Señor

Felipe García Hunneus

Fiscal Instructor del Departamento de Sanción y Cumplimiento

Superintendencia del Medio Ambiente

Señor Fiscal:

Con relación al oficio, RES. EX N°1 / ROL D-015 – 2021, vengo en declarar lo siguiente:

En el año 2018, a través del Departamento de Inspección de la Dirección de Obras Municipales de las Condes se recibió la resolución 435 sobre la evaluación de ruidos de los extractores de aire de la Comunidad Edificio Plaza Bondi, exigiendo la corrección de las anomalías detectadas.

Para dar cumplimiento a las observaciones realizadas, se hizo lo siguiente:

- Un estudio de evaluación de ruidos a cargo de la Empresa ACUSONIC.
- Instalación de controles automático de tiempo
- El tiempo de funcionamiento está definido entre las 09:00 y las 21:00 horas. Antes de esta fecha el control estaba en manos de los conserjes y probablemente en más de una ocasión no los detuvieron en la hora señalada. El control automático fue la solución.
- Renovación de piezas que podría generar la aparición de ruidos mayores a lo especificados en el Reglamento
- Mayor frecuencia de mantenimiento a cargo de del técnico Eliseo Colicheo
 Rut:

Estos antecedentes fueron presentados en el Departamento de Inspección de la Municipalidad de las Condes, quienes emitieron la RESOLUCION SECC. 8 N°607 del 20 de Noviembre del 2018 dejando sin efecto la Resolución Secc. 8 N°435/2018 y Resolución Secc. 8 N°555 de fecha 22/10/2018.

La identificación de los extractores, su ubicación en el edificio y características técnicas, se encuentra en la evaluación realizada por la Empresa ACUSONIC.

Se adjunta:

- 1. Resumen con antecedentes de lo realizado
- 2. Evaluación de ruidos realizados por la Empresa Acusonic
- 3. Resolución Secc. 8 N° 607 del 20 de Noviembre del 2018
- 4. Portada de Escritura de Acta de nombramiento de Administrador.

Por desconocimiento, en forma totalmente involuntaria no hice llegar antecedentes a la Superintendencia del Medio Ambiente creyendo que el trámite estaba centralizado en la Municipalidad de las Condes, por lo cual quedo a disposición para entregar la información que sea pertinente.

Saluda atentamente

Edmundo Gustavo Quintana Guzmán Administrador

Rut:

Tel:

DIRECCION DE OBRAS MUNICIPALES
DEPARTAMENTO DE INSPECCION
CCHB/SPO

RESOLUCION SECC. 8ª Nº 6 0 7 LAS CONDES. 2 0 NOV. 2018

VISTOS: La Providencia Nº 9714/2018, el ingreso INSP. Nº1832/2018; el ingreso Solnet Nº 27906/2018, la Resolución Secc. 8ª Nº435 de fecha 14.08.2018, la Resolución Secc. 8ª Nº555 de fecha 22.10.2018, que tiene relación con fiscalizaciones en terreno de profesionales del Departamento de Inspección de la Dirección de Obras Municipales, al inmueble ubicado en calle Martín Alonso Pinzón N°5650; los artículos 116, 119 y 159 de la Ley General de Urbanismo y Construcciones; y las atribuciones que la ley me otorga sobre la materia,

RESUELVO:

1.- DEJAR SIN EFECTO, la Resolución Secc. 8ª N°435/2018 y Resolución Secc. 8ª N°555 de fecha 22.10.2018, en cuanto a que se debían implementar las mejoras establecidas en el informe sonométrico, para evitar la contaminación acústica al resto de la comunidad del edificio y zonas cercanas a este, producto del funcionamiento de los extractores de aire instalados en la azotea del edificio, de la propiedad ubicada en Martín Alonso Pinzón N°5650, representante legal Sr. Gustavo Quintana, RUT:

2.- Lo anterior, debido a que se ha dado cumplimiento a lo señalado en el punto de la Resolución Secc. 8ª N°435/2018, en cuanto a que se implementaron las mejoras para evitar la contaminación acústica al resto de la comunidad del edificio y zonas cercanas a este, producto del funcionamiento de los extractores de aire instalados en la azotea del edificio.

3.- ANOTESE, COMUNIQUESE y ARCHIVESE

DIRECTOR DE OBRAS MUNICIPALES

Distribución:

- Interesado
- D.O.M.
- Archivo Insp.

GONZALO DE LA CUADRA FABRES

NOTARIA Nº 38 SANTIAGO

Repertorio N° 7918-2015.

-DOH-

O.T. N° 123135

Copias: 02

carillas 06

REDUCCION A ESCRITURA PUBLICA

ACTA DE LA ASAMBLEA DE COPROPIETARIOS DEL EDIFICIO PLAZA BONDI

En Santiago, República de Chile, a veintidós de julio del año dos mil quince, ante mi, MARIO ANTONIO BASTIAS SEGURA, Abogado, Notario Público de Santiago, suplente de don GONZALO DE LA CUADRA FABRES, Titular de la Trigésima Octava Notaría, con domicilio en esta ciudad, calle Bandera número ochenta y cuatro, oficina número doscientos cuatro, comparece: don EDMUNDO GUSTAVO QUINTANA GUZMAN, chileno, casado, empleado, domiciliado en Santa Magdalena Sofía numero ciento veinticinco, comuna de Las Condes, cedula nacional de identidad número

compareciente mayor de edad quien acredita su identidad con la cedula citada y expone que debidamente facultado viene en reducir a escritura pública la siguiente: ACTA DE LA ASAMBLEA DE COPROPIETARIOS DEL EDIFICIO PLAZA BONDI. Rol único tributario numero cincuenta y seis millones cuarenta y cinco mil setecientos treinta guión ocho. Martes dieciséis de junio dos mil quince. De conformidad con lo señalado en el Articulo diecisiete, del Título II de la Ley numero diecinueve mil quinientos treinta y siete, sobre copropiedad inmobiliaria, y el Articulo VIGÉSIMO

28

OCTAVO dal radiamento de Conceniedad del Edificio Diano Dendi vibiando en Mande

EVALUACION DE RUIDOS D.S.38/2011 DEL MMA PARA EXTRACTOR AZOTEA DE EDIFICIO PLAZA BONDI

REALIZADO A SOLICITUD DE:

Comunidad Edificio Plaza Bondi

INDICE DE CONTENIDO

<u>1</u>	RESUMEN	<u> 3</u>
<u>2</u>	INTRODUCCIÓN	3
<u>3</u>	OBJETIVOS	4
4	ANTECEDENTES DE LA FUENTE EMISORA DE RUIDO	4
4.1	FUENTES DE RUIDO AL EXTERIOR DEL RECINTO	5
5	METODOLOGÍA	7
Ť		
5.1	I Instrumental	7
5.1 5.2	2 PROFESIONAL A CARGO	<i>7</i>
5.3		
5.4		
5.5		
5.6		
5.7	7 ZONIFICACIÓN	11
6	FICHAS TÉCNICAS DE MEDICIÓN	12
_		
6.1	RESULTADOS	12
6.2		
7	CONCLUSIONES	1.4
<u>-</u>		
۸ ۸	NEXO A – REPORTE TECNICO	17
<u>~!\</u>	ALAO A - REI ORIE ILONICO	1/
A b	JEVO D. CEDTIFICADOS DE CALIDDACIÓN	2.4
<u> </u>	NEXO B- CERTIFICADOS DE CALIBRACIÓN	ა4
<u> </u>	NEXO C- CERTIFICADOS DE INFORMES PREVIOS	<u> 47</u>

1 Resumen

Se realizó estudio de evaluación de ruidos para Extractores de Azotea de Comunidad Edificio Plaza Bondi , según Decreto Supremo D.S. N°38/2011 del MMA, "Norma de Emisión de Ruidos Generados por Fuentes".

Es estudio se realizó para 4 puntos de muestreo, obteniéndose valores NPC en dB(A) que:

- ➤ **No superan** la normativa establecida por D.S. N°38/2011 del MMA en horario Diurno en 3 puntos de muestreo.
- > Si supera la normativa establecida por D.S. N°38/2011 del MMA en horario Diurno en 1 puntos de muestreo.

No se realizó mediciones nocturnas, dado que los **equipos extractores de azotea no se utilizan en horario nocturno** (es decir entre 21 hrs – 7 hrs), según información facilitada por mandante.

Se propone seguir recomendaciones según sección 6.2 para dar cumplimiento con la normativa y volver a evaluar.

2 Introducción

A solicitud del mandante, se efectuaron mediciones de ruido con el propósito de evaluar si sus extractores dispuestos en azotea cumplen o no con la normativa de ruido vigente en nuestro país: Decreto Supremo D.S. N°38/2011 del MMA, "Norma de Emisión de Ruidos Generados por Fuentes".

Para la entrega de resultados se utilizarán Fichas de Reporte Técnico de la resolución 693 de SMA emitida el 21 de agosto de 2015, la cual aprueba contenido y formatos, para el procedimiento general de determinación de nivel de presión sonora corregido (NPC), indicados en letra c) del artículo 15 del D.S. 38/2011 del MMA.

Es decir, en el presente estudio de ruidos, se evaluará si se superan los niveles máximos de presión sonora corregidos (NPC) permitidos, para el tipo de zona donde se encuentran los receptores que podrían percibir mayor exposición al ruido, por la operación de la(s) fuente(s) de ruido asociada a las actividades que realiza la empresa.

Horarios de Operación:

>	Días y horario de funcionamiento de la fuente:	Todos los días entre 7hrs y 21 hrs
>	Período de actividades de la fuente:	Solo Diurno

3 Objetivos

- I. Evaluar puntos de muestreo según D.S. Nº38/2011 del MMA en horario Diurno
- II. Recomendar medidas de mitigación en caso de superación de los niveles

4 Antecedentes de la Fuente Emisora de Ruido

A continuación se caracterizan las inmisiones de ruido provenientes de la fuente:

Tabla 4.1- Caracterización del Dispositivo

CARACTERIZACION DE DISPOSITIVOS EN EVALUACION								
Tipo de dispositivo*	FUENTE PRINCIPAL EMISION DE RUIDOS:	Extractor Azotea Oeste						
	OTRAS FUENTES DE RUIDO:	Extractor Azotea Este						

*Solo informativo

4.1 Fuentes de Ruido al Exterior del Recinto

La mayor contribución de emisiones de ruido hacia el exterior, corresponde a:

Figura 4.1.2- Extractor Azotea Oeste

Figura 4.1.3- Extractor Azotea Este

Se midió el nivel de presión sonora que emiten las fuentes a plena capacidad en campo cercano y se obtuvo el nivel de potencia sonora de cada fuente:

Tabla 4.1.1- Niveles de Emisión

		Frecuencia en Bandas de Octava					Nivel Potencia	Nivel de Presión		
NOMBRE DE LA FUENTE	63	125	250	500	1000	2000	4000	8000	Lw dB(A)	a 15[m] dB(A)
Extractor 1 Oeste	84,4	87,0	85,5	84,5	83,1	77,0	79,6	92,9	93	62
Extractor 2 Este	85,5	83,6	79,8	77,3	76,6	69,7	71,8	86,0	86	55

- Los valores de **Lw** se obtuvieron en terreno con los dispositivos operando a plena capacidad. El nivel de presión sonora se tomó a un metro de la fuente, registrando el ruido por bandas de octava(desde 63[Hz] a 8k[Hz]) al estabilizarse el espectro (campo cercano para evitar ruido de otras fuentes en terreno).
- Para llegar al nivel de potencia sonora a partir del nivel de presión sonoro, se utilizó la fórmula

 $L_{w f o c t} = Lp f, o c t + 10*LOG 10 (2*PI()*(d)^2)$

donde:

d= distancia a la fuente[m] Lp f,oct =Nivel de presión sonoro por cada banda de octava

(considerando factor de directividad Q=2)

Más detalle se puede encontrar en el capítulo 1,11 y 1,12 del libro Fundamentos y Control de Ruidos de Samir Gerges y Jorge Arenas ed. 2004

5 Metodología

Las mediciones de ruido se realizaron bajo las condiciones definidas en el D.S. N°38/2011 del MMA, en lo que respecta a distancia y tiempos de medición. El instrumental, previamente calibrado, se utilizó con filtro de ponderación A, y la respuesta lenta del equipo (slow). El equipo de medición se instaló sobre un trípode a 1,5[m] de altura.

5.1 Instrumental

Para cada medición, se utilizó el siguiente instrumental:

Observaciones Sonómetro:

 El equipo de medición cumple con normativa: IEC 61672/1 2012, para sonómetros integradores tipo 1.

Observaciones Calibrador:

• El equipo de calibración cumple con normativa: IEC 60942-2003, para calibradores acústicos Clase 1.

Observaciones GPS:

Marca: GarminModelo: VISTA C

5.2 Profesional a Cargo

- Giovanni Bernini Zamorano - Ingeniero Civil en Acústica y Sonido

5.3 Normativa Utilizada

- Decreto Supremo D.S. N° 38/2011 MMA

La normativa vigente de evaluación de ruido que establece los niveles máximos permisibles, según el tipo de zona en el que se encuentre el receptor.

De los niveles máximos permisibles de presión sonora corregidos, se extiende lo siguiente:

Art. 7°.- Los niveles de presión sonora corregidos que se obtengan de la emisión de una fuente emisora de ruido, medidos en el lugar donde se encuentre el receptor, no podrán exceder los valores que se fijan a continuación:

Tabla 5.3.1.-Niveles Máximos Permisibles

TABLAN°1 : NIVELES MAXIMOS PERMISIBLES DE PRESION SONORA CORREGIDOS (NPC) EN dB(A) LENTO							
De 7 a 21 hrs. De 21 a 7 hrs.							
Zona I	55	45					
Zona II	60	45					
Zona III	65	50					
Zona IV	70	70					

- Art. 9°.- Para zonas rurales se aplicará como nivel máximo permisible de presión sonora corregido (NPC), el menor valor entre:
- a) Nivel de Ruido de Fondo + 10 dB(A)
- b) NPC para Zona III de la tabla superior.

5.4 Parámetros Utilizados

Los parámetros escogidos para caracterizar el ruido medido son los siguientes:

Nivel de presión sonora continuo equivalente (Leg):

Es el nivel de presión sonora constante, expresado en decibeles A (dBA), que en el mismo intervalo de tiempo, contiene la misma energía total (o dosis) que el ruido medido.

Nivel de presión sonora máximo (Lmax):

Nivel de presión sonora máximo presente durante el período de medición. Este valor es importante por el impacto psicológico sobre las personas.

Nivel de presión sonora mínimo (Lmin):

Nivel de presión sonora mínimo presente durante el período de medición. Es posible considerarlo como el nivel de ruido de fondo, en ausencia de eventos sonoros.

Nivel de potencia sonora (Lw):

Nivel sonoro que describe el nivel de ruido que emite una fuente, sirve para realizar predicciones de ruido y, y así estimar cuanto ruido llegará a un receptor.

5.5 Ubicación Emisor

5.6 Puntos de Medición

Se midió en 4 punto(s) sensible(s), cercano(s) a la fuente de ruido en evaluación. Las mediciones se realizaron en periodo Diurno, y son representativas de la situación de mayor exposición a la que se ve expuesta la comunidad cercana al emisor.

-Cuadro Fotográfico Puntos de Medición-

Figura 5.6.3- Punto P3-

5.7 Zonificación

De acuerdo al Plano Regulador de la Comuna de Las Condes, el(los) punto(s) receptor(es) donde se realizaron las mediciones se encuentran en:

Zona UV1/EAm4:

Usos Permitidos:

Residencial: Vivienda,Equipamiento: Comercio,

Esta área es homologable a Zona II del D.S.38/2011 del MMA.

Zona II:

Aquella zona definida en el Instrumento de Planificación Territorial respectivo ubicada dentro del límite urbano, que permite además de los usos de suelo de la Zona I, Equipamiento de cualquier escala.

En esta zona el nivel de ruido no podrá superar los 60 dB(A) en horario diurno y los 45 dB(A) en horario nocturno.

6 Fichas Técnicas de Medición

OBSERVACION: No se logró tener acceso a medir sobre azoteas de edificios cercanos al momento de la medición, sin embargo se midió en los límites de la edificación, a una distancia más cercana a la fuente y sin efecto de apantallamiento. De esta manera se estableció un escenario de peor condición.

6.1 Resultados

Se realizaron mediciones de Nivel de Presión Sonora en 4 punto(s) sensible(s) colindante con Edificio Plaza Bondi en Comuna de Las Condes. Los resultados de las mediciones se evaluaron de acuerdo al D.S. 38/2011 del MMA, tal como se muestra en el **Anexo A**.

Tabla 6.1.1 -Ficha de Evaluación de Niveles de Ruido

	TABLA DE EVALUACION									
Receptor N°	NPC [dBA]	Ruido de Fondo [dBA]	Zona DS N°38			Estado (Supera/ No Supera)				
P1	62	N.A.*	II	Diurno	60	SUPERA				
P2	60	N.A.*	II	Diurno	60	NO SUPERA				
Р3	55	N.A.*	II	Diurno	60	NO SUPERA				
P4	54	N.A.*	II	Diurno	60	NO SUPERA				

*Nota: N.A. No afecta la medición

6.2 Discusiones

Análisis del período de observación:

Se observó 1 de 4 puntos que superaron la norma, en condiciones físicas donde:

- los resultados P1 y P2 serían afectados directamente por fuente Extractor Oeste
- y P3 y P4 serían afectados directamente por fuente Extractor Este.

Los resultados correlacionaron bien con respecto a las mediciones de potencia sonora, dado que el extractor Oeste supera en sus niveles de ruido de emisión al Extractor Este en al menos 7 dB (ver Tabla 4.1.1)

Se hace necesario disminuir los niveles de ruido provenientes del Extractor Oeste, para la no superación de la norma en horario Diurno

Evaluación de los parámetros según otras condiciones

Se proyectó el nivel de potencia de la fuente Extractor Oeste hasta el edificio más cercano a 30m, esto para verificar que efectivamente el punto P1 correspondería a la peor condición, y una vez mitigada dicha fuente, otros receptores también se verían beneficiados:

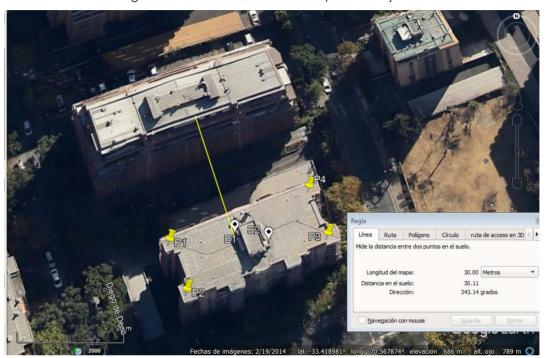


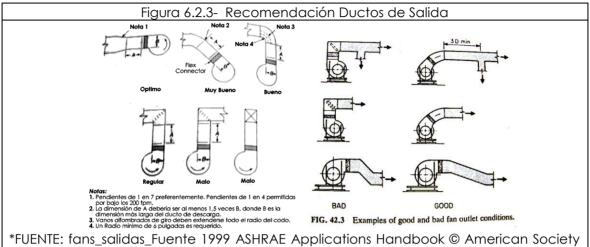
Figura 6.2.1 -Otras casos con receptor más lejanos

Tabla	6.2.1- Provección	Nivolos on	Pacantar a 30m	
1(11)(1	6.7.1- Proveccion	niveies en	Receptor a sum	

Tubiu	o.z. i- i loyeccion iniv	eies en Receptor a s	OTTI
	Nivel Potencia	australian estándar 2436- 1981 lw-20*log10(d)- 8	
		Nivel de Presión	Combinación
NOMBRE DE LA		a 30[m] dB(A)	Fuentes
FUENTE	Lw dB(A)		dB(A)
Extractor 1 Oeste	93	55	56
Extractor 2 Este	86	49	_

Tabla 6.2.2- Proyección Niveles en Receptor a 30m

Receptor N°	NPS Proyectado [dBA]	Zona Periodo DS N°38 (Diurno/Nocturno)		Límite [dBA]	Estado (Supera/ No Supera)
Edificio a 30m	56	II	Diurno	60	No Supera


Medidas o acciones adoptadas para resultados que presenten superación a los máximos niveles de la norma

Para no superación de niveles de la norma D.S. 38/2011 de MMA en **Punto P1 Diurno**, se propone tomar las siguientes acciones:

Medidas de Control de Ruido para insonorización:
 Se propone corregir salida de extractor, dado que existiría un efecto sonoro de amplificación, producto del flujo de aire con salida de ángulo poco suave:

,según recomendaciones ASHRAE, las salidas de extracción nunca deben terminar de forma abrupta, sino gradual:

*FUENTE: fans_salidas_Fuente 1999 ASHRAE Applications Handbook © American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. www.ashrae.org

Medidas Administrativas o de Gestión:

- Realizar mantención a equipos de extracción de manera periódica para equipos dispuestos en la azotea, y chequear alineación, balanceo y/o cualquiera otro factor que pudiera inducir vibraciones en la operación del equipo.
- Chequear estado de rodamientos
- Reducir al menos 2 dB(A), para asegurar cumplimiento DS 38/2011 de MMA a una distancia de 15m o menos.
- Volver a evaluar ruidos según DS 38/2011 de MMA para el caso de P1 en horario Diurno.

7 Conclusiones

Conforme a lo solicitado por Comunidad Edificio Plaza Bondi, con fecha lunes 10 de septiembre de 2018 se realizaron mediciones de ruido **Diurno** según la metodología del D.S. N°38/2011 del MMA. Los ensayos se realizaron en 4 punto(s) sensible(s) cercano(s) a Extractor Azotea Oeste de Edificio Plaza Bondi. La fuente emisora operó a plena capacidad durante las mediciones de ruido.

De acuerdo a la evaluación realizada, el NPC del receptor **P1** Diurno **es de 62 dB(A).** Este valor **supera** el límite máximo estipulado por la normativa D.S. N°38/2011 del MMA para Zona II.

De acuerdo a la evaluación realizada, el NPC del receptor **P2** Diurno **es de 60 dB(A).** Este valor **no supera** el límite máximo estipulado por la normativa D.S. N°38/2011 del MMA para 70na II

De acuerdo a la evaluación realizada, el NPC del receptor **P3** Diurno **es de 55 dB(A).** Este valor **no supera** el límite máximo estipulado por la normativa D.S. N°38/2011 del MMA para 70na II.

De acuerdo a la evaluación realizada, el NPC del receptor **P4** Diurno **es de 54 dB(A).** Este valor **no supera** el límite máximo estipulado por la normativa D.S. N°38/2011 del MMA para Zona II .

Se recomienda implementar recomendaciones de punto 6.2 y volver a evaluar en P1

GIOVANNI PATRICIO BERNINI ZAMORANO

INGENIERO CIVIL EN SONIDO Y ACUSTICA Consultor Acústico MINVU ROL 2520, 1era Cat.

RUT:

WWW.ACUSONIC.CL CONTACTO@ACUSONIC.CL (56) 2 459 45 27 SAN MGUEL SANTIAGO-CHILE NOVENA AVENIDA 1194

ANEXO A - REPORTE TECNICO

WWW.ACUSONIC.CL CONTACTO@ACUSONIC.CL (56) 2 459 45 27 SAN MIGUEL SANTIAGO CHILE NOVENA AVENIDA 1194

FICHA DE INFORMACION DE MEDICION DE RUIDO

IDENTIFICACIÓN DE LA FUENTE EMISORA DE RUIDO

Nombre o razón social:	Comunidad Edificio Plaza Bondi				
RUT:					
Dirección	DIRECCIÓN COMERCIAL: Martin Alonso Pinzon N° 5650, Las Condes				
Direccion	DIRECCIÓN SUCURSAL EMISORA A LA CUAL SE REALIZÓ EL ESTUDIO: Edificio Plaza Bondi				
Comuna	Las Condes				
Nombre de Zona de Emplazamiento (según IPT vigente)	UV1/EAm4				
Datum	WGS 84 Huso 19H				
Coordenada Norte 6301136.13 m S		Coordenada Este	354234.16 m E		

	CARACTERIZACION DE LA FUENTE EMISORA DE RUIDO						
Actividad Productiva	□ Industrial	□ Agrícola	□ Extracción	□ Otro			
Actividad Comercial	□ Restaurant	□ Taller Mecánico	Local Comercial	□ Otro			
Actividad Esparcimiento	□ Discoteca	☐ Recinto Deportivo	□ Cultura	□ Otro			
Actividad de Servicio	□ Religioso	□ Salud	□ Comunitario	□ Otro			
Infraestructura Transporte	☐ Terminal	☐ Taller de Transporte	Estación intermedia	□ Otro			
Infraestructura Sanitaria	☐ Planta de Tratamiento	☐ Relleno Sanitario	Instalación de distribución	□ Otro			
Infraestructura Energética	☐ Generadora	☐ Distribución Eléctrica	☐ Comunicacion es	□ Otro			
Faena Constructiva	□ Construcción	□ Demolición	□ Reparación	□ Otro			
Otro (Especificar) comunidad de edificio							

Comunidad Edificio Plaza Bondi Evaluación de Ruidos según D·S· 38/2011 MMA Septiembre de 2018

WWW.ACUSONIC.CL CONTACTO@ACUSONIC.CL (56) 2 459 45 27 SAN MGUEL SANTIAGO-CHILE NOVENA AVENIDA 1194

INSTRUMENTAL DE MEDICIÓN

		Id	lentificaci	ión sonór	metro			
Marca	NTI		Modelo	Modelo I		N° serie	Nro serie Equipo: A2A-02819-D1 Nro serie Micrófono: 1220	
Fecha de emis Calibración	Fecha de emisión Certificado de Calibración				13 de abril del 2018 (en vigencia por 2 años)			
Número de Ce	Número de Certificado de Calibración				SON20180022			
Identificación calibrador								
Marca	Larson E	Davis	Modelo	CAL200	(Tipo 1)	N° serie	6473	
Fecha de emis Calibración	sión Certifico	ado de		21 de abril del 2017 (en vigencia por 2 años)				
Número de Ce	ertificado de	e Calibro	ación	CAL20170034-2				
Ponderación en A frecuencia				Ponderación temporal		Lento		
Verificación de Calibración en Terreno ✓ Si			i 🔲 No			□ No		
Se deberá adjuntar Certificado de Calibración Periódica Vigente para ambos instrumentos.								

LEYENDA DE CROQUIS O IMAGEN UTILIZADA

Datum			WGS 84	Huso			19H	
Fuentes			Receptores					
Símbol o	Nomb re	C	Coordenadas	Símbolo	Nombre		Coordenadas	
•	El	Ν	6301136.13 m S	\$	P1	Ν	6301134.14 m S	
Y		Е	354234.16 m E			Е	354219.06 m E	
•	E2	Ν	6301134.24 m S	3	P2	Z	6301123.21 m S	
Y		Е	354241.69 m E			Е	354223.28 m E	
		Ν		P	DO	Ν	6301135.81 m S	
		Е		P	P3	Е	354255.89 m E	
		Ν		3	P4	Ν	6301146.98 m S	
		Е				Е	354251.87 m E	
Se podrán a	Se podrán adjuntar fotografías, considerando como máximo una (1) por fuente y dos (2) por lugar de medición.							

	IDENTIFICACION DE	EL RECEPTOR		
Dogarter NIO	P1			
Receptor N° Calle / Número	Receptor sobre azo	tea esauina NorOe:	ste	
Comuna	Las Condes			
Datum	WGS 84	Huso	19H	
Coordenada Norte	6301134.14 m S	Coordenada Este	354219.06 m E	
Nombre de Zona de emplazamiento (según IPT vigente)	UV1/EAm4			
N° de Certificado de Informaciones Previas				
Zonificación DS 38/11 MMA	Zona II			

							
CONDICIONES DE MEDICION							
Fecha medición	lunes 10 c	de septiembre	de 20	218			
Hora Inicio medición	8:01 PM						
Hora término medición	8:04 PM						
Período de medición	X	7:00 a 21:00 h			21:00 a 7:00 l	า	
Lugar de medición	medición			erna			
Descripción del lugar de medición	Receptor sobre azotea esquina NorOeste						
Condiciones de ventana (en caso de medición interna)	□ Ventana Abierta □ Ventana Cerr			Cerrada			
Identificación ruido de fondo El ruido de fondo correspondió a Ruido vehicular calle colindantes y actividades de moradores en edificio cercanos, actividades desde plaza cercana y vient leve.					edificios		
Temperatura [°C]	21	Humedad [%]	42		Velocidad de viento [m/s]	0,5m/s	
Nombre profesional en terreno Giovanni Bernini Zamorano							

WWW.ACUSONIC.CL CONTACTO@ACUSONIC.CL (56) 2 459 45 27 SAN MGUEL SANTIAGO CHILE NOVENA AVENIDA 1194

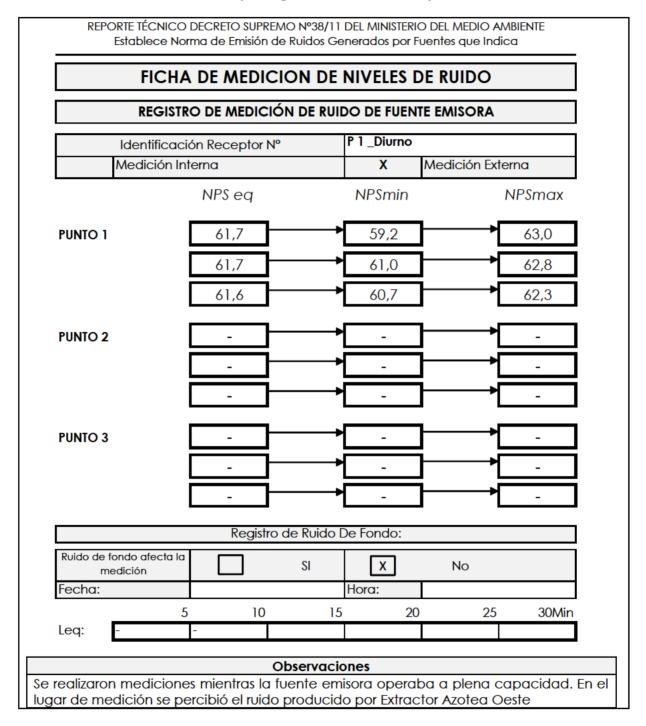
IDENTIFICACION DEL RECEPTOR								
Receptor N°	P2							
Calle / Número	Receptor sobre azoted	a esquina SurOe	ste					
Comuna	Las Condes							
Datum	WGS 84	Huso	19H					
Coordenada Norte	6301123.21 m S	Coordenada Este	354223.28 m E					
Nombre de Zona de emplazamiento (según IPT vigente)	UV1/EAm4							
N° de Certificado de Informaciones Previas								
Zonificación DS 38/11 MMA	Zona II							

CONDICIONES DE MEDICION							
Fecha medición	lunes 10 d	e septiembre	de 20	018			
Hora Inicio medición	8:09 PM						
Hora término medición	8:13 PM						
Período de medición	X 7	:00 a 21:00 h			21:00 a 7:00 h	1	
Lugar de medición	☐ Medición ✓ Medición Externa Interna				erna		
Descripción del lugar de medición	Receptor sobre azotea esquina SurOeste						
Condiciones de ventana (en caso de medición interna)			Ventana (Cerrada			
Identificación ruido de fondo	El ruido de fondo correspondió a Ruido vehicular calles colindantes y actividades de moradores en edificios cercanos, actividades desde plaza cercana y viento leve.					edificios	
Temperatura [°C]	Humedad 42 Velocidad de viento 0, [m/s]				0,5m/s		
Nombre profesional en terreno Giovanni Bernini Zamorano							

WWW.ACUSONIC.CL CONTACTO@ACUSONIC.CL (56) 2 459 45 27 SAN MIGUEL SANTIAGO CHILE NOVENA AVENIDA 1194

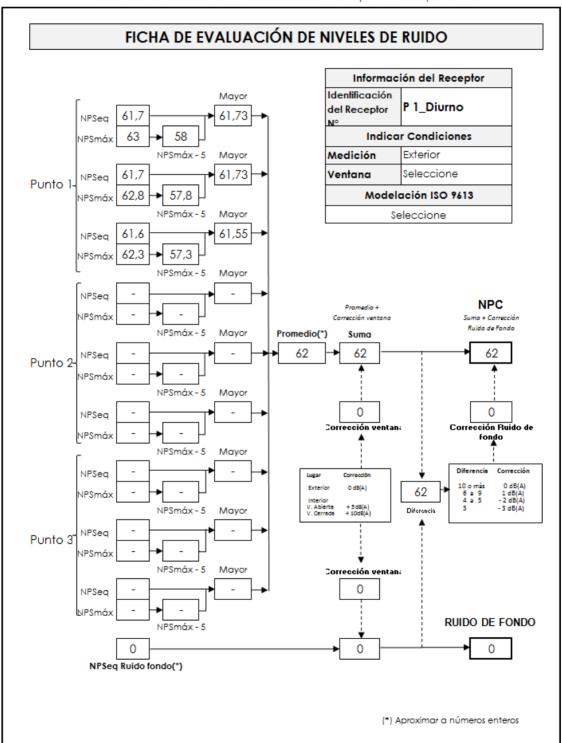
IDENTIFICACION DEL RECEPTOR								
Receptor N°	P3							
Calle / Número	Receptor sobre azotea	esquina SurEste						
Comuna	Las Condes							
Datum	WGS 84	Huso	19H					
Coordenada Norte	6301135.81 m S	Coordenada 354255.89 m						
Nombre de Zona de emplazamiento (según IPT vigente)	UV1/EAm4							
N° de Certificado de Informaciones Previas								
Zonificación DS 38/11 MMA	Zona II							

CONDICIONES DE MEDICION lunes 10 de septiembre de 2018 Fecha medición Hora Inicio medición 8:17 PM Hora término medición 8:20 PM Período de medición 7:00 a 21:00 h 21:00 a 7:00 h Χ Medición ✓ Medición Externa Lugar de medición Interna Descripción del lugar Receptor sobre azotea esquina SurEste medición Condiciones de ventana (en Ventana Abierta Ventana Cerrada caso de medición interna) Identificación ruido de fondo El ruido de fondo correspondió a Ruido vehicular calles colindantes y actividades de moradores en edificios cercanos, actividades desde plaza cercana y viento leve. Velocidad Humedad Temperatura [°C] 21 42 de viento 0,5m/s [%] [m/s]Nombre profesional en terreno | Giovanni Bernini Zamorano


WWW.ACUSONIC.CL CONTACTO@ACUSONIC.CL (56) 2 459 45 27 SAN MGUEL SANTIAGO-CHILE NOVENA AVENIDA 1194

IDENTIFICACION DEL RECEPTOR							
Receptor N°	P4						
Calle / Número	Receptor sobre azot	ea esquina NorE	ste				
Comuna	Las Condes						
Datum	WGS 84	Huso	19H				
Coordenada Norte	354251.87 m E	Coordenada 6301146.98 r					
Nombre de Zona de emplazamiento (según IPT vigente)	UV1/EAm4						
N° de Certificado de Informaciones Previas							
Zonificación DS 38/11 MMA	Zona II						

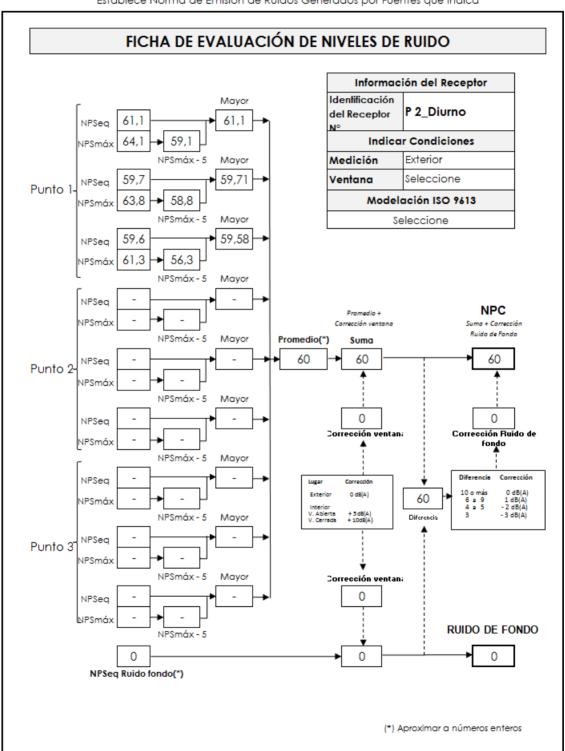
CONDICIONES DE MEDICION							
Fecha medición lunes 10 de septiembre de 2018							
Hora Inicio medición	8:24 PM						
Hora término medición	8:27 PM						
Período de medición	X 7	:00 a 21:00 h			21:00 a 7:00 l	า	
Lugar de medición	☐ Medición ✓ Medición Externa Interna				erna		
Descripción del lugar de medición	Receptor sobre azotea esquina NorEste						
Condiciones de ventana (en caso de medición interna)	' I II Ventana Abierta I II Ventana Cerra				Cerrada		
Identificación ruido de fondo	El ruido de fondo correspondió a Ruido vehicular calle colindantes y actividades de moradores en edificio cercanos, actividades desde plaza cercana y vienteve.					edificios	
Temperatura [°C]	Humedad 42 Velocidad de viento 0, [m/s]				0,5m/s		
Nombre profesional en terreno Giovanni Bernini Zamorano							



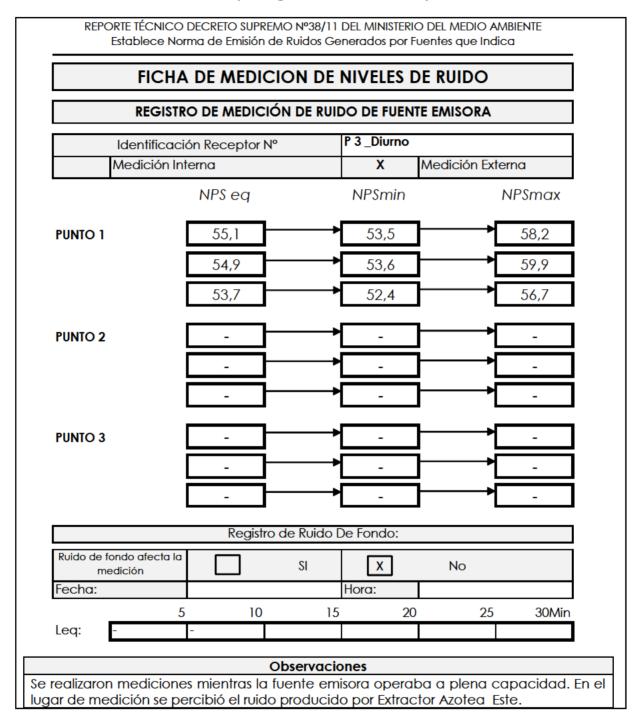
A.1 Ficha de Medición de Ruido por Lugar de Medición. Receptor P1, Período Diurno .

Ficha de Evaluación

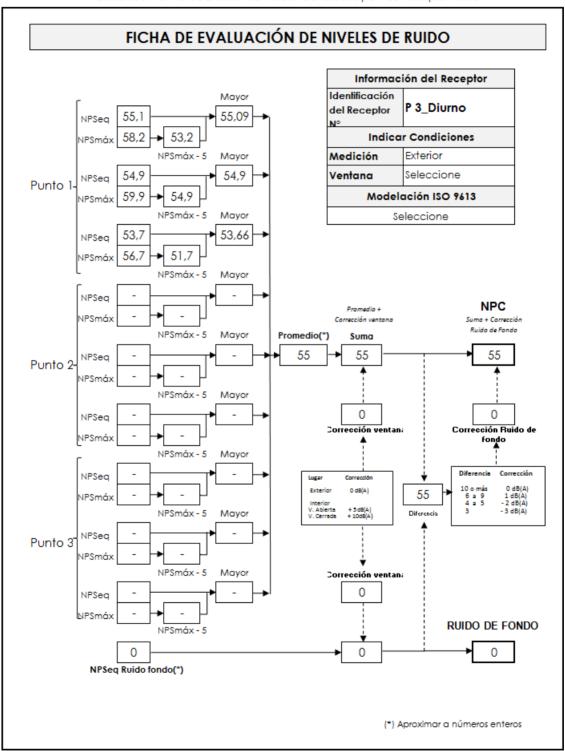
REPORTE TÉCNICO DECRETO SUPREMO N°38/11 DEL MINISTERIO DEL MEDIO AMBIENTE Establece Norma de Emisión de Ruidos Generados por Fuentes que Indica



A.2 Ficha de Medición de Ruido por Lugar de Medición. Receptor P2, Periodo Diurno.


Ficha de Evaluación

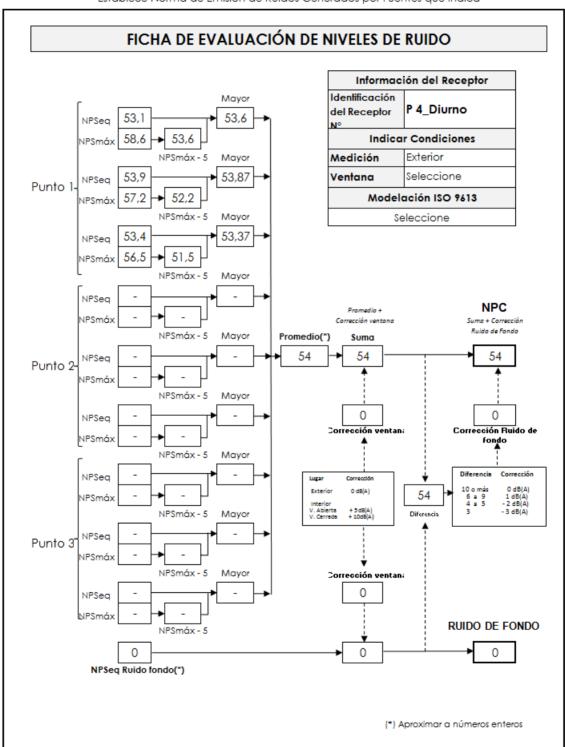
REPORTE TÉCNICO DECRETO SUPREMO N°38/11 DEL MINISTERIO DEL MEDIO AMBIENTE Establece Norma de Emisión de Ruidos Generados por Fuentes que Indica



A.3 Ficha de Medición de Ruido por Lugar de Medición. Receptor P3, Periodo Diurno .


Ficha de Evaluación

REPORTE TÉCNICO DECRETO SUPREMO N°38/11 DEL MINISTERIO DEL MEDIO AMBIENTE Establece Norma de Emisión de Ruidos Generados por Fuentes que Indica



A.4 Ficha de Medición de Ruido por Lugar de Medición. Receptor P4, Periodo Diurno .

Ficha de Evaluación

REPORTE TÉCNICO DECRETO SUPREMO N°38/11 DEL MINISTERIO DEL MEDIO AMBIENTE Establece Norma de Emisión de Ruidos Generados por Fuentes que Indica

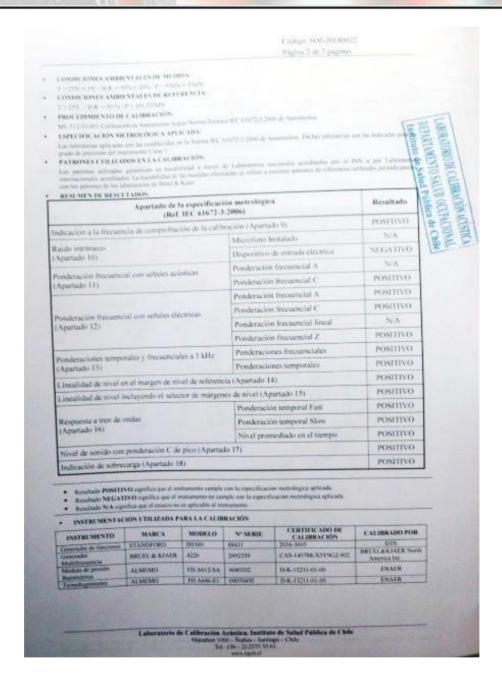
WWW.ACUSONIC.CL CONTACTO@ACUSONIC.CL (56) 2 459 45 27 SAN MIGUEL SANTIAGO-CHILE NOVENA AVENIDA 1194

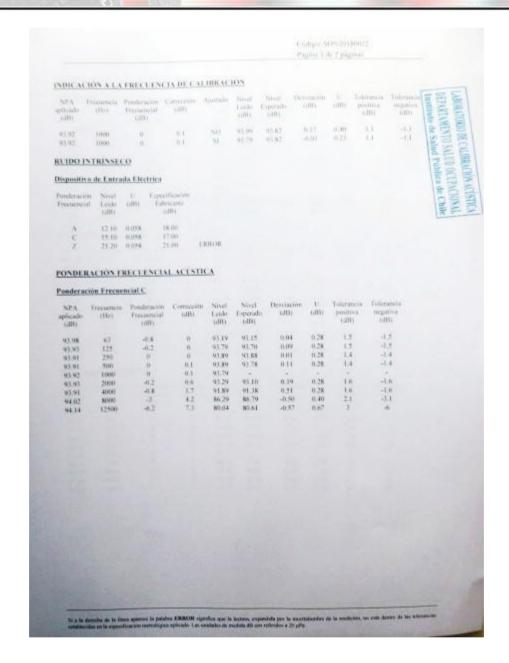
FICHA DE EVALUACION DE NIVELES DE RUIDO

	TABLA DE EVALUAÇION									
Receptor N°	NPC [dBA]	Ruido de Fondo [dBA]	Zona DS N°38	Periodo (Diurno/Nocturno)	Límite [dBA]	Estado (Supera/ No Supera)				
P1	62	N.A.	II	Diurno	60	SUPERA				
P2	60	N.A.	II	Diurno	60	NO SUPERA				
Р3	55	N.A.	II	Diurno	60	NO SUPERA				
P4	54	N.A.	II	Diurno	60	NO SUPERA				

OBSERVACIONES
El "Límite Máximo" permitido por el D.S. 38 del MMA queda establecido por el tipo de Zona donde se encuentra el receptor.

	ANEXOS							
N°	Descripción							
Α	Fichas de Medición							
В	Certificados de Calibración							
С	Certificado de Informes Previos							


WWW.ACUSONIC.CL CONTACTO@ACUSONIC.CL (56) 2 459 45 27 SAN MIGUEL SANTIAGO CHILE NOVENA AVENIDA 1194


ANEXO B- CERTIFICADOS DE CALIBRACIÓN

WWW.ACUSONIC.CL CONTACTO@ACUSONIC.CL (56) 2 459 45 27 SAN MIGUEL SANTIAGO-CHILE NOVENA AVENIDA 1194

B.1 CERTIFICADO CALIBRACIÓN SONÓMETRO NTI, Modelo XL2 con MICRÓFONO NTI, Modelo M2210.

	ion Freeze	RECUENCIA	I.						
NPA aphiode	ion Freque								
apricade:		BSIALA.							原豆豆
	Enquencia:	Tomacion:	Correction	Sover	Nind	Davincion	6000	Positiva positiva	Tolorand S
	(080)	Frequencial (dB)	(alternate)	Leide	Esperado (dB)	(48)	0.001	6285	HILLIAN E
111.20	63	262		164,90	85.00	-0.10	0.18	1,5	-11
101.10	125	-10.1	10	81,99	35.00	-0.10	0.18	1.5	41 15
93,90	250	-8.6	0.	88.98	85.00	-0.10	0.18	1.8	11 12
88.20	500	-3.3	.0	04.90	35.00	-0.10	0.18	1.4	1 /8
85.00	1000	0	0.	305,000					19
87.90	2000	1.2	0.	85.00	35300	0.00	0.11	1.6	-1.0
84.00	8000	1		84.90	85.00	-0.10	0.18	1.0	-1.0
86.10	8000	-1.1	0	83.00	35.00	0.00	0.18	2.1	3.1
91,60	16000	-6.0		84.99	35.00	-0.10	0.18	3.5	111
Ponderaci	ion Freques	scial.C							
NPA	Freetiencia	Produción	Compagne	Nivel	Nind	Electricis	47	Tolerancia	Toterancia
aplicado	(182)	Frequencial	(utinoteica)	Leide	Esperado	(40)	dillo	positiva	negativa
(db)		(88)	(405)	(30)	1,833			(48)	1,689
85.80	6.5	41.8	0	85.00	\$5.00	0.00	6016	1.5	-1.5
85.20	125	-0.2	0	85.00	\$5.00	0.00	0.18	1.5	-1.5
85.00	250	0.	0	84.90	\$5.00	-0.10	0.18	1.4	-1.4
85:00	500	0	0	85.00	\$5.00	0.00	0.18	1.4	-1.4
85.00	1000	-	0	85.00					
85.20	2000	-02	0	85.00	85.00	0.00	0.38	2.6	+1.6
85.80	4000	-0.8	- 0	84.90	85.00	-0.10	0.18	1.6	-1.6
88.00	8000	-3	0	85.00	85,00	0.00	0.18	2.1	-1.1
93.50	16000	-8.5	0	84.90	85.00	-0.10	0.18	3.5	-17
Ponderac	ión Frecue	ncial Z							
1000		William Street	Carrier Control	000000	227011				
NPA aplicado (dB)	Frecuencia (Hz)	Ponderación Precuencial (dlt)	Corrección (eléctrica) (dB)	Nivel Leido (dB)	Esperado (dB)	Desviación (dB)	(85)	Tolenncia positiva (dB)	Tolerancia negativa (dB)
85.00	63	0	- 0	84.90	85.00	-0.10	0.18		
85.00	125	0	- 11	84.90	85.00	-0.10	0.18	1.5	-1.5
85.00	250	. 0	ii.	84,90	85.00	-0.10	0.18	1.5	-15
85.00	500	0	0	85.00	85.00	0.00	0.18	1.4	-1.4
85.00	1000	0	0.	85.00	2000	O Anti	4.50	1.4	-1.4
85.00	2000	.0.	0	84.90	X5.00	40:10	0.18	1.6	-1.6
85.00	4000	0	0	84.90	85.00	40.10	0.18	1.6	
85.00	\$000	-0	- 0	85.00	85.00	0.00	0.18	2.3	-1.6 -3.1
R5:00	16000	-0	.0	85.00	\$5.00	0.00	0.18	3.5	-17

	DAD								
	Deciencia	Non	1	:Nivid:	Donners		Tolerapes		
aplicate edit	this	Loni (d0	i)	Cill)	idlo	(40)	(dill)	(dH)	
131.10	1000	OVERS	OAD	120,06			1.1	-4.1	(記言意)
130.10	30000	12%	10-	129.00	0.00	0.14	1.3	311	1533
129.10	8000	1290		126:00	0.00	0.14	1.1	-1.1	1826
128.10	8000	(127)		127.00	0.00	0.14	1.1	41	色层 變
127.10	8000	8293		125.00	0.00	8.14	1.1	41.7	1250
129.30	90000	125		124.00	0.00	0.14	1.1	14.1	1823
125.10	801(V)	119		119.00	0.00	0.14	1.1	43	(是王 5
128.10	8000 8000	114		114.00	0.00	0.14	1.1	-1.1	155
135.30	MINOR	100		109.00	0.00	0.14	1.1	101	188
105.10	1000	104		184.00	0.00	0.14	6.8	10.0	12.
100.10	8000	900.0		99.00	0.00	0.18	1.1	-4.8	
95.10	9000	943		300	1800	- Cartin	11.00	1	
90.10	90(10)	50		\$9.00	0.00	0.19	1.1	-14	
85.10	9000	84		84.00	0.00	0.14	1.1	-1.1	
80.10	3000	24		74.00	0.00	0.14	1.1	-13	
25.10	9000	74		69.00	0.00	0.14	1.1	-1.1	
20.10	8000 8000	19		64.00	0.00	0.14	1.1	41	
65.00	2000	19		59.00	0.00	0.14	1.1	-1.1	
55.10	8000	54		54.00	0.00	0.14	1.1	+1.1	
50.20	8000	49		49.00	0.00	0.14	1.1	41.1	
45.30	8000		00	44.00	0.00	0.14	1.1	-1.1	
30.311	8000		10	39.00	0,10	0.14	1.1	+1.1	
29,10	8100		30	38.00	0.10	0.14	1.1	-1.1	
28.10	\$1000		29	37.00	0.20	6,14	15	-1.1	
37.10	8000		30	35.00	0.30 0.36	0,14 0.14	1.1	41.1	
28.10	9000		30	34.00	8.30	0.14	1.1	-1.1	
34.10	8000		40	33.00	0.40	0.14	1.1	4.1	
33.10	8000		30	32.00	0.50	0.14	1.1	-1.1	
32,10	(0300)		(60)	31,00	6.60	0.14	1.1.	-9.1	
31.10	8000		-BLONGE	30.00 29.00	0.80	0.14	1.1	-1.1	
30.10	8000	EMSIER	- N. O. C. C. C.	2000			1.1	41	
LINEAL	LIDAD SEL	ECTOR	MARGE	NES DE	SIVEL,				
	Trecuencia (He)	Range	Rango (dB)	Nest Leide sillis	Nivel Expende 6800	Description (dfl)	(40)	Telecancia positiva (dlt)	Tifferencia registivo (dB)
NPA aplicado (dB)									
aplicado (dB)	1000	Ref	36+139	94,00	100	11.70	194	-	
aplication (dB)	\$600 1000	Ref E1 E1	36 - 136 10 - 110 10 - 110	94.00 74.00 105.00	74.00	11.00 11.00	0.14	1)	ė.

WWW.ACUSONIC.CL CONTACTO@ACUSONIC.CL (56) 2 459 45 27 SAN MGUEL SANTIAGO CHILE NOVENA AVENIDA 1194

	NCIADEE		10:								
Pombers	iones.Temp	ecator									EE
S/FA uphcolo- citte	Tropoencie (3%)	Possberación Temporali			le pill		olin	Tolora positi (df)	118 100	princise politor office	Salisa Division
94,00 94,00 94,00	1,000 1,000 2,000	NPS Fast NPS Store Log	94.00 94.00 94.00	94.00		10	0.087 0.082	83		-0.3 -0.3	STATE OF THE PARTY
Ponderaci	omes Execu										188
NPA aplicado (affi)	Fracencia (Bles.	Possilense Site Traccome Sal		Niver Expected solition	le (d)		t) (dB)	Tolera posit (dl)	ive in	lerancia rgativa (dB)	Mar at Co
	1000		94.00								1年5
94.00 94.00	1900	2	94.00	94.00	(6)	10	0.082 0.082	0.		46.8 -0.4	
DESERVE TO	TAATRE	S DE ON									
CONTRACTOR OF			Lac								
Funderaci	ón tempora	I Fant									
NPA aplicado (dB)	(Hz)	(mi)	(x)	Nisel Leido I idilii	Nivel Esperado (dB)	Desvi (d)		(dH)	Toleranci postiva (db)		
124.00	(4000.00	-	-	126.90				+	7.	-0.8	
126.00 126.00	4000.00 4000.00	200	0.125	108.90	135.92	-0. -0.	01	0.0K2 0.0K2 0.0K2	1.3	-1.8	
126.00	4000.00	8.25	0.125	99.80	99.91	-it	111	11.1186.2	1.3	-0.3	
Panderec	ion tempor	al Slow									
NPA aplicado (ab)	Tracuencia (Hz)	Duración: (mil)	(A)	Nisal Leido I oliti	Nivel Esperado (d0)	Deni (d)		(03)	Positiva (dlt)		
126.00	4000,000	100	-	126.90							
126.00	4000.00 4000.00	200	1	99.90	119.4E 99.91	-0.1		0.0K2 0.0K2	1.3	-63	
Shelpe	emediada e	n el tiempe									
NPA agriculo (49)	Frecuencia (16)	Duración (ma)	Nost Leider (dft)	Ninel Esperado (dh)	Deseia o (di)		(016)	Toleran position	ta neg	nancia prive	
126.00		-	126.90		2						
126.00		200	119.49	99.91	-0.4 -0.5		0.062	0.8		0.8	
126.00	4000.00	0.25	90.69	WI.EE			0.082	13		33	

WWW.ACUSONIC.CL CONTACTO@ACUSONIC.CL (56) 2 459 45 27 SAN MGUEL SANTIAGO CHILE NOVENA AVENIDA 1194

			non e ne	me e					
SIVELI	DE SONIDO	CON PONDERAS					207	ESTATE OF THE STATE OF THE STAT	F
50°A aplicado (dll)	(16)	Numero de Ciclos	Lepenie-Le	Nivel Leido (dlt)	Nivel Esperado (dll)	(db)	(dff)	Foleranda positiva (dB)	negativa (dit)
136 (0) 527 (0) 630 (0) 627 (0) 527 (0)	9000 500 8000 500 500	Uno Semiciclo protivo Semiciclo regativo	3.4 2.4 2.4	126.90 127.00 130.30 129.20 129.20	130,30 129,40 129,40	0.00 -0.20 -0.20	0.082 0.082 0.082	2.4 1.4 1.4	de Saluk Dilks of
INDICA	CIÓN DE S	OBRECARGA							1
Margen Superior (dilt)	Frecuencia (Hz)	Senal de Entrada	Nivel Softrocarga (dB)	Nisel Esperado (dff)	Desviaci sills	(dB)	Tolerancia positiva (dB)	Tolerancia registiva (dB)	1
130 130	4000 4000	Semicicla postava Semicicla negativa	133.90 133.88	133.90	-0.10	0.14	1.8	-1.8	

Fecha de emisión: 28 - 09 - 2017

B.2 CERTIFICADO CALIBRACIÓN DE LARSON DAVIS CAL-200

LABCAL - ISP

Laboratorio de Calibración Acústica. Instituto de Salud Pública de Chile.

CERTIFICADO DE CALIBRACIÓN PERIÓDICA

Código: CAL20170034-2

Este certificado reemplaza al certificado CAL2017034 emitido el 25-04-2017.

Página 1 de 1 páginas (más anexos)

CALIBRADOR ACÚSTICO : LARSON DAVIS

MODELO : CAL200

NÚMERO DE SERIE : 6473

FECHA DE CALIBRACIÓN : 21 - 04 - 2017

CLIENTE : GIOVANNI BERNINI ZAMORANO

TÉCNICO DE CALIBRACIÓN : HERNÁN FONTECILLA GARCÍA

Signatario autorizado

LABORATORIO DE CALIBRACIÓN ACÚSTICA Instituto de Salud Pública de Chile

Juan Carlos Valenzuela Illanes

Director Técnico

La incertidumbre expandida de medida se ha obtenido multiplicando la incertidumbre típica de medición por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

Anexo a este Certificado de Calibración se adjuntan los valores nominales de los resultados de la calibración, junto con las tolerancias establecidas en la especificación metrológica aplicada. Se incluye además, una tabla resumen con el resultado de contrastar dichas tolerancias con los resultados, teniendo en cuenta la incertidumbre de médida. La tabla no supone la conformidad del instrumento con respecto a la especificación metrológica, tan solo con los apartados de dicha especificación metrológica.

Los resultados se refieren al momento y condiciones en que se realizaron las mediciones, aplicando únicamente al instrumento sometido a ensayo. Este informe no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo expide.

Laboratorio de Calibración Acústica. Instituto de Salud Pública de Chile Marathón 1000 – Ñuñoa – Santiago – Chile. Tel.: (56 – 2) 2575 55 61.

Anexo Código: CAL20170034-2 Página 1 de 2 páginas

CONDICIONES AMBIENTALES DE MEDIDA:

T = 23°C ± 3°C / H.R. = 50% ± 20% / P = 95kPa ± 10kPa

CONDICIONES AMBIENTALES DE REFERENCIA:

T = 23°C / H.R. = 50% / P = 101,325kPa

PROCEDIMIENTO DE CALIBRACIÓN:

ME 512 03 007 Calibración de Calibradores Acústicos de Terreno Según Norma Técnica UNE-EN 609 × 200 × 20 Acústicos. Dichas tolerancias son las establecidas para un grado de precisión del instrumento CLASE 1.

PATRONES UTILIZADOS EN LA CALIBRACIÓN:

Los patrones utilizados garantizan su trazabilidad a través de laboratorios nacionales acreditados por el INN o por laboratorios internacionales acreditados. La trazabilidad de las medidas efectuadas se refiere a nuestros patrones de referencia calibrados periódicamente con los patrones de los laboratorios de Brüel & Kjaer.

OBSERVACIONES:

Todos los resultados están referidos a las condiciones ambientales de referencia establecidas en la especificación metrológica aplicada.

RESUMEN DE RESULTADOS:

Apartados de la especificación metrológica Norma UNE-EN 60942:2005	Prueba	Resultado
Níveles de presión acústica (Apartados 5.2.2 y 5.2.3 – Tabla 1)	Valor nominal	POSITIVO
Averes de presion acustica (Aparsados 5.2.2 y 5.2.3 – Tabla 1)	Estabilidad	POSITIVO
Distorsión total (Apartado 5,5 – Tabla 6)		POSITIVO
Frecuencia (Apartado 5.3.2 - Tabla 3)	Valor nominal	POSITIVO

- Resultado POSITIVO significa que el instrumento cumple con la especificación metrológica aplicada.
- Resultado NEGATIVO significa que el instrumento no cumple con la especificación metrológica aplicada.
- Resultado N/A significa que el ensayo no es aplicable al instrumento.

INSTRUMENTACIÓN UTILIZADA PARA LA CALIBRACIÓN

INSTRUMENTO	MARCA	MODELO	N° SERIE	CERTIFICADO DE CALIBRACIÓN	CALIBRADO POR
Generador de funciones	STANDFORD	DS360	88431	2016-3605	DTS
Multimetro Digital	AGILENT TECHNOLOGIES	3458A	MY45044808	D-K-15155-01-00	UNIVERSIDAD DE CONCEPCIÓN
Módulo de presión Barométrica	ALMEMO	FD A612-SA	9040332	D-K-15211-01-00	ENAER
Termobigrómetro	ALMEMO	FH A646-E1	09070450	D-K-15211-01-00	ENAER
Micrófono Patrón	BRUEL & KJAER	4192	2686091	CAS-140788-X5Y9G2-301	BRUEL&KJAER North America Inc.
Micrófono Patrón	BRUEL & KJAER	4180	2660981	M2.10-1110-3.1	BRÜEL&KJAER North America Inc.

Laboratorio de Calibración Acústica. Instituto de Salud Pública de Chile Marathon 1000 - Ñuñoa - Santiago - Chile Tel. (56 - 2) 2575 53 61.

mww.ispch.cl

Anexo Código: CAL20170034-2 Página 2 de 2 páginas

NIVEL	DE	PRESIÓN	SONORA

Valor nominal del NPS

NPS (dB)	Frecuencia (Hz)	Nivel Leido (dB)	Desviación (dB)	Tolerancia Positiva (dB)	Tolerancia Negativa (dB)	Incertidumbre (dB)	NO SULD OCH SCIE
94.00	1000.00	93.94	-0.06	0.40	-0.40	± 0.19	Olic Par Oll
114.00	1000.00	114.01	0.01	0.40	-0.40	± 0.19	de OVA
del NPS							"hille"
NIDC	Parameter	28,000.00	***			121111112222000000	

Estabilidad del NPS

NPS (dB)	Frecuencia (Hz)	Nivel Leido (dB)	Nivel Esperado (dB)	Desviación (dB)	Tolerancia (dB)	Incertidumbre (dB)
94.00	1000.00	0.00	0.00	0.00	0.10	± 0.0058
114.00	1000.00	0.01	0.00	0.01	0.10	+ 0.0058

DISTORSIÓN

NPS (dB)	Frecuencia (Hz)	Distorsión Leida (%)	Distorsión Esperada (%)	Desviación (%)	Tolerancia (%)	Incertidumbre (%)
94.00	1000.00	0.206	0.000	0.206	3.000	± 0,056
114.00	1000,00	0.293	0.000	0.293	3.000	± 0.080

FRECUENCIA

Valor nominal de la Frecuencia

NPS (dB)	Frecuencia (Hz)	Frecuencia Exacta (Hz)	Frecuencia Leida (Hz)	Desviación (Hz)	Tolerancia Positiva (Hz)	Tolerancia Negativa (Hz)	Incertidumbre (Hz)
94.00	1000,00	1000.00	999.87	-0.13	10.00	-10.00	± 0.50
114.00	1000.00	1000,00	999.85	-0.15	10.00	-10.00	± 0.50

Si a la izquierda de la linea apurece la pubirra ERROR significa que la fectura, expendida por la incentidumbre de la medición, no está dentro de las tolerancias establecidas en la especificación metrológica aplicada. Las unidades de medida dB son referidos a 20 µPa.

B.3 ACLARACIÓN SOBRE SONÓMETRO Y CALIBRADOR DE DIFERENTES MARCAS

SANTIAGO, Febrero 27 del 2014

Instituto de Selud Publica de Chile

Aclaratoria por sonômetro con calibrador de diferentes marcas.

Ref.: Indicación de fabricante respecto a utilización de calibrador acústico para respuesta a la consulta realizada vía OIRS del Instituto de Salud Pública de Chile, con número de seguimiento 42858.

Con relación a su consulta en el marco de la aplicación del D. S. Nº 38/2011 del Ministerio del Medioambiente y, de lo señalado en el Decreto Exento Nº 542 del 2014 del MINSAL que aprueba la Norma Técnica 0165 sobre Certificados de Calibración Periódica para Sonómetros Integrados-Promediadores y Calibradores Acústicos, y atendiendo además a la exigencia que le ha realizado la Superintendencia del Medioambiente con respecto al pronunciamiento por parte del organismo facultado en temas técnicos de equipos de medición de ruido, podemos indicarle, de manera adicional a lo que aparece en los cuerpos legales mencionados, que en los casos en que el fabricante de un sonómetro especifique que su instrumento puede ser utilizado con un determinado calibrador acústico, para este Laboratorio de Calibraciones dicha especificación será considerada como válida desde el punto de vista técnico, en el contexto de la realización de mediciones de ruido y en particular, en el marco de la aplicación del D. S: 38/2011.

Sin otro particular saluda atentamente a usted,

Mauricip Sänchez Valenzuela Jefe

Sección Ruido y Vibraciones Departamento Salud Ocupacional Instituto de Salud Pública

6- Norther 2018, Notes Senige Code III East 71. Colombia 77(2019) West Cotton Statistics (1) 140-years - 76(7) 775 (1) www.rpch.cl.

B.4 ESPECIFICACIÓN DEL FABRICANTE ACERCA DEL CALIBRADOR

NTI Americas Incorporated P.O. Box 231027 Tigard, OR. 97281 USA (503) 684-7050

Dear Mr. Bernini:

As the manufacturer of the NTI XL2 analyzer, we can certify that the Larson Davis CAL200 calibrator may be used together with the NTI XL2 with perfect results. We certify this. In fact, any Class 1 IEC certified calibrator will work.

These instruments together (XL2 + CAL200) will meet all requirements for IEC 61672.

Please do contact us if you require any further information in this matter.

Regards,

Thomas E. Mintner President NTI Americas Inc.

WWW.ACUSONIC.CL CONTACTO@ACUSONIC.CL (56) 2 459 45 27 SAN MGUEL-SANTIAGO-CHILE NOVENA AVENIDA 1194

ANEXO C- CERTIFICADOS DE INFORMES PREVIOS

WWW.ACUSONIC.CL CONTACTO@ACUSONIC.CL (56) 2 459 45 27 SAN MGUEL SANTIAGO-CHILE NOVENA AVENIDA 1194

SE ADJUNTA ULTIMA VERSION DE CERTIFICADO DE INFORMES PREVIOS