78 79 79 79 78 79 79 79 78 79 79 79 78 79 79 79 78 79 79 79 78 79 79 79 79 78 79 79 79 78 79 79 79 79 78 79 79 79 79 70 71 67 67 67 72 82 85 88 83 76 72 66 81 66 98 20190513 69 66 70 76 77 82 78 71 66 64 63 60 55 57 61 63 67 80 87 86 84 81 80 78 72 55 87	\vdash	71	70	71		72	73	76		86	77	58	48	46		46	48			61	64	64	63	67	74	64	44	
20190505 85 85 91 92 89 79 76 74 71 65 59 56 53 53 53 57 63 70 77 88 91 92 90 92 75 53 92 20190506 93 90 84 82 81 84 84 84 80 80 79 75 71 74 72 71 71 74 80 85 76 72 67 65 74 78 65 93 20190507 77 83 66 58 61 59 68 76 72 65 55 48 49 48 48 47 50 54 58 59 65 83 87 84 63 47 87 20190508 87 86 88 88 88 89 88 90 89 89 84 77 67 59 52 48 51 62 64 60 63 59 68 64 63 72 48 90 20190509 61 67 71 72 75 77 73 72 71 72 64 60 57 55 53 53 53 58 63 64 74 79 80 73 75 67 53 80 20190510 69 73 71 76 70 65 54 43 45 49 52 56 61 53 74 82 78 79 80 78 88 84 82 82 68 43 88 20190511 79 81 76 66 65 79 83 81 79 79 79 76 78 71 70 68 73 81 84 75 75 71 86 93 93 78 65 93 20190512 94 96 96 97 98 97 89 80 80 72 78 79 70 71 67 67 67 72 82 85 88 83 76 72 66 81 66 98 20190513 69 66 70 76 77 82 78 71 66 64 63 60 55 57 56 67 73 68 64 60 59 60 62 66 72 73 74 75 76 78 78 73		75	81	76	77	73	74	75	72	70	65	54	49	45	50	53	50	57	67	71	76	81	84	85	82	68	45	85
20190506 93 90 84 82 81 84 84 80 80 79 75 71 74 72 71 71 74 80 85 76 72 67 65 74 78 65 93 20190507 77 83 66 58 61 59 68 76 72 65 55 48 49 48 48 47 50 54 58 59 65 83 87 84 63 47 87 20190508 87 86 88 88 88 89 88 90 89 89 84 77 67 59 52 48 51 62 64 60 63 59 68 64 63 72 48 90 20190509 61 67 71 72 75 77 73 72 71 72 64 60 57 55 53 53 58 63 64 74 79 80 73 75 67 53 80 20190510 69 73 71 76 70 65 54 43 45 49 52 56 61 53 74 82 78 79 80 78 88 84 82 82 68 43 88 20190511 79 81 76 66 65 79 83 81 79 79 79 76 78 71 70 68 73 81 84 75 75 71 86 93 93 78 65 93 20190512 94 96 96 97 98 97 89 80 80 72 78 79 70 71 67 67 72 82 82 85 88 83 76 72 66 81 66 98 20190513 69 66 70 76 77 82 78 71 66 64 63 60 55 57 61 63 67 80 87 80 87 86 84 81 80 78 72 55 87 MEDIA 78 79 78 79 78 79 79 79 78 77 76 73 68 64 60 59 60 62 66 72 73 74 75 76 78 78 73 MINIMO 61 63 63 63 58 61 59 54 43 45 49 52 48 36 24 24 31 31 31 36 39 46 50 55 58 60 24		83	82	89	92	92	92	94	90	90	86	85	81	74	73	76	79	80	89	90	91	90	91	93	90	86	73	94
20190507 77 83 66 58 61 59 68 76 72 65 55 48 49 48 48 47 50 54 58 59 65 83 87 84 63 47 87 20190508 87 86 88 88 89 88 90 89 89 84 77 67 59 52 48 51 62 64 60 63 59 68 64 63 72 48 90 20190509 61 67 71 72 75 77 73 72 71 72 64 60 57 55 53 53 58 63 64 74 79 80 73 75 67 53 80 20190510 69 73 71 76 70 65 54 43 45 49 52 56 61 53 74 82 78 79 80 78 88 84 82 82 68 43 88 20190511 79 81 76 66 65 79 83 81 79 79 79 76 78 71 70 68 73 81 84 75 75 71 86 93 93 78 65 93 20190512 94 96 96 97 98 97 89 80 80 80 72 78 79 70 71 67 67 72 82 85 88 83 76 72 66 81 66 98 20190513 69 66 70 76 77 82 78 71 66 64 63 60 55 57 61 63 67 80 87 86 84 81 80 78 72 55 87 81 84 84 84 84 84 84 84 84 84 84 84 84 84	\vdash	85	85	91	92	89	79	76	74	71	65	59	56	53		53	57	63	70	77	88	91	92	90	92	75		
20190508 87 86 88 88 89 88 90 89 89 84 77 67 59 52 48 51 62 64 60 63 59 68 64 63 72 48 90 20190509 61 67 71 72 75 77 73 72 71 72 64 60 57 55 53 53 58 63 64 74 79 80 73 75 67 53 80 20190510 69 73 71 76 70 65 54 43 45 49 52 56 61 53 74 82 78 79 80 78 88 84 82 82 68 43 88 20190511 79 81 76 66 65 79 83 81 79 79 76 78 71 70 68 73 81 84 75 75 71 86 93 93 78 65 93 20190512 94 96 96 97 98 97 89 80 80 80 72 78 79 70 71 67 67 72 82 85 88 83 76 72 66 81 66 98 20190513 69 66 70 76 77 82 78 71 66 64 63 60 55 57 61 63 67 80 87 86 84 81 80 78 72 55 87 8 88 84 82 82 82 82 82 82 82 83 84 82 82 82 83 84 84 82 82 82 83 84 84 84 84 84 84 84 84 84 84 85 85 88 84 84 84 84 85 85 85 88 84 85 85 85 85 85 85 85 85 85 85 85 85 85			90	84	82	81	84	84	80			75	71	74	72	71		74	80	85	76		67	65	74	78		_
20190509 61 67 71 72 75 77 73 72 71 72 64 60 57 55 53 53 58 63 64 74 79 80 73 75 67 53 80 20190510 69 73 71 76 70 65 54 43 45 49 52 56 61 53 74 82 78 79 80 78 88 84 82 82 68 43 88 20190511 79 81 76 66 65 79 83 81 79 79 76 78 71 70 68 73 81 84 75 75 71 86 93 93 78 65 93 20190512 94 96 96 97 98 97 89 80 80 72 78 79 70 71 67 67 72 82 85 88 83 76 72 66 81 66 98 20190513 69 66 70 76 77 82 78 71 66 64 63 60 55 57 61 63 67 80 87 86 84 81 80 78 72 55 87 MEDIA 78 79 78 79 79 79 79 79 78 77 76 73 68 64 60 59 60 62 66 72 73 74 75 76 78 73 MINIMO 61 63 63 58 61 59 54 43 45 49 52 48 36 24 24 31 31 31 36 39 46 50 55 58 60 24	$\overline{}$							_						_		48					59				_	-		_
20190510 69 73 71 76 70 65 54 43 45 49 52 56 61 53 74 82 78 79 80 78 88 84 82 82 68 43 88 20190511 79 81 76 66 65 79 83 81 79 79 76 78 71 70 68 73 81 84 75 75 71 86 93 93 78 65 93 20190512 94 96 96 97 98 97 89 80 80 72 78 79 70 71 67 67 72 82 85 88 83 76 72 66 81 66 98 20190513 69 66 70 76 77 82 78 71 66 64 63 60 55 57 61 63 67 80 87 86 84 81 80 78 72 55 87 MEDIA 78 79 78 79 78 79 79 79 78 77 76 73 68 64 60 59 60 62 66 72 73 74 75 76 78 78 73								_				- ' '																_
20190511 79 81 76 66 65 79 83 81 79 79 76 78 71 70 68 73 81 84 75 75 71 86 93 93 78 65 93 20190512 94 96 96 97 98 97 89 80 80 72 78 79 70 71 67 67 72 82 85 88 83 76 72 66 81 66 98 20190513 69 66 70 76 77 82 78 71 66 64 63 60 55 57 61 63 67 80 87 86 84 81 80 78 72 55 87 MEDIA 78 79 78 79 79 79 79 78 77 76 73 68 64 60 59 60 62 66 72 73 74 75 76 78 78 73				- ' '																								_
20190512 94 96 96 97 98 97 89 80 80 72 78 79 70 71 67 67 72 82 85 88 83 76 72 66 81 66 98 20190513 69 66 70 76 77 82 78 71 66 64 63 60 55 57 61 63 67 80 87 86 84 81 80 78 72 55 87 MEDIA 78 79 78 79 79 79 78 77 76 73 68 64 60 59 60 62 66 72 73 74 75 76 78 78 73 MINIMO 61 63 63 58 61 59 54 43 45 49 52 48 36 24 24 31 31 36 39 46 50 55 58 60 24	-		_					_																	_			
20190513 69 66 70 76 77 82 78 71 66 64 63 60 55 57 61 63 67 80 87 86 84 81 80 78 72 55 87 MEDIA 78 79 78 79 79 79 78 77 76 73 68 64 60 59 60 62 66 72 73 74 75 76 78 78 78 73 MÍNIMO 61 63 63 58 61 59 54 43 45 49 52 48 36 24 24 31 31 36 39 46 50 55 58 60 24	\vdash							_																	_			_
MEDIA 78 79 78 79 79 79 79 78 77 76 73 68 64 60 59 60 62 66 72 73 74 75 76 78 78 73 MINIMO 61 63 63 58 61 59 54 43 45 49 52 48 36 24 24 31 31 36 39 46 50 55 58 60 24	\vdash							_																	_			_
MÍNIMO 61 63 63 58 61 59 54 43 45 49 52 48 36 24 24 31 31 36 39 46 50 55 58 60 24	20190513	69	66	70	76	77	82	78	71	66	64	63	60	55	57	61	63	67	80	87	86	84	81	80	78	72	55	87
		78	79	78	79	79	79	78	77	76	73	68	64	60	59	60	62	66	72	73	74	75	76	78	78	73		
MÁXIMO 97 97 99		61	63	63	58	61	59	54	43	45	49	52	48	36	24	24	31	31	36	39	46	50	55	58			24	
	MÁXIMO	97	97	99	99	99	99	99	99	99	99	98	97	96	95	95	96	96	98	97	97	97	97	97	97			99

ANEXO V CERTIFICADOS DE CALIBRACIÓN ANALIZADORES GASES

Ri2-6000

1. Datos Generales

Nombre Estación	Fecha	Operador	To Amb.
EDELMAG	04/04/2019	MARCO ROJAS	90

2. Elementos de Calibración

Concentración Vi	igencia	Date Colored Street				
	genera	Tolerancia	Presión	Marca	Nº de Cilindro	Protocolo
2990 23	3/05/20	+- 1,4%	1400 psi	Airgas	CC504779	EPA
		CALIB	RADOR			
Fecha Ultima Calib	oración	Marca	Mode	lo	Nº de	Serie
19/11/18		Environics	6100		486	53
		GENERADO	R AIRE ZER	0	42.00	
Fecha Ultima Mant	tención	Marca	Mode	lo	Nº de	Serie
18/12/2018		Teledyne	701		412	24

3. Datos Monitor

Marca	Modelo	Nº de Serie	Rango
Teledyne	T300	1493	0-50 ppm

Hora Inicio	Conc.	Aire						Valor Analizador					
Inicio Deseada	Lpm	Gas ccm	Sin Calibrar	Error	Hora Calib.	Calibrado	Error	Hora termino					
12:05	0	3	0	0,3	0,3		<u> </u>		12:09				
12:10	40	3	40,68	40,1	0,25		1+3		12:16				
12:18	30	3	30,4	30	0				12:25				
12:25	20	3	20,2	20,2	1		12.		12:32				
12:32	10	3	10,06	10	0		2	1	12:38				
12:39	0	3	0	0,1	0,1	7	(4)	-	12:46				

Ri2-6000

1. Datos Generales

Nombre Estación	Fecha	Operador	To Amb.
EDELMAG	12/04/2019	BENJAMIN PALMA	90

2. Elementos de Calibración

		CILI	NDRO			
Concentración	Vigencia	Tolerancia	Presión	Marca	Nº de Cilindro	Protocolo
2990	23/05/20	+- 1,4%	1400 psi	1400 psi Airgas CC504779		EPA
		CALIB	RADOR			
Fecha Ultima	Calibración	Marca	Mode	lo	Nº de	Serie
19/11/	/18	Environics	6100)	4863	
		GENERADOI	R AIRE ZER	0		0.010
Fecha Ultima I	Mantención	Marca	Mode	lo	Nº de	Serie
18/12/2	2018	Teledyne	701		412	24

3. Datos Monitor

Marca	Modelo	Nº de Serie	Rango
Teledyne	T300	1493	0-50 ppm

4. Calibración

2000		Flujo		Valor Analizador					
Hora Conc. Inicio Deseada	Aire Lpm	Gas ccm	Sin Calibrar	Error	Hora Calib.	Calibrado	Error	Hora termino	
17:02	0	3	0	0,1	0,1		2	-	17:09
17:11	40	3	40,68	40	0	-		-	17:19

Ri2-6000

1. Datos Generales

Nombre Estación	Fecha	Operador	Tº Amb.
EDELMAG	15/04/2019	BENJAMIN PALMA	90

2. Elementos de Calibración

		CILI	NDRO			
Concentración	Vigencia	Tolerancia	Presión	Marca	Nº de Cilindro	Protocolo
2990	23/05/20	+- 1,4%	1400 psi	Airgas	CC504779	EPA
		CALIB	RADOR	*		
Fecha Ultima	Calibración	Marca	Mode	lo	Nº de	Serie
19/11/	18	Environics	6100		4863	
		GENERADO	R AIRE ZER	0		
Fecha Ultima I	Mantención	Marca	Mode	lo	Nº de	Serie
18/12/2	2018	Teledyne	701		412	24

3. Datos Monitor

Marca	Modelo	Nº de Serie	Rango
Teledyne	T300	1493	0-50 ppm

4. Calibración

	21.00	Flujo		Valor Analizador					
Hora Conc. Inicio Deseada	Aire Lpm	Gas ccm	Sin Calibrar	Error	Hora Calib.	Calibrado	Error	Hora termino	
16:47	0	3	0	0,2	0,2	- 4	21	- 1	16:55
16:55	40	3	40,68	40	0	÷.		-	17:09

Ri2-6000

1. Datos Generales

Nombre Estación	Fecha	Operador	To Amb.
EDELMAG	23/04/2019	BENJAMIN PALMA	70

2. Elementos de Calibración

		CILI	NDRO				
Concentración	Vigencia	Tolerancia	Presión	Marca	Nº de Cilindro	Protocolo EPA	
2990	23/05/20	+- 1,4%	1400 psi	Airgas	CC504779		
		CALIB	RADOR				
Fecha Ultima	Calibración	Marca	Mode	lo	Nº de Serie		
19/11/	18	Environics	6100)	4863		
	1	GENERADO	R AIRE ZER	0	7.000		
Fecha Ultima I	Fecha Ultima Mantención		Mode	lo	Nº de Serie		
18/12/2	2018	Teledyne	701	1 4124		24	

3. Datos Monitor

Marca	Modelo	Nº de Serie	Rango
Teledyne	T300	1493	0-50 ppm

4. Calibración

444	2	Flujo		Valor Analizador						
Hora Conc. Inicio Deseada	Conc. Deseada	Aire Lpm	Gas ccm	Sin Calibrar	Error	Hora Calib.	Calibrado	Error	Hora termino	
09:47	0	3	0	0	0		-	1197	09:54	
09:54	40	3	40,68	39,5	1,25	3	•	1	09:59	
		9 9	- 1							
heerin										

Ri2-6000

1. Datos Generales

Nombre Estación	Fecha	Operador	Tº Amb.
EDELMAG	02/05/2019	RODRIGO MIRANDA	60

2. Elementos de Calibración

		CILI	NDRO			
Concentración	Vigencia	Vigencia Tolerancia Presión Marca Nº de Cilindro		Nº de Cilindro	Protocolo	
2990	23/05/20	+- 1,4%	1400 psi	Airgas	CC504779	EPA
		CALIB	RADOR			
Fecha Ultima	Calibración	Marca	Mode	lo	Nº de Serie	
19/11/	18	Environics	6100)	486	53
		GENERADOI	R AIRE ZER	0	79300	
Fecha Ultima Mantención		Marca	Mode	elo Nº de Seri		Serie
18/12/2	2018	Teledyne	701		4124	

3. Datos Monitor

Marca	Modelo	Nº de Serie	Rango
Teledyne	T300	1493	0-50 ppm

	2000	Flujo		Valor Analizador						
	Conc. Deseada	Aire Lpm	Gas ccm	Sin Calibrar	Error	Hora Calib.	Calibrado	Error	Hora termino	
17:34	0	3	0	0	0	9	*		17:39	
17:44	40	3	40,68	39,40	1,5	11.5	-	1 0-1	17:52	
	ciones:									

Ri3-6000

1. Datos Generales

Nombre Estación	Fecha	Operador	T ^o Amb.
EDELMAG	04/04/2019	MARCO ROJAS	90

2. Elementos de Calibración

		CILI	NDRO				
Concentración	Vigencia	Tolerancia	Presión	Marca	Nº de Cilindro	Protocolo	
49,95	23/05/2020	+- 1,4%	1400 psi	Airgas	CC504779	EPA	
		CALIB	RADOR				
Fecha Ultima	Calibración	Marca	Mode	lo	Nº de Serie		
19/11/2	2018	Environics	6100)	4863		
		GENERADO	R AIRE ZER	0			
Fecha Ultima Mantención		Marca	Mode	lo	Nº de Serie		
18/12/	2018	Teledyne	701	701 4124		24	

3. Datos Monitor

Marca	Modelo	Nº de Serie	Rango
Teledyne	200E	2816	0-500 ppb

4. Calibración

		Valores del Dilutor Flujo			Valores en el Analizador									
Hora Conc.				Sin Calibrar			Hora		Cali	Calibrado		Hora		
Inicio	deseada	Aire Lpm	Gas ccpm	Ozono O3	NO	Error	NOX	Error	0-101	NO	Error	NOX	Error	Termino
15:13	0	3	0	0	0	0,0	0	0,0	-22	1-2				15:29
15:30	400	3	24	0	400	0,0	400	0,0		i b lit pi	10 2 c	a ji	445	15:38
15:39	300	3	18	0	298	0,6	299	0,3						15:47
15:55	200	3	12	0	203	1,5	207	3,5			0.0	9		16:12
16:25	100	3	6	0	102	2	106	6	E-4-E		349 24	- 24		16:33
16:35	0	3	0	0	0	0	0	0	10-0	14-5			1546	16:42
									T T					

Ri3-6000

1. Datos Generales

Nombre Estación	Fecha	Operador	Tº Amb.
EDELMAG	12/04/2019	BENJAMIN PALMA	90

2. Elementos de Calibración

		CILII	NDRO			
Concentración	Vigencia	Tolerancia	Presión	Marca	Nº de Cilindro	Protocolo
49,85	23/05/2020	+- 1,4%	1400 psi	Airgas	CC504779	EPA
		CALIB	RADOR			
Fecha Ultima	Calibración	Marca	Mode	lo	Nº de	Serie
19/11/2	2018	Environics	6100		486	53
		GENERADO	R AIRE ZER	0		
Fecha Ultima	Mantención	Marca	Mode	lo	Nº de	Serie
18/12/2	2018	Teledyne	701		412	24

3. Datos Monitor

Marca	Modelo	Nº de Serie	Rango
Teledyne	200E	2816	0-500 ppb

		Valores del Dilutor			Valores en el Analizador									
Hora Conc.	100000000000000000000000000000000000000		Flujo			Sin Ca	librar		Hora	Calibrado			. 1	Hora
Inicio	deseada	Aire Lpm	Gas ccpm	Ozono O3	NO	Error	NOX	Error	Calib.	NO	Error	NOX	Error	Termino
17:20	0	3	0	0	4		5,1			To Bear		T el T		17:31
17:31	400	3	24,27	0	392		394			13-20	7102257		7.2-0	17:58

Ri3-6000

1. Datos Generales

Nombre Estación	Fecha	Operador	Tº Amb	
EDELMAG	15/04/2019	BENJAMIN PALMA	90	

2. Elementos de Calibración

		CILI	NDRO				
Concentración	Vigencia	Tolerancia	Presión	Marca	Nº de Cilindro	Protocolo	
49,85	23/05/2020	+- 1,4%	1400 psi	Airgas	CC504779	EPA	
		CALIB	RADOR				
Fecha Ultima	Calibración	Marca	Mode	lo	Nº de	Serie	
19/11/	2018	Environics	6100)	486	53	
		GENERADO	AIRE ZER	0			
Fecha Ultima Mantención		Marca	Modelo		Nº de Serie		
18/12/	2018	Teledyne	701	5 I	4124		

3. Datos Monitor

Marca	Modelo	Nº de Serie	Rango
Teledyne	200E	2816	0-500 ppb

		Valo	Valores del Dilutor Valores en el Analiz		lizado		1							
Hora	Conc.		Flujo			Sin Ca	librar		Hora		Cali	brado		Hora Termino
Inicio	deseada	Aire Lpm	Gas ccpm	Ozono O3	NO	Error	NOX	Error	Calib.	NO	Error	NOX	Error	
16:15	0	3	0	0	0	0	0	0	44			-41	4	16:24
16:29	400	3	24,27	0	396	1	397	0,75			1.70			16:37

Ri3-6000

1. Datos Generales

Nombre Estación	Fecha	Operador	To Amb.
EDELMAG	23/04/2019	BENJAMIN PALMA	90

2. Elementos de Calibración

		CILI	NDRO			
Concentración	Vigencia	Videncia Tolorancia Procion Marca		Nº de Cilindro	Protocolo	
49,85	23/05/2020	+- 1,4%	1400 psi	Airgas	CC504779	EPA
		CALIB	RADOR			
Fecha Ultima	Calibración	Marca	Mode	lo	Nº de	Serie
19/11/2	2018	Environics	6100		486	53
		GENERADOI	R AIRE ZER	0		
Fecha Ultima	Mantención	Marca	Mode	lo	Nº de	Serie
18/12/2	2018	Teledyne	701		412	24

3. Datos Monitor

Marca	Modelo	Nº de Serie	Rango
Teledyne	200E	2816	0-500 ppb

		Valores del Dilutor			Valores en el Analizador									
Hora	Conc.	lujo)		Sin Ca	librar	1000	Hora		Cali	brado		Hora	
Inicio	deseada	Aire Lpm	Gas ccpm	Ozono O3	NO	Error	NOX	Error	Calib.	NO	Error	NOX	Error	Termino
09:07	0	3	0	0	0,9	0,18	-3,9	0,78					(09:15
09:16	400	3	24,27	0	379	5,25	379	5,25	:					09:47

Ri3-6000

1. Datos Generales

Nombre Estación	Fecha	Operador	Tº Amb	
EDELMAG	02/05/2019	RODRIGO MIRANDA	60	

2. Elementos de Calibración

		CILI	NDRO			
Concentración	Vigencia	Tolerancia	Presión	Marca	Nº de Cilindro	Protocolo
49,85	23/05/2020	+- 1,4%	1400 psi	Airgas	CC504779	EPA
		CALIB	RADOR			
Fecha Ultima	Calibración	Marca	Mode	odelo Nº de Serie		Serie
19/11/2	2018	Environics	6100)	486	53
		GENERADOI	R AIRE ZER	0		
Fecha Ultima Mantención		Marca	Modelo		Nº de Serie	
18/12/2	2018	Teledyne 701 4124		24		

3. Datos Monitor

Marca	Modelo	Nº de Serie	Rango
Teledyne	200E	2816	0-500 ppb

Hora Conc.		Valo	res del	Dilutor	Valores en el Analizador									
	100000		Flujo			Sin Ca	librar		Hora		Calil	brado		Hora
Inicio	deseada	Aire Lpm	Gas ccpm	Ozono O3	NO	Error	NOX	0 17	Calib.	NO	Error	NOX	Error	Termino
16:51	0	3	0	0	0,3	0,06	-4,6	0,92				1.220	45	17:02
17:03	400	3	24,27	0	375	6,25	375	6,25			D	1		17:30

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

Part Number. Cylinder Number. Laboratory:

E03NI99E15A0338 GC504779. 124 - Riverton - NJ Reference Number: 82-124617929-1 Cylinder Volume:

144.4 CF

Cylinder Pressure Valve Outlet:

2015 PSIG 660

PGVP Number Gas Code:

B52017 CO.NO.NOX,BALN

Certification Date: May 23, 2017

Expiration Date: May 23, 2020

Confloring personal in accordance was SFA Tracecolity Protoci for Assay and Confloring of Conscious Cestment Seminates (May 2018) appointed SFA (IC.R-12-53), using the assay protocines (seed, Analytica Methodology coas not prove complicitly for analytical mediance of the confloring confloring and analytical mediance (if \$10.00). There are no applicate or specific and affect the use of the coastat mission of a confidence in the confloring coastat or analytical confidence of the coastat of the coastat of the coastat of the coastat of the coastat or analytical coastat

Do Not Use This Cylinder Inspire 100 mag, i.e. C.7 magaza

ANALYTICAL RESULTS						
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates	
NOX	50.00 PPM	46.55 PPM	G1	*/- 1.4% NIST Trivocuble	05/18/2017: 05/22/2017	
NITRIC DXIDE	50.00 PPM	49.60 FPM	GT	+6-1.4% NIST Traceable	05/16/2017, 05/23/2017	
CARBON MONOXIDE	3000 PPM	2990 PPM	G)	+/- 1.0% NST Trapeable	05/16/2017	
NITROGEN	Balanca					

CALIBRATION STANDARDS						
Type	LotID	Cylinder No	Concentration	Uncertainty	Expiration Date	
NTBM	16060647	CC442881	50,42 PPM NITRIC DIVIDENITROGEN	+/- 0.8%	Jun 27, 2020	
PRM	12367	APEX 1090237	9.82 PPM MITROGEN DIDNIDE/AIR	-1-2.0%	Jun 02, 2017	
GMIS.	0515201600	CC503344	4,895 PPM NITROGEN DIGXIDE/NITROGEN	4/- Z D%	7May 15, 2019	
NUTTINA.	12000724	CC356171	2498 FPM CARBON MONOXIDE/NITROGEN	*/- 0.8%	Dec 21, 2017	
NAME AND	DOM: UTITAL WARRAN	Gine is only in reference to	the GMID used in the asset and not gard of the analysis.			

ANALYTICAL EQUIPMENT					
Instrument/Make/Model	Analytical Principle	Last Multipoint Calibration			
Semens Ultramat 6E 7ME2123-18DE0-08M1-Z COHIGH	NDIR	Apr 27, 2017			
NICORT 6700 APW/1100391 NO.	FTIR	Apr 26, 2017			
Nimbet 6700 APW#100391 NO2	FTIR	May 04, 2017			

Triad Data Available Upon Request

Approved for Release

Page 1 of 62-124617920-1

ANEXO 2

Disminución de Horas de Operación Anual TG Hitachi

Contexto

Bajo las actuales capacidades del sistema, no es factible realizar mantenimientos de las turbinas de la Central Tres Puentes que operan como unidades base, sin tener que utilizar de respaldo la unidad Hitachi. Los mantenimientos y la duración presupuestados para el año 2020 se entregan en la siguiente tabla:

Tabla N°1: Programa de Mantenimiento Original Año 2020

Unidad	Mantenimiento	Duración (hr)
GE-10	Mantenimiento Anual	704
Mars N°4	M-4000	144
Mars N°4	M-8000	168
Titan N°7	M-4000	144
Titan N°7	M-8000	168
Titan N°9	M-4000	144
Titan N°9	M-8000	168
Hitachi	Validación CEMS	48
	TOTAL	1.688

Elaboración propia

Los mantenimientos de las turbinas base se ejecutan de acuerdo con las frecuencias de los programas de mantenimientos definidos por los fabricantes. Para asegurar la disponibilidad de las unidades generadoras, EDELMAG está obligado a cumplir con estas mantenciones.

Con el objeto de reducir al máximo el funcionamiento de la TG Hitachi, se propone realizar acciones y optimizaciones orientadas a cumplir con este objetivo.

Acción

Se propone, como medida de corto plazo, ajustar y optimizar el programa de mantenimientos de las turbinas que operan como unidades base de la Central Tres Puentes, con el objetivo de reducir las horas de operación de la TG HITACHI durante el año 2020.

Implementación

Se revisaron, analizaron y reprogramaron las mantenciones de las turbinas que operan como unidades base para cumplir la meta propuesta según la siguiente tabla.

Tabla N°2: Propuesta de Programa de Mantenimiento Año 2020

Unidad	Mantenimiento	Duración (hr.)
Mars N°4	Mantanimientos de 4 000 y 8 000	
Titan N°7	Mantenimientos de 4.000 y 8.000	500
Titan N°9	horas de operación.	
GE-10	Inspección de condición	48
Mars N°4		
Titan N°7	Inspección de condición	136
Titan N°9		
Hitachi	Validación CEMS HITACHI	48
Central Tres Puentes	Central Tres Puentes Proyecto control de ruido Central	
	TOTAL	876

Elaboración propia

Fecha Inicio: 1 de abril de 2020

Plazo de Ejecución: 9 meses

Indicador de cumplimiento: Horas acumuladas de funcionamiento de la turbina Hitachi.

Conclusión

Para que la turbina Hitachi no opere más de 876 horas en el año 2020, como también, asegurar la confiabilidad de la operación de las unidades base de la Central Tres Puentes, se propone optimizar el programa de mantenimiento y proyectos asociados en la central, que considera principalmente realizar inspecciones de condición que permitan evaluar desplazamientos de mantenimientos.