

MEMORANDUM

Para: Sra. Sigrid Scheel Verbakel

Fiscal Instructora Titular

Superintendencia del Medio Ambiente

Preparado por: Gerencia Hidrogeología

Albemarle Ltda.

Materia: Análisis de efectos generados en el medio ambiente producto de

extracción de salmuera por parte de Albemarle asociados a lo

señalado por la Superintendencia del Medio Ambiente

Fecha: 09 de diciembre de 2024

INTRODUCCIÓN

A raíz del proceso de sanción por parte de la Superintendencia del Medio Ambiente, Res. Ex. Nº1/ROL F-018-2022, en la que se han planteado los siguientes cargos:

"Cargo Nº1: Extracción de un caudal medio anual de 452,3 L/s para el año operacional de octubre de 2019 a septiembre de 2020, excediendo el límite del caudal medio anual de 442 L/s autorizado por la RCA N°21/2016 y sobreextrayendo un porcentaje adicional de 2,3% respecto al caudal límite.

Cargo №2: La empresa no dio cumplimiento a todas las medidas comprometidas en el PAT del Sector de Alerta Acuífero, en el mes de marzo del año 2021, lo que se manifiesta en:

- No dar aviso a la SMA de su activación en el indicador BA-07
- No reducir en forma inmediata las extracciones de salmuera de su proyecto, para el periodo de febrero y marzo de 2021"

La Dirección General de Aguas solicita a Albemarle Ltda., de ahora en adelante Albemarle; mediante ORD. N°67, a evaluar la diferencia en el nivel freático tanto en magnitud, extensión y duración producto de la desviación señalada por la SMA para los periodos: octubre 2019 a septiembre 2020, febrero 2021 y marzo 2021.

Para el desarrollo de esta tarea, se solicita utilizar la última versión validada a la fecha del modelo hidrogeológico numérico ("Tercera Actualización del Modelo de Flujo de Agua Subterránea en el Salar de Atacama RCA 21/2016" (VAIGS, 2023), en adelante Tercera

PROYECTO MODIFICACIONES Y MEJORAMIENTO DEL SISTEMA DE POZAS DE EVAPORACIÓN SOLAR EN EL SALAR DE ATACAMA

MODELO RCA 21/2016

Actualización), junto con la construcción de escenarios que consideren una extracción ambientalmente autorizada, de manera de compararse con el modelo simulado a partir de la extracción real de salmuera.

Con la comparación de ambos escenarios, se evaluó la diferencia en el tiempo del nivel freático mediante gráficos de nivel y de diferencia entre ambos escenarios, considerando efectos hasta diciembre 2065, último periodo del modelo de la Tercera Actualización. Adicionalmente se generaron mapas de isodescensos para el periodo de mayor diferencia entre escenarios. En este mapa se destaca el polígono con diferencias de descensos iguales a 0,1cm.

Para cumplir con los objetivos de este memorándum técnico, el documento se divide en las siguientes secciones:

- MODELACIÓN DE ESCENARIOS SOLICITADOS
- RESULTADOS ESCENARIOS SOLICITADOS
 - Consulta de Magnitud
 - Consulta de Extensión
 - Consulta de Duración
- ESCENARIOS ADICIONALES
- RESULTADOS ESCENARIOS ADICIONALES
 - Consulta de Magnitud
 - Consulta de Extensión
 - Consulta de Duración
- CONCLUSIONES
 - Escenarios Solicitados
 - Escenarios Adicionales
 - Generales

A continuación, se presenta el análisis realizado

MODELACIÓN DE ESCENARIOS SOLICITADOS

Para esta etapa, a solicitud de la Dirección General de Aguas, se utilizó el modelo de la Tercera Actualización (VAIGS, 2023). Este modelo cuenta con un periodo de calibración que se extiende hasta septiembre 2022, abarcando los meses solicitados a evaluar, octubre 2019 a septiembre 2020, febrero 2021 y marzo 2021, indicados en la tabla 1 del ORD. N°67 DGA.

Con respecto a las extracciones de salmuera:

- Albemarle: en calibración, el bombeo consiste en el volumen y distribución realmente operado hasta septiembre 2022. Luego, a partir de octubre 2022 se consideró la misma distribución del periodo anterior modificando 6 pozos que no eran capaces de extraer el bombeo impuesto, y agregando 4 pozos que se encontraban inactivos
- SQM: en calibración sólo se cuenta con la distribución de caudales de los Puntos de Extracción Equivalentes (PEE)¹, hasta diciembre 2020. Para el resto del periodo de calibración, enero 2021 a septiembre 2022, se utilizó el volumen de extracción total de la información encontrada en la página web www.sqmsenlinea.com, y con la distribución del último año. Lo mismo se hizo para el periodo de simulación.

Para este ejercicio se definieron los siguientes escenarios según lo solicitado en ORD N°67, ver resumen en Tabla 1:

- 1. Escenario **Base**: se utilizó la calibración y el escenario de simulación futura "Caso Base" (descrito como "b. Modelo simulado base" en ORD N°67) entregados junto al modelo de la Tercera Actualización. Este es el escenario de explotación real
- 2. Escenario SMA1: se modifica el Escenario Base de la siguiente forma:
 - a. octubre 2019 a septiembre 2020: extracción de caudal promedio de 442 L/s, reduciendo el caudal de todos los pozos en A1
 - b. febrero 2021: extracción de caudal mensual de 399,1 L/s, reduciendo el caudal de todos los pozos en A1
 - c. marzo 2021: extracción de caudal mensual de 382,0 L/s, reduciendo el caudal de todos los pozos en A1
- 3. Escenario **SMA2**: se modifica el Escenario Base de la siguiente forma:

¹ Los PEE son una aproximación de la ubicación de los pozos de bombeo, la que consiste en dividir la zona de operación de SQM en una malla de celdas de 1km x 1km, en la que se le asigna a cada uno el caudal acumulado de los pozos que se encuentran en cada una de ellas

PROYECTO MODIFICACIONES Y MEJORAMIENTO DEL SISTEMA DE POZAS DE EVAPORACIÓN SOLAR EN EL SALAR DE ATACAMA

MODELO RCA 21/2016

- a. octubre 2019 a septiembre 2020: extracción de caudal promedio de 442 L/s, reduciendo el caudal de pozos de A1 más cercanos a objetos de protección
- b. febrero 2021: extracción de caudal mensual de 399,1 L/s, reduciendo el caudal de pozos de A1 más cercanos a objetos de protección
- c. marzo 2021: extracción de caudal mensual de 382,0 L/s, reduciendo el caudal de pozos de A1 más cercanos a objetos de protección

Las reducciones realizadas se aplicaron de forma proporcional a los caudales originalmente bombeados por estos pozos.

Tabla 1: Resumen de caudales campo de pozos Albemarle, en L/s, de escenario Caso Base Tercera Actualización y escenarios solicitados

Escenario	Reducción de caudal	Octubre 2019 Septiembre 2020	Febrero 2021	Marzo 2021
Base	Sin reducción	452,3	522,9	509,0
SMA1	En todo A1	442,0	399,1	382,0
SMA2	En A1 cercano a objetos de protección	442,0	399,1	382,0

Notar que todos los escenarios son iguales hasta septiembre 2019.

RESULTADOS ESCENARIOS SOLICITADOS

Para los escenarios anteriormente descritos, se generaron los siguientes resultados para cumplir con las consultas de Magnitud, Extensión y Duración mencionadas en ORD N°67:

- Consulta de Magnitud: diferencia de nivel freático entre escenario Base, extracción real; y escenario SMA1 y SMA2
 - a. Figuras en planta: ambas plantas muestran las diferencias desde 0,1cm hasta las máximas registradas. La fecha utilizada es la de mayor diferencia en pozo PN-14B, dado que es el pozo PAT Alerta Núcleo que presenta mayores diferencias respecto al escenario Base
 - b. Gráficos: se presenta un gráfico por pozo con la variación temporal del nivel freático, en eje principal, del escenario SMA1 o SMA2 junto al escenario Base, y la diferencia entre el nivel respecto al escenario Base, en eje secundario
- Consulta de Extensión: polígono de diferencia de nivel freático entre escenario Base y escenario SMA1 y SMA2 de hasta 0,1cm y pozos que se encuentren en su interior
 - a. **Figura en planta**: se incorpora el polígono solicitado, de 0,1cm, en la planta de la **Consulta de Magnitud**
 - b. **Tablas**: se incluye la información de los pozos que se encuentran dentro del polígono para ambos escenarios
- 3. **Consulta de Duración**: evolución del nivel freático de los tres escenarios y diferencias respecto al escenario Base, periodo de calibración y simulación
 - a. Figuras: gráficos temporales de nivel freático y diferencias presentado en Consulta de Magnitud
 - b. **Tablas**: se presenta tabla con las fechas de: comienzo de diferencias, diferencia máxima, y fecha de término del efecto o diferencia cero

Esto además de todos los datos necesarios para reproducir figuras y gráficos en formato Excel.

Consulta de Magnitud

A continuación, en Figura 1 y Figura 2, se muestran los mapas de isodescenso para los escenarios SMA 1 y SMA 2, respectivamente, sobre los niveles del escenario Base. La fecha considerada para estas plantas es la máxima diferencia observada en pozo PN-14B, es decir, octubre 2021 y agosto 2021 respectivamente. Con estas figuras, además de la Consulta de Magnitud, se contesta parte de la Consulta de Extensión con el polígono de diferencia de 0,1cm solicitado (en azul).

Dado que la Figura 1 y Figura 2 representan un mes en particular, hay pozos que se encuentran fuera del polígono y aun así tienen diferencias con el escenario Base mayores a 0,1 cm en otros meses. En la Tabla 2 se muestran los pozos que tienen diferencias menores a 0,1 cm durante todo el periodo de modelación por escenario.

Tabla 2: Ubicación de pozos respecto de polígono 0,1 cm

Pozos	SMA1	SMA2
1027	Fuera del polígono	Fuera del polígono
L2-3	Fuera del polígono	Fuera del polígono
L2-4	Fuera del polígono	Fuera del polígono
L5-3	Fuera del polígono	Fuera del polígono
L7-3	Fuera del polígono	Fuera del polígono
TP-2	Fuera del polígono	Fuera del polígono
TP-3	Fuera del polígono	Fuera del polígono
TPZ-10	Fuera del polígono	Fuera del polígono
TPZ-11A	Fuera del polígono	Fuera del polígono
TPZ-13C	Fuera del polígono	Dentro del polígono

Notar que en ambas figuras la resolución de la diferencia de los modelos genera curvas con oscilaciones a partir de los menores valores estimados. Desde 1 cm se podría decir que este efecto se deja de apreciar. Teniendo en cuenta lo anterior, parece adecuado utilizar la comparación de las modelaciones cuando las diferencias entre los escenarios son del orden de 1 cm o más.

Luego, en la Figura 3, Figura 4 y Figura 5, para escenario SMA1, y Figura 6, Figura 7 y Figura 8, para escenario SMA2; se muestra la evolución temporal de los niveles freáticos y sus diferencias respecto al escenario Base de 12 pozos. El resto de los pozos se encuentran en anexos. Con estos gráficos, además se contesta parte de la **Consulta de Duración**.

Figura 1: mapa de diferencia entre niveles freáticos de escenario SMA1, respecto a escenario Base, en azul la diferencia de 0,1cm, y en gris las curvas mayores a esta

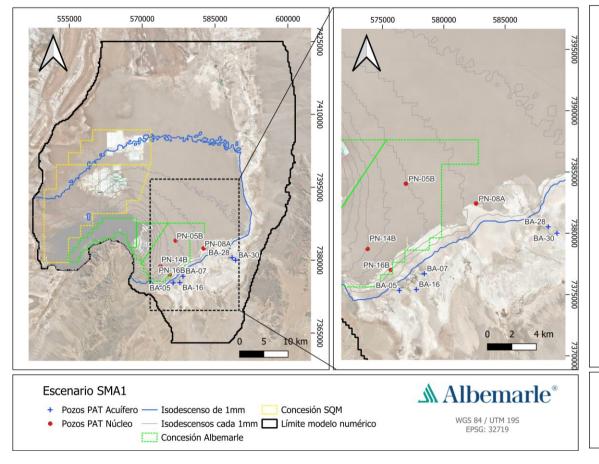


Figura 2: mapa de diferencia entre niveles freáticos de escenario SMA2, respecto a escenario Base, en azul la diferencia de 0,1cm, y en gris las curvas mayores a esta

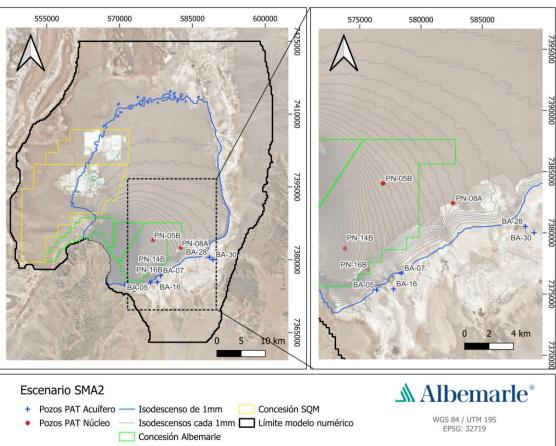


Figura 3: Gráfico nivel freático vs tiempo y diferencia nivel freático de escenarios vs tiempo para escenario Base y SMA1, sector norte, octubre 1997 a diciembre 2065

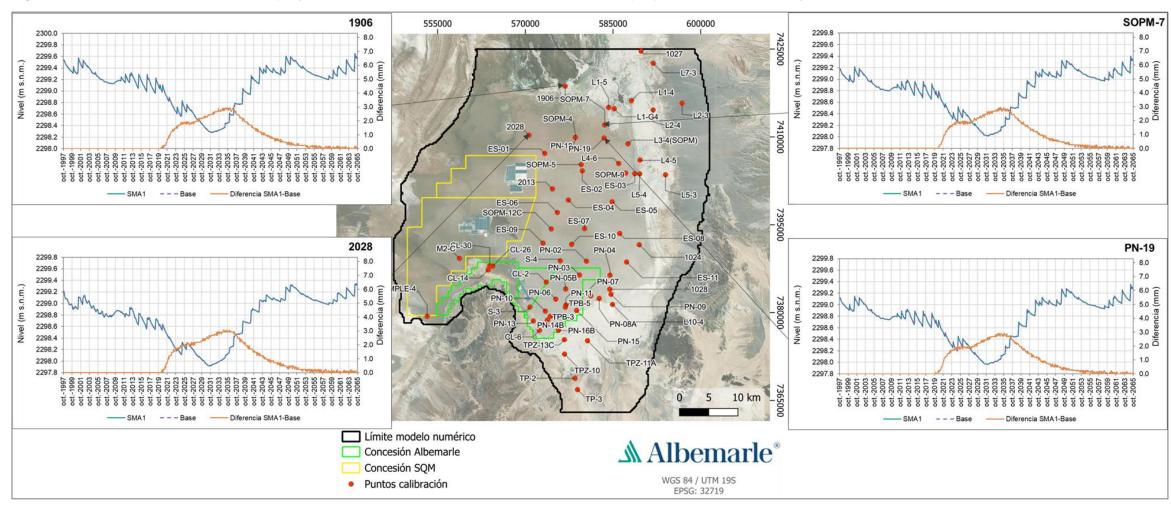


Figura 4: Gráfico nivel freático vs tiempo y diferencia nivel freático de escenarios vs tiempo para escenario Base y SMA1, sector centro, octubre 1997 a diciembre 2065

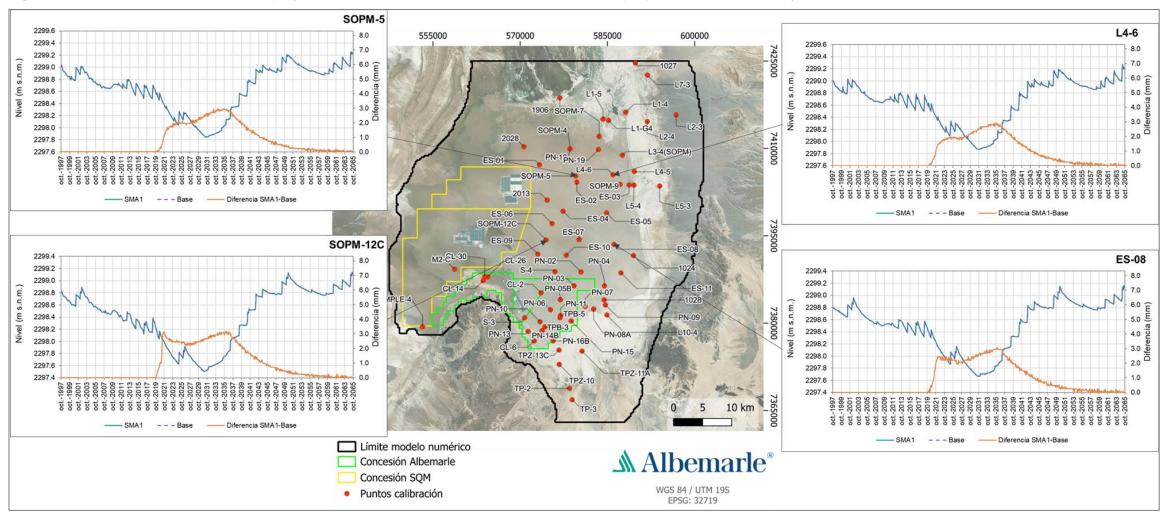


Figura 5: Gráfico nivel freático vs tiempo y diferencia nivel freático de escenarios vs tiempo para escenario Base y SMA1, sector sur, octubre 1997 a diciembre 2065

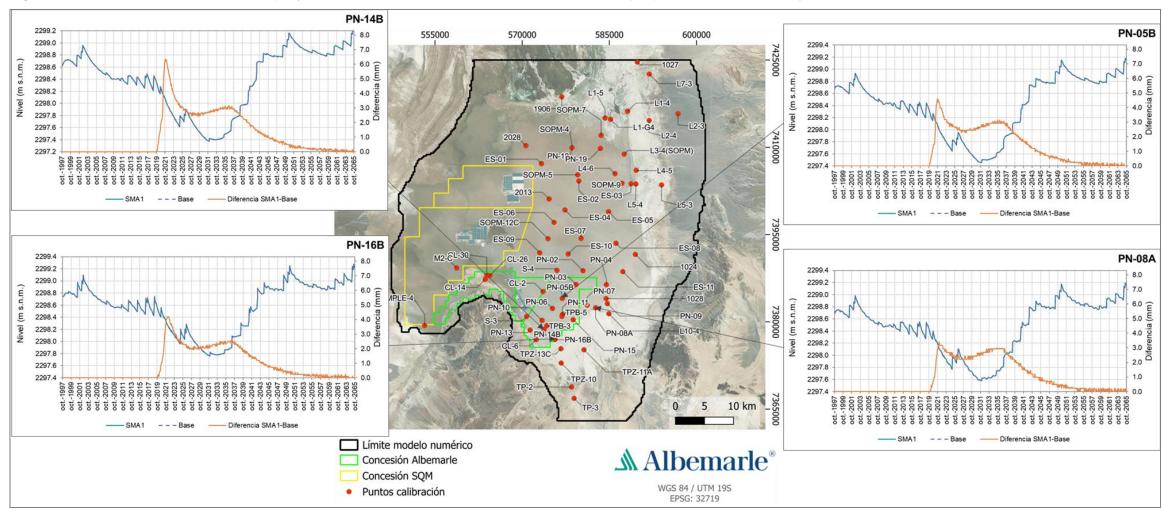
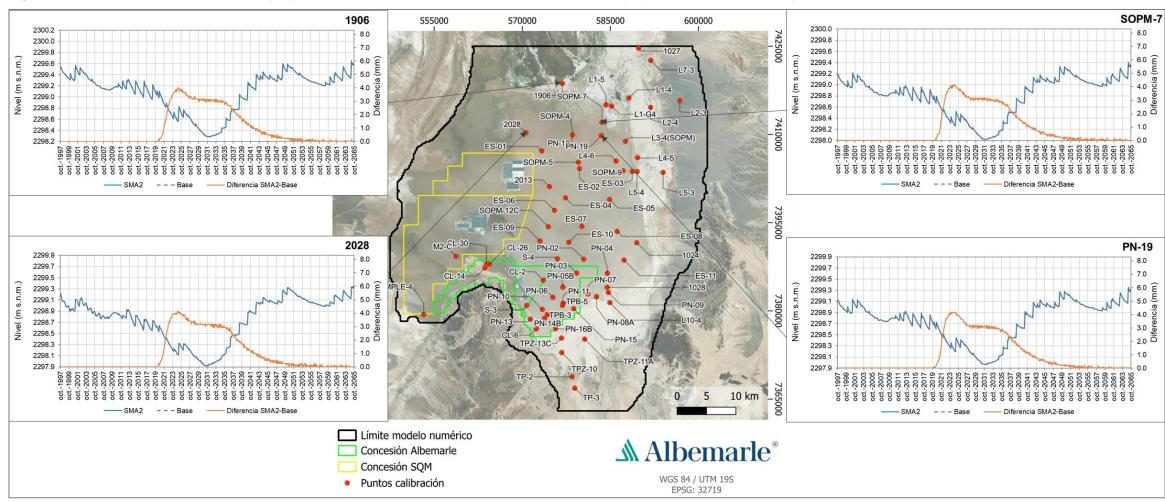
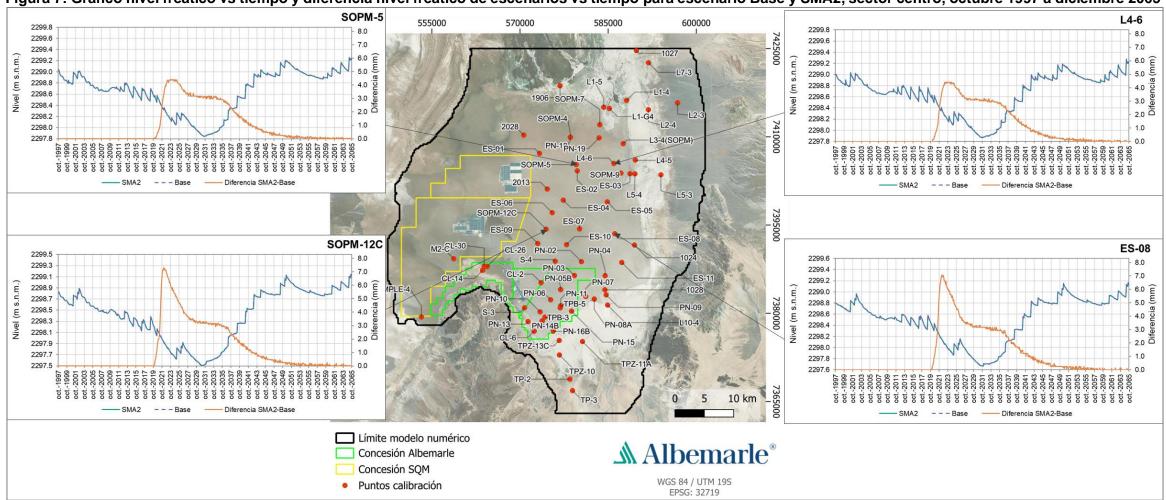


Figura 6 Gráfico nivel freático vs tiempo y diferencia nivel freático de escenarios vs tiempo para escenario Base y SMA2, sector norte, octubre 1997 a diciembre 2065

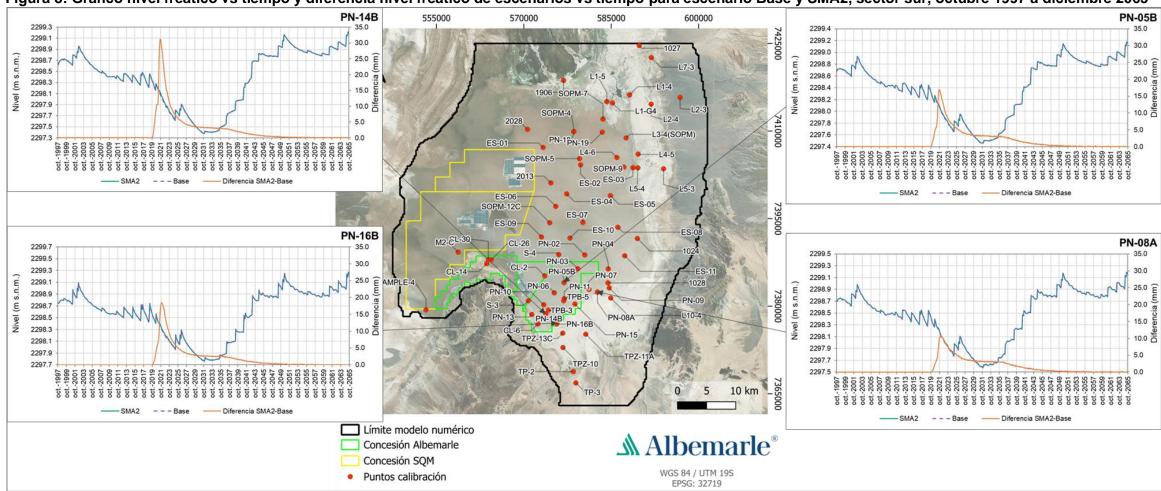


Figura 7: Gráfico nivel freático vs tiempo y diferencia nivel freático de escenarios vs tiempo para escenario Base y SMA2, sector centro, octubre 1997 a diciembre 2065

Consulta de Extensión

Como se mencionó con anterioridad, el polígono que inscribe las diferencias mayores a 0,1cm, se presentó junto a la **Consulta de Magnitud**, en Figura 1 y Figura 2. En la Tabla 3, se muestran los pozos que se encuentran dentro del polígono de 0,1cm <u>para la fecha de mayor diferencia en PN-14B</u>.

Tabla 3: Pozos dentro del polígono de 0,1cm por escenario

Idbi	a 5. 1 0203	aciiti o aci	P	ilgorio de o, icili	por escentario	<u> </u>
Pozo	SMA1	SMA2		Pozo	SMA1	SMA2
1024	Dentro	Dentro		L7-3	<0,1cm	<0,1cm
1027	<0,1cm	<0,1cm		M2-C	Dentro	Dentro
1028	Dentro	Dentro		PN-02	Dentro	Dentro
1906	<0,1cm	<0,1cm		PN-03	Dentro	Dentro
2013	Dentro	Dentro		PN-04	Dentro	Dentro
2028	<0,1cm	Dentro		PN-05B	Dentro	Dentro
CL-14	Dentro	Dentro		PN-06	Dentro	Dentro
CL-2	Dentro	Dentro		PN-07	Dentro	Dentro
CL-26	Dentro	Dentro		PN-08A	Dentro	Dentro
CL-30	Dentro	Dentro		PN-09	Dentro	Dentro
CL-6	Dentro	Dentro		PN-10	Dentro	Dentro
ES-01	<0,1cm	Dentro		PN-11	Dentro	Dentro
ES-02	Dentro	Dentro		PN-13	Dentro	Dentro
ES-03	Dentro	Dentro		PN-14B	Dentro	Dentro
ES-04	Dentro	Dentro		PN-15	Dentro	Dentro
ES-05	Dentro	Dentro		PN-16B	Dentro	Dentro
ES-06	Dentro	Dentro		PN-18	<0,1cm	Dentro
ES-07	Dentro	Dentro		PN-19	<0,1cm	Dentro
ES-08	Dentro	Dentro		S-3	Dentro	Dentro
ES-09	Dentro	Dentro		S-4	Dentro	Dentro
ES-10	Dentro	Dentro		SAMPLE-4	Dentro	Dentro
ES-11	Dentro	Dentro		SOPM-12C	Dentro	Dentro
L10-4	Dentro	Dentro		SOPM-4	<0,1cm	Dentro
L1-4	<0,1cm	<0,1cm		SOPM-5	Dentro	Dentro
L1-5	<0,1cm	<0,1cm		SOPM-7	<0,1cm	Dentro
L1-G4	<0,1cm	<0,1cm		SOPM-9	Dentro	Dentro
L2-3	<0,1cm	<0,1cm		TP-2	<0,1cm	<0,1cm
L2-4	<0,1cm	<0,1cm		TP-3	<0,1cm	<0,1cm
L3-4(SOPM)	<0,1cm	Dentro		TPB-3	Dentro	Dentro
L4-5	<0,1cm	Dentro		TPB-5	Dentro	Dentro
L4-6	<0,1cm	Dentro		TPZ-10	<0,1cm	<0,1cm
L5-3	<0,1cm	<0,1cm		TPZ-11A	<0,1cm	<0,1cm
L5-4	Dentro	Dentro		TPZ-13C	<0,1cm	<0,1cm
				TOTAL	43 pozos	52 pozos

Consulta de Duración

PROYECTO MODIFICACIONES Y MEJORAMIENTO DEL SISTEMA DE POZAS DE EVAPORACIÓN SOLAR EN EL SALAR DE ATACAMA

MODELO RCA 21/2016

Parte del resultado de duración se encuentra contenido en la **Consulta de Magnitud**, y específicamente en los gráficos expuestos en la

a Figura 8, en las que se puede ver el periodo en el cual las diferencias entre escenarios son mayores a cero. Considerar que el gráfico de niveles y diferencias para el resto de los pozos se encuentra en anexos.

Adicionalmente a ello, en Tabla 4 y Tabla 5 se muestra para cada pozo y escenario las fechas de inicio, máximo y final de la diferencia respecto al Base. Los pozos están ordenados según el inicio de la diferencia. Los valores en blanco se refieren a fechas que no se dieron en el transcurso de la simulación.

De estas fechas se puede notar que ambos escenarios generan distintas duraciones en sus diferencias, siendo por lo general de mayor duración las del escenario SMA1. De todos modos, debería de considerarse también una magnitud umbral en la que se considera existente esta diferencia. Como ejemplo en la Tabla 6 y Tabla 7 se muestra el tiempo en que cada escenario, SMA1 y SMA2, tienen diferentes niveles respecto del escenario Base. En cada columna se consideró un criterio distinto para las diferencias de la siguiente forma:

- Columna 1: hay diferencia respecto al escenario Base cuando esta es mayor a cero
- Columna 2: hay diferencia respecto al escenario Base cuando esta es mayor a 0,1 cm
- Columna 3: hay diferencia respecto al escenario Base cuando esta es mayor a 1 cm

Por ejemplo, para los meses mostrados en la columna 2, si los niveles freáticos del escenario SMA1 o SMA2 están 0,1cm por sobre el escenario Base, ese mes ambos niveles se consideran iguales (diferencia igual a cero); en cambio, en la columna 1 sí se consideran esos meses (diferencia mayor a cero).

Con este criterio, se puede ver que hay pozos que no tendrían efectos del cambio operacional propuesto en los escenarios SMA1 y SMA2, por ejemplo, el pozo 1027 al considerar una diferencia mínima de 0,1 cm. También al comparar la duración de estos efectos, usando el criterio de "mayor a cero" versus "mayor a 0,1 cm"; la duración del efecto se podría ver reducido en más de 15 años en promedio para ambos escenarios.

Tabla 4: Fechas de inicio, máxima y fin diferencias entre escenarios SMA1 y Base

Tabla	4. i echas u	e inicio, ma	Allila y IIII C	iner en cia	S CHILL COCC	enarios SiviA	i y Dase
Pozo	Inicio diferencia	Máxima diferencia	Fin diferencia	Pozo	Inicio diferencia	Máxima diferencia	Fin diferencia
L2-3				PN-19	dic2019	ago2034	feb2057
ES-06	sept2000	feb2036	abr2056	ES-04	dic2019	mar2035	may2056
TPB-3	feb2012	oct2021	ene2057	PN-04	dic2019	ene2036	oct2055
M2-C	may2012	sept2029		ES-02	ene2020	nov2034	ago2057
ES-09	oct2019	may2021	mar2058	L10-4	ene2020	nov2034	oct2058
S-3	oct2019	may2021	oct2060	1024	ene2020	feb2036	may2057
CL-2	oct2019	jun2021	mar2060	ES-11	ene2020	mar2036	nov2055
S-4	oct2019	jul2021	mar2056	PN-07	feb2020	abr2022	dic2054
CL-14	oct2019	jul2021		L3-4 (SOPM)	feb2020	abr2034	jul2056
PN-11	oct2019	sept2021	oct2058	SOPM-9	feb2020	sept2034	dic2054
PN-03	oct2019	oct2021	mar2057	L4-5	feb2020	dic2034	sept2054
PN-05B	oct2019	oct2021	mar2058	L5-4	feb2020	dic2034	jul2055
PN-14B	oct2019	oct2021	jul2058	SOPM-7	feb2020	ene2035	ene2055
PN-06	oct2019	oct2021	ene2059	ES-07	feb2020	ene2036	jul2054
TPB-5	oct2019	nov2021	jun2059	1906	mar2020	ene2035	dic2057
SAMPL E-4	oct2019	feb2022	sept2054	ES-03	mar2020	abr2035	may2055
PN-16B	oct2019	mar2022	jul2056	L4-6	mar2020	abr2035	jul2057
CL-30	oct2019	jul2022		ES-01	mar2020	dic2035	nov2055
CL-26	oct2019	ene2023		PN-18	abr2020	feb2034	mar2057
SOPM- 5	oct2019	mar2033	feb2055	SOPM-4	abr2020	feb2034	mar2057
ES-05	oct2019	ago2034	dic2055	L1-5	may2020	oct2034	ene2055
2013	oct2019	ene2035	oct2055	L1-G4	jun2020	jul2034	oct2054
PN-10	nov2019	ago2021	oct2058	2028	jun2020	jul2035	oct2056
PN-13	nov2019	oct2021	sept2060	L1-4	jun2020	dic2035	mar2057
PN-02	nov2019	dic2021	jul2056	TPZ-13C	oct2020	mar2031	jun2042
CL-6	nov2019	dic2021	ago2059	TPZ-10	jul2022	may2036	jun2036
PN-15	nov2019	ene2022	may2059	TPZ-11A	oct2023	jul2036	ago2036
1028	nov2019	feb2022	sept2057	1027	jul2024	dic2036	feb2037
ES-10	nov2019	jul2035	ago2055	L2-4	mar2025	ago2038	sept2038
ES-08	nov2019	ene2036	oct2058	TP-3	may2025	may2025	jun2025
SOPM- 12C	nov2019	ene2036	jul2059	L7-3	jun2027	mar2045	abr2045
PN-08A	dic2019	feb2022	mar2056	L5-3	nov2027	oct2034	nov2034
PN-09	dic2019	abr2022	ago2057	TP-2	dic2034	sept2042	oct2042

Tabla 5: Fechas de inicio, máxima y fin diferencias entre escenarios SMA2 y Base

Pozo	Inicio diferencia	Máxima diferencia	Fin diferencia	Pozo	Inicio diferencia	Máxima diferencia	Fin diferencia
ES-06	sept2000	jun2022	may2054	ES-07	ene2020	may2022	dic2052
TPB-3	feb2012	ago2021	dic2054	ES-04	ene2020	dic2022	oct2053
M2-C	may2012	oct2033	ene2060	L4-5	ene2020	oct2023	oct2051
S-3	oct2019	abr2021	sept2055	ES-02	ene2020	nov2024	jun2052
CL-2	oct2019	jun2021	jul2054	ES-05	feb2020	sept2022	nov2050
PN-10	oct2019	jul2021	abr2054	TPZ-13C	feb2020	oct2022	feb2041
PN-13	oct2019	jul2021	ago2055	SOPM-9	feb2020	dic2022	may2052
PN-06	oct2019	ago2021	jul2053	L5-4	feb2020	mar2023	sept2050
PN-14B	oct2019	ago2021	sept2054	L3- 4(SOPM)	feb2020	nov2023	mar2053
PN-05B	oct2019	sept2021	dic2052	SOPM-7	feb2020	jun2024	mar2054
TPB-5	oct2019	sept2021	sept2053	ES-03	mar2020	feb2023	ene2055
PN-11	oct2019	sept2021	nov2053	L4-6	mar2020	dic2023	oct2051
CL-6	oct2019	sept2021	ene2054	ES-01	mar2020	ago2024	feb2052
S-4	oct2019	oct2021	nov2051	1906	mar2020	ene2025	may2051
PN-16B	oct2019	nov2021	abr2052	CL-26	mar2020	mar2026	
PN-03	oct2019	nov2021	ene2053	SOPM-4	abr2020	abr2024	jun2052
SOPM- 5	oct2019	may2024	feb2055	PN-18	abr2020	sept2024	jun2052
PN-15	nov2019	oct2021	sept2052	CL-30	abr2020	dic2026	
PN-02	nov2019	dic2021	mar2054	L1-5	may2020	ene2025	mar2050
ES-10	nov2019	ene2022	jun2053	CL-14	may2020	feb2027	
ES-09	nov2019	ene2022	feb2054	2028	jun2020	nov2024	ene2054
1028	nov2019	feb2022	oct2051	L1-4	jun2020	feb2025	may2050
PN-08A	nov2019	feb2022	may2052	L1-G4	jun2020	may2025	sept2049
PN-09	nov2019	abr2022	abr2053	TPZ-10	dic2021	mar2024	abr2024
ES-08	nov2019	ago2022	may2052	TPZ-11A	dic2021	oct2024	nov2024
2013	nov2019	dic2022	ago2052	SAMPLE -4	oct2022	feb2037	abr2053
PN-07	dic2019	dic2021	feb2053	TP-2	abr2023	ago2032	sept2032
SOPM- 12C	dic2019	feb2022	mar2054	TP-3	may2023	may2025	jun2025
L10-4	dic2019	mar2022	ago2051	L5-3	abr2024	feb2026	mar2026
ES-11	dic2019	mar2022	oct2053	1027	jul2024	sept2037	oct2037
PN-04	dic2019	mar2022	feb2054	L2-4	mar2025	ene2026	feb2026
1024	dic2019	jun2022	jul2051	L7-3	jun2027	mar2045	abr2045
PN-19	dic2019	dic2023	ene2054	L2-3	abr2064	abr2064	may2064

PROYECTO MODIFICACIONES Y MEJORAMIENTO DEL SISTEMA DE POZAS DE EVAPORACIÓN SOLAR EN EL SALAR DE ATACAMA

MODELO RCA 21/2016

Tabla 6: Meses que el nivel freático del escenario SMA1 está por sobre el Base

Pozo	Dif > 0cm	Dif > 0,1cm	Dif > 1cm	Pozo	Dif > 0cm	Dif > 0,1cm	Dif > 1cm
1024	518	274	0	L7-3	5	0	0
1027	64	0	0	M2-C	549	397	78
1028	523	281	0	PN-02	521	284	0
1906	509	260	0	PN-03	528	291	0
2013	509	272	0	PN-04	520	279	0
2028	505	266	0	PN-05B	529	293	0
CL-14	555	555	378	PN-06	538	299	0
CL-2	534	306	0	PN-07	519	287	0
CL-26	555	549	334	PN-08A	524	278	0
CL-30	555	554	349	PN-09	514	280	0
CL-6	540	298	0	PN-10	538	303	0
ES-01	512	270	0	PN-11	528	293	0
ES-02	507	270	0	PN-13	536	305	0
ES-03	509	263	0	PN-14B	534	304	0
ES-04	516	273	0	PN-15	523	291	0
ES-05	514	269	0	PN-16B	523	282	0
ES-06	522	278	0	PN-18	498	264	0
ES-07	511	273	0	PN-19	508	265	0
ES-08	518	275	0	S-3	544	318	10
ES-09	525	295	0	S-4	523	292	0
ES-10	517	283	0	SAMPLE-4	501	347	243
ES-11	515	276	0	SOPM-12C	523	286	0
L10-4	522	276	0	SOPM-4	498	264	0
L1-4	496	247	0	SOPM-5	518	268	0
L1-5	497	244	0	SOPM-7	515	260	0
L1-G4	489	201	0	SOPM-9	504	264	0
L2-3	0	0	0	TP-2	5	0	0
L2-4	32	0	0	TP-3	11	0	0
L3-4(SOPM)	514	260	0	TPB-3	526	300	0
L4-5	506	255	0	TPB-5	529	291	0
L4-6	498	265	0	TPZ-10	28	0	0
L5-3	19	0	0	TPZ-11A	16	0	0
L5-4	503	259	0	TPZ-13C	331	0	0

PROYECTO MODIFICACIONES Y MEJORAMIENTO DEL SISTEMA DE POZAS DE EVAPORACIÓN SOLAR EN EL SALAR DE ATACAMA

MODELO RCA 21/2016

Tabla 7: Meses que el nivel freático del escenario SMA2 está por sobre el Base

Pozo	Dif > 0cm	Dif > 0,1cm	Dif > 1cm	Pozo	Dif > 0cm	Dif > 0,1cm	Dif > 1cm
1024	478	262	0	L7-3	5	0	0
1027	81	0	0	M2-C	526	311	0
1028	472	269	0	PN-02	485	267	0
1906	464	245	0	PN-03	478	271	14
2013	462	253	0	PN-04	485	266	0
2028	468	251	0	PN-05B	484	275	23
CL-14	546	466	89	PN-06	497	279	28
CL-2	488	281	30	PN-07	478	269	16
CL-26	548	441	65	PN-08A	474	268	10
CL-30	544	444	44	PN-09	475	266	0
CL-6	501	284	43	PN-10	502	282	41
ES-01	473	252	0	PN-11	484	276	26
ES-02	468	254	0	PN-13	503	287	48
ES-03	470	251	0	PN-14B	490	283	40
ES-04	464	258	0	PN-15	478	274	23
ES-05	465	253	0	PN-16B	480	267	27
ES-06	477	262	0	PN-18	461	248	0
ES-07	470	261	0	PN-19	461	248	0
ES-08	474	261	0	S-3	509	290	53
ES-09	480	269	0	S-4	482	270	14
ES-10	473	266	0	SAMPLE-4	402	240	0
ES-11	472	263	0	SOPM-12C	481	265	0
L10-4	478	265	0	SOPM-4	461	248	0
L1-4	451	238	0	SOPM-5	481	253	0
L1-5	457	240	0	SOPM-7	469	249	0
L1-G4	436	218	0	SOPM-9	464	251	0
L2-3	1	0	0	TP-2	8	0	0
L2-4	38	0	0	TP-3	16	0	0
L3-4(SOPM)	472	247	0	TPB-3	489	276	33
L4-5	466	246	0	TPB-5	490	277	27
L4-6	467	253	0	TPZ-10	35	0	0
L5-3	20	0	0	TPZ-11A	28	0	0
L5-4	461	250	0	TPZ-13C	313	8	0

ESCENARIOS ADICIONALES

Además de los escenarios anteriormente descritos, se analizaron cuatro escenarios más. Al igual que los escenarios solicitados, estos toman el mismo modelo como base, es decir, la calibración y el "Caso Base" (descrito como "b. Modelo simulado base" en ORD N°67) entregados junto al modelo de la Tercera Actualización.

Estos cuatro escenarios responden dos carencias de los escenarios ya presentados:

- Caudal de febrero 2021 de 422,42L/s: este caudal se calcula utilizando los caudales diarios extraídos en febrero 2021 cuando el PAT Acuífero no se encontraba activado. Para los días antes de aplicar la restricción de 382L/s, se considera que el límite está dado por caudal diario bombeado, ya que en dicho día no existía restricción alguna en vez del límite del promedio anual de 442L/s
- Redistribución de caudales: considerando el año operacional de octubre a septiembre, las activaciones de los PAT Alerta Núcleo y Acuífero; se redistribuye el volumen reducido en los periodos de octubre 2019 a septiembre 2020, febrero 2021 y marzo 2021 ya que, en el escenario que la RCA hubiese establecido de manera explícita que para el límite del volumen anual extraído (equivalente a un caudal promedio de 442 l/s) se debía considerar año corrido, Albemarle hubiera extraído los meses siguientes el diferencial que se habría dejado de bombear entre octubre 2019 a septiembre 2020

Con esto se construyeron los siguientes escenarios, resumidos en la Tabla 8, los que se comparan con el escenario Base descrito anteriormente:

- Escenario ALBSMA1: toma como base al escenario SMA1, y sólo se modifica el caudal mensual de febrero 2021 a 422,42 L/s. Este cambio es aplicado a todos los pozos de A1
- 2. Escenario **ALBSMA2**: toma como base al escenario SMA2, y sólo se modifica el caudal mensual de febrero 2021 a 422,42 L/s. Este cambio es aplicado a los pozos de A1 cercanos a los objetos de protección
- 3. Escenario ALBSMA3: toma como base el escenario ALBSMA1. Considerando el caudal reducido de 123 L/s, 101 L/s y 127 L/s en los periodos de octubre 2019 a septiembre 2020, febrero 2021 y marzo 2021, respectivamente; se hace la siguiente modificación, aplicada solamente a los pozos de A1:
 - a. Octubre 2018 a septiembre 2019: se pasa de 404 L/s a 414 L/s de caudal promedio

PROYECTO MODIFICACIONES Y MEJORAMIENTO DEL SISTEMA DE POZAS DE EVAPORACIÓN SOLAR EN EL SALAR DE ATACAMA

MODELO RCA 21/2016

- b. Octubre 2020 a septiembre 2021: se mantiene el caudal promedio en 416 L/s a pesar de la reducción en los meses de febrero y marzo, es decir, se redistribuye el caudal reducido de los meses de febrero y marzo 2021
- 4. Escenario ALBSMA4: toma como base al escenario ALBSMA2. Se hacen las mismas modificaciones de los periodos octubre 2018 a septiembre 2019 y octubre 2020 a septiembre 2021 que en el escenario ALBSMA3, pero aplicado a los pozos de A1 cercanos a objetos de protección

Las reducciones y redistribución de caudal realizados se aplicaron de forma proporcional a los caudales originalmente bombeados por estos pozos

Tabla 8: Resumen de caudales campo de pozos Albemarle, en L/s, de escenario Caso Base Tercera Actualización y escenarios adicionales

Escenario	Modificación de caudal	Oct2018 - sep2019	Oct2019 - sep2020	Oct2020 - sep2021	Febrero 2021	Marzo 2021
Base	Sin modificación	404,2	452,3	416,3	522,9	509,0
ALBSMA1	En todo A1	404,2	442,0	397,3	422,4	382,0
ALBSMA2	En A1 cercano a objetos de protección	404,2	442,0	397,3	422,4	382,0
ALBSMA3	En todo A1	414,4	442,0	416,3	422,4	382,0
ALBSMA4	En A1 cercano a objetos de protección	414,4	442,0	416,3	422,4	382,0

Notar que todos los escenarios, solicitados, adicionales y Base, son iguales hasta septiembre 2018.

RESULTADOS ESCENARIOS ADICIONALES

Para estos escenarios se generaron los mismos resultados que para los escenarios solicitados con el fin de realizar un análisis comparativo con escenarios más acorde con los que podrían generarse en la operación.

Consulta de Magnitud

En esta sección se muestran:

- Mapas de isodescenso (uno por escenario) respecto del escenario Base, extracción real; considerando la fecha de máxima diferencia observada en PN-14B, junto al polígono de 0,1cm solicitado (en azul). Ver en: Figura 9 a Figura 12
- Gráficos de evolución temporal de niveles freáticos y sus diferencias, se muestran 12 pozos, el resto en anexos. Ver en: Figura 13 a Figura 24

Los mapas de isodescenso además responden a la **Consulta de Extensión** (polígono de 0,1 cm). Mientras que los gráficos responden también a la **Consulta de Duración**, al mostrar la evolución del nivel freático y diferencias respecto a escenario Base en el tiempo.

Dado que en la Figura 10 a la Figura 12 representan un mes en particular, hay pozos que se encuentran fuera del polígono y aun así tienen diferencias con el escenario Base mayores a 0,1 cm en otros meses. En la Tabla 9 y Tabla 10 se muestran los pozos que tienen diferencias menores a 0,1 cm ("Fuera del polígono") durante todo el periodo de modelación por escenario.

Tabla 9: Ubicación de pozos respecto de polígono 0,1 cm

Pozos	ALBSMA1	ALBSMA2
1027	Fuera del polígono	Fuera del polígono
L2-3	Fuera del polígono	Fuera del polígono
L2-4	Fuera del polígono	Fuera del polígono
L5-3	Fuera del polígono	Fuera del polígono
L7-3	Fuera del polígono	Fuera del polígono
TP-2	Fuera del polígono	Fuera del polígono
TP-3	Fuera del polígono	Fuera del polígono
TPZ-10	Fuera del polígono	Fuera del polígono
TPZ-11A	Fuera del polígono	Fuera del polígono
TPZ-13C	Fuera del polígono	Dentro del polígono

Tabla 10: Ubicación de pozos respecto de polígono 0,1 cm

Nombre	ALBSMA3	ALBSMA4	N	ombre	ALB	SMA3	ALI	BSMA4
1024	Fuera de	l polígono		PN-02		Fuera del	polígono	
1027		l polígono		PN-03	Fuera de	l polígono		del polígono
1028	Fuera de	l polígono	ı	PN-04		Fuera del		, ,
1906	Fuera de	l polígono	Р	N-05B	Fuera de	l polígono	Dentro	del polígono
2013	Fuera de	l polígono		PN-07	Fuera de	l polígono	Dentro o	del polígono
2028	Fuera de	l polígono	Р	N-08A	Fuera de	l polígono	Dentro o	del polígono
ES-01	Fuera de	l polígono	F	PN-09		Fuera del	polígono	
ES-02	Fuera de	l polígono	F	PN-11	Fuera de	l polígono	Dentro o	del polígono
ES-03	Fuera de	l polígono	F	PN-15	Fuera de	l polígono	Dentro o	del polígono
ES-04	Fuera de	l polígono	Р	N-16B	Fuera de	l polígono	Dentro o	del polígono
ES-05	Fuera de	l polígono	F	PN-18		Fuera del	polígono	
ES-06	Fuera de	l polígono	F	PN-19		Fuera del	polígono	
ES-07	Fuera de	l polígono		S-4	Fuera de	l polígono	Dentro o	del polígono
ES-08	Fuera de	l polígono	SO	PM-12C		Fuera del	polígono	
ES-10	Fuera de	l polígono	S	OPM-4		Fuera del	polígono	
ES-11	Fuera de	l polígono	S	OPM-5		Fuera del	polígono	
L10-4	Fuera de	l polígono	S	OPM-7		Fuera del	polígono	
L1-4	Fuera de	l polígono	S	OPM-9		Fuera del	polígono	
L1-5	Fuera de	l polígono		TP-2		Fuera del	polígono	
L1-G4	Fuera de	l polígono		TP-3		Fuera del	polígono	
L2-3	Fuera de	l polígono	_	ГРВ-5	Fuera de	l polígono	Dentro o	del polígono
L2-4	Fuera de	l polígono	Т	PZ-10		Fuera del	polígono	
L3- 4(SOPM)	Fuera de	l polígono	TI	PZ-11A		Fuera del	polígono	
L4-5	Fuera de	l polígono	T	PZ-13C		Fuera del	polígono	
L4-6	Fuera de	l polígono		CL-14	Dentro de	el polígono	Fuera c	lel polígono
L5-3	Fuera de	l polígono		CL-26	Dentro de	el polígono	Fuera c	lel polígono
L5-4	Fuera de	l polígono		CL-30	Dentro de	el polígono	Fuera c	lel polígono
L7-3	Fuera de	l polígono	SA	MPLE-4	Dentro de	el polígono	Fuera c	lel polígono
M2-C	Fuera de	l polígono						

Notar que, para los isodescensos, la resolución de la diferencia de los modelos genera curvas con oscilaciones a partir de los menores valores estimados. Desde 1 cm se podría decir que este efecto se deja de apreciar. Teniendo en cuenta lo anterior, parece adecuado utilizar la comparación de las modelaciones cuando las diferencias entre los escenarios son del orden de 1 cm o más.

Figura 9: mapa de diferencia entre niveles freáticos de escenario ALBSMA1, respecto a escenario Base, en azul la diferencia de 0,1cm, y en gris las curvas mayores a esta

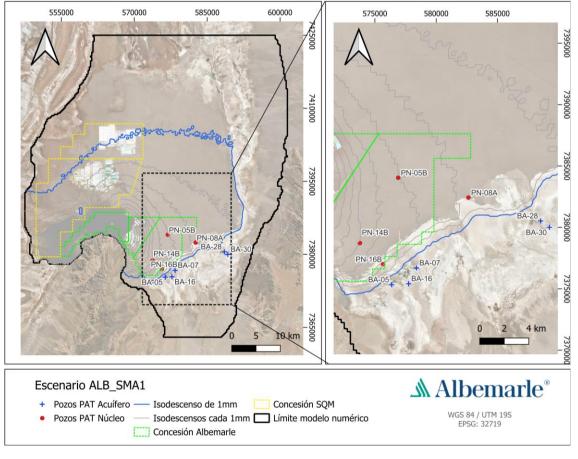


Figura 10: mapa de diferencia entre niveles freáticos de escenario ALBSMA2, respecto a escenario Base, en azul la diferencia de 0,1cm, y en gris las curvas mayores a esta

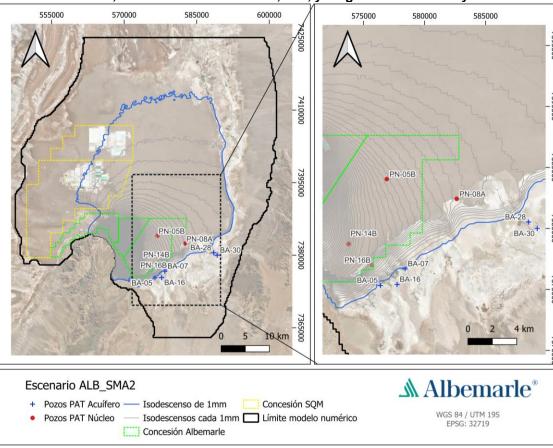


Figura 11: mapa de diferencia entre niveles freáticos de escenario ALBSMA3, respecto a escenario Base, en azul la diferencia de 0,1cm, y en gris las curvas mayores a esta

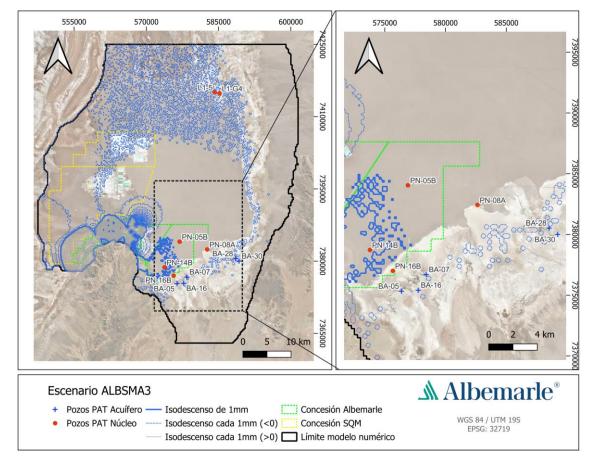


Figura 12: mapa de diferencia entre niveles freáticos de escenario ALBSMA4, respecto a escenario Base, en azul la diferencia de 0,1cm, y en gris las curvas mayores a esta

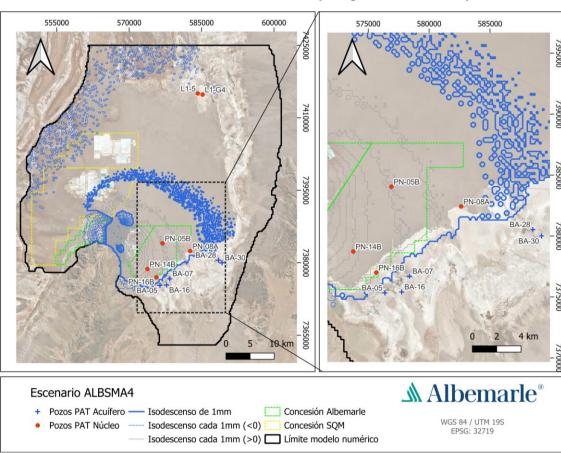


Figura 13: Gráfico nivel freático y diferencia nivel freático de escenarios, vs tiempo para escenario Base y ALBSMA1, sector norte, octubre 1997 a diciembre 2065

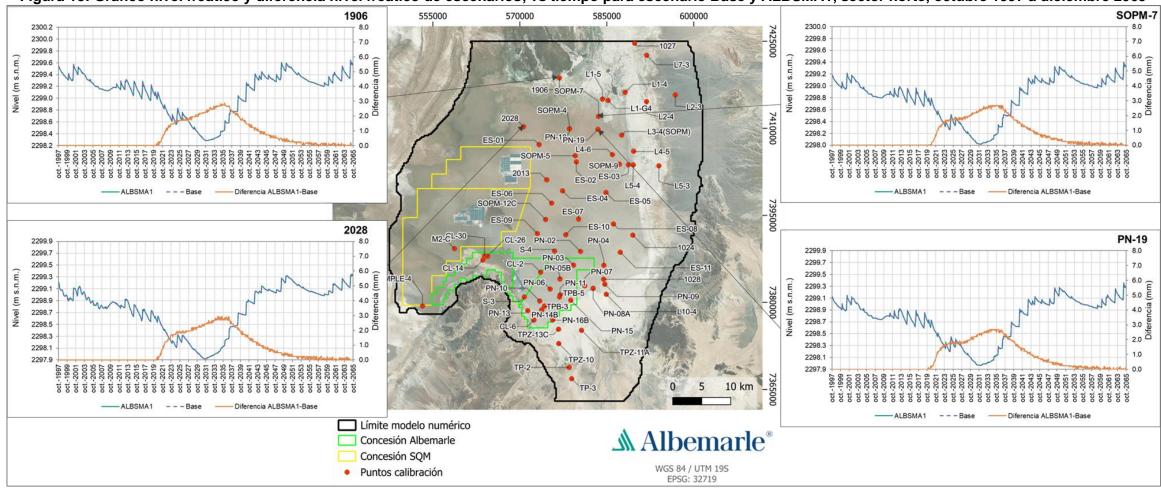


Figura 14: Gráfico nivel freático y diferencia nivel freático de escenarios, vs tiempo para escenario Base y ALBSMA1, sector centro, octubre 1997 a diciembre 2065

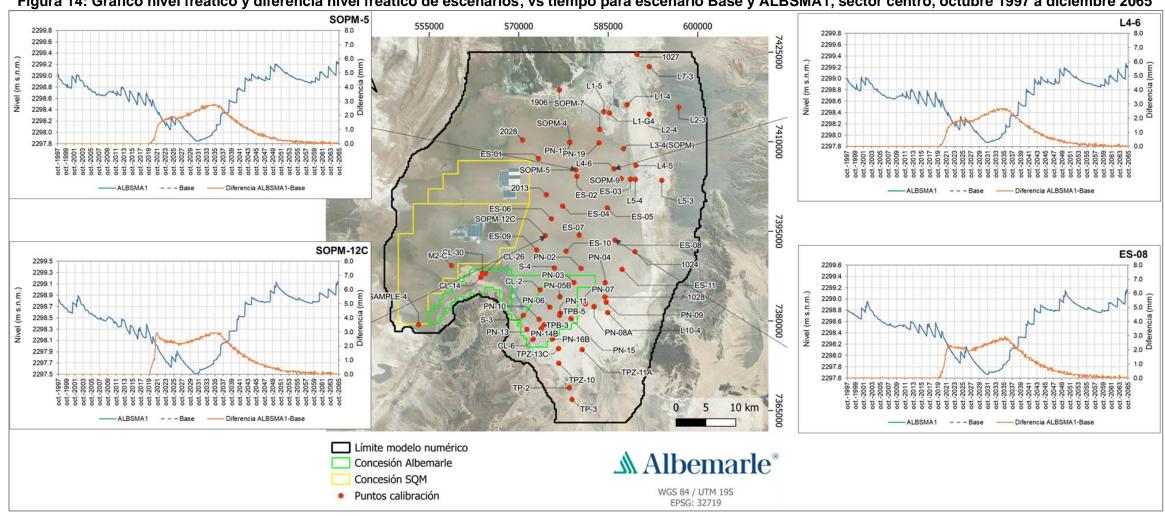


Figura 15: Gráfico nivel freático y diferencia nivel freático de escenarios, vs tiempo para escenario Base y ALBSMA1, sector sur, octubre 1997 a diciembre 2065

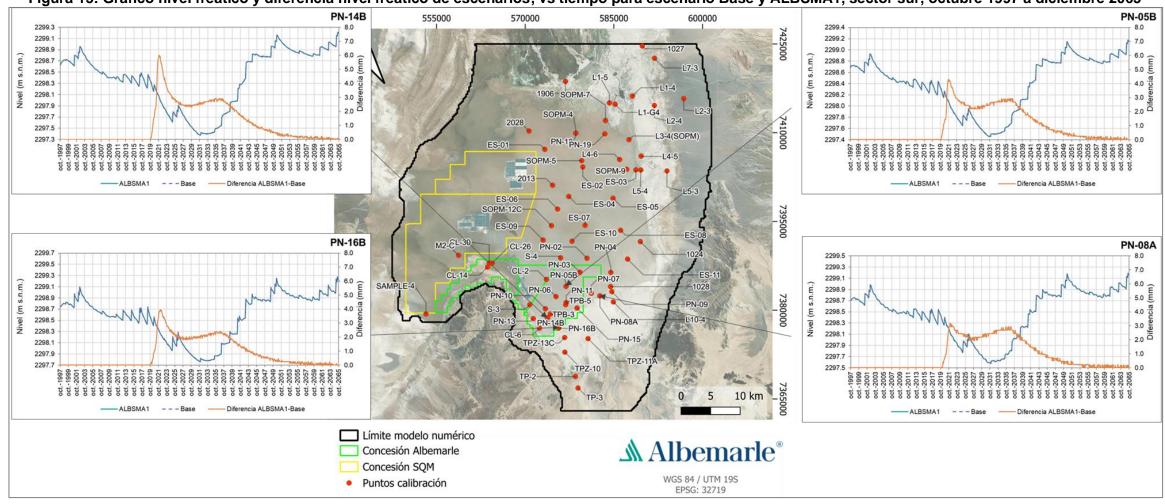
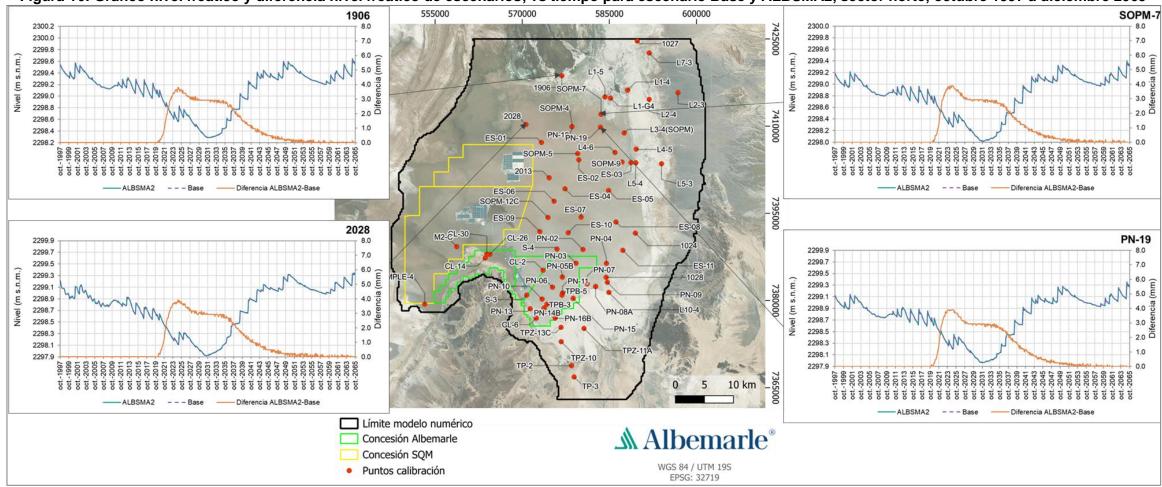



Figura 16: Gráfico nivel freático y diferencia nivel freático de escenarios, vs tiempo para escenario Base y ALBSMA2, sector norte, octubre 1997 a diciembre 2065

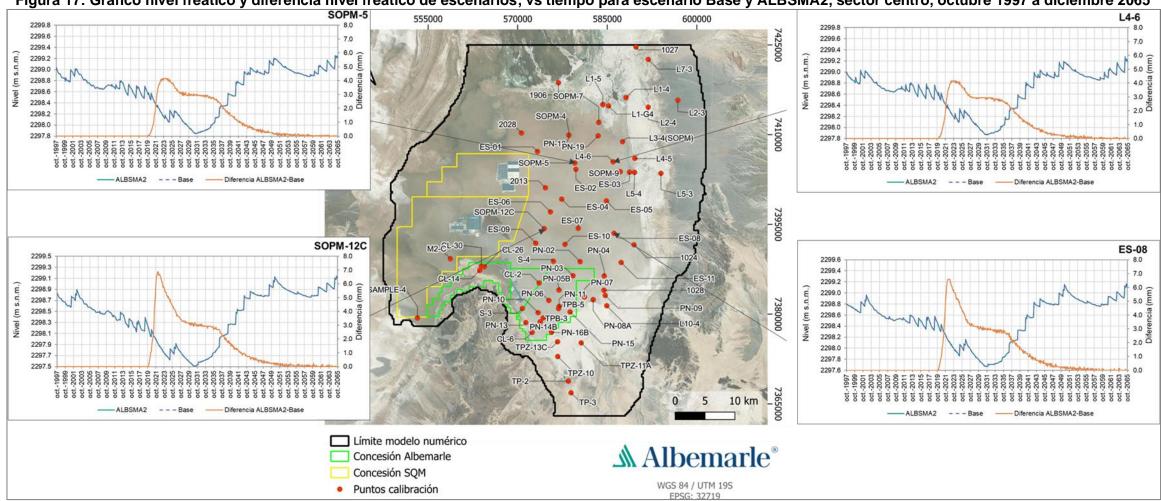


Figura 18: Gráfico nivel freático y diferencia nivel freático de escenarios, vs tiempo para escenario Base y ALBSMA2, sector sur, octubre 1997 a diciembre 2065

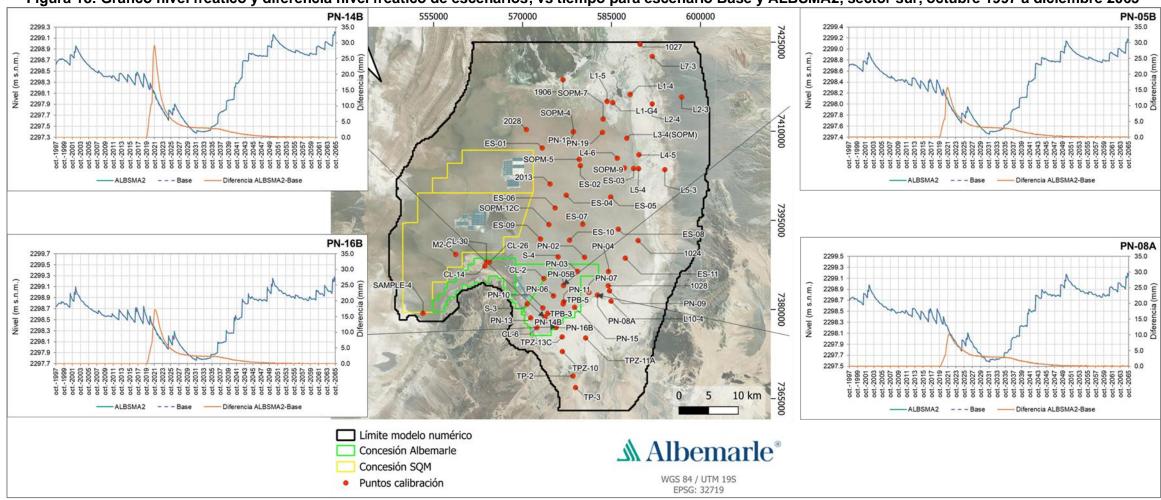


Figura 19: Gráfico nivel freático y diferencia nivel freático de escenarios, vs tiempo para escenario Base y ALBSMA3, sector norte, octubre 1997 a diciembre 2065

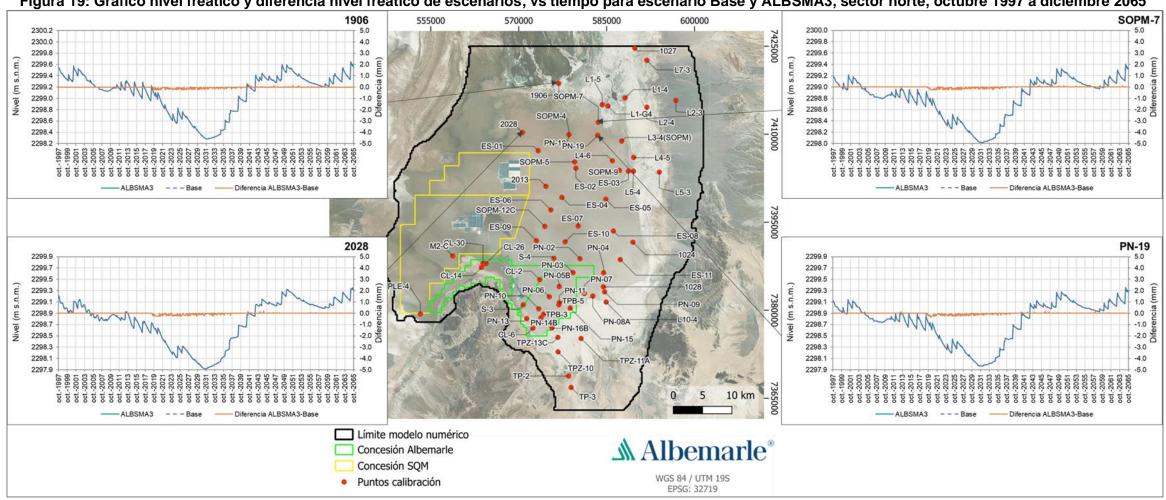


Figura 20: Gráfico nivel freático y diferencia nivel freático de escenarios, vs tiempo para escenario Base y ALBSMA3, sector centro, octubre 1997 a diciembre 2065

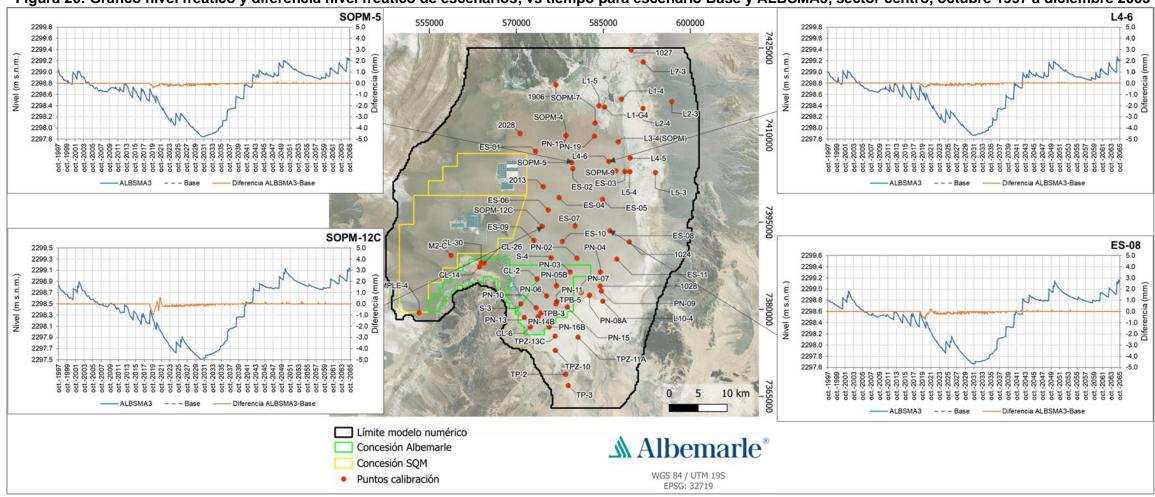


Figura 21: Gráfico nivel freático y diferencia nivel freático de escenarios, vs tiempo para escenario Base y ALBSMA3, sector sur, octubre 1997 a diciembre 2065

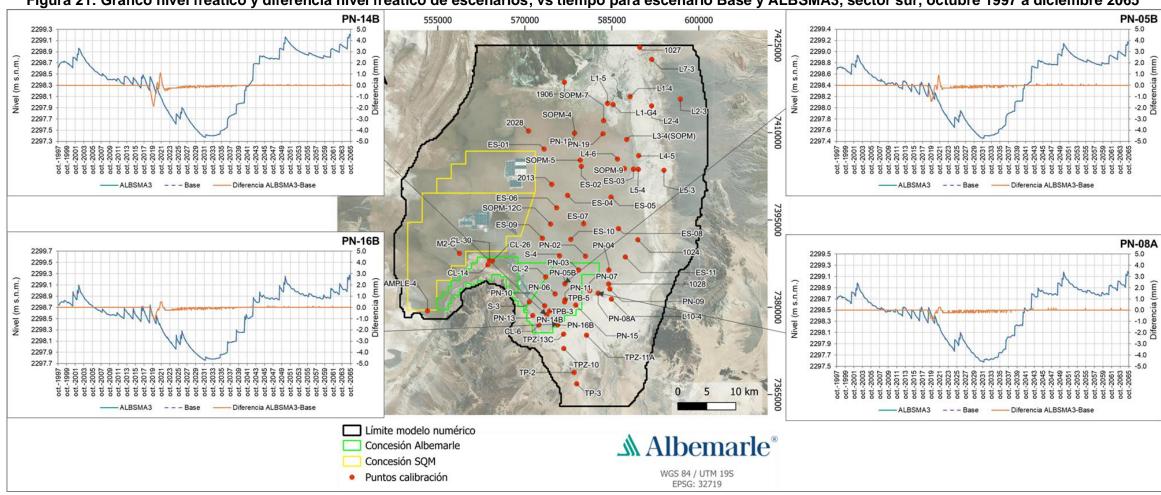


Figura 22: Gráfico nivel freático y diferencia nivel freático de escenarios, vs tiempo para escenario Base y ALBSMA4, sector norte, octubre 1997 a diciembre 2065

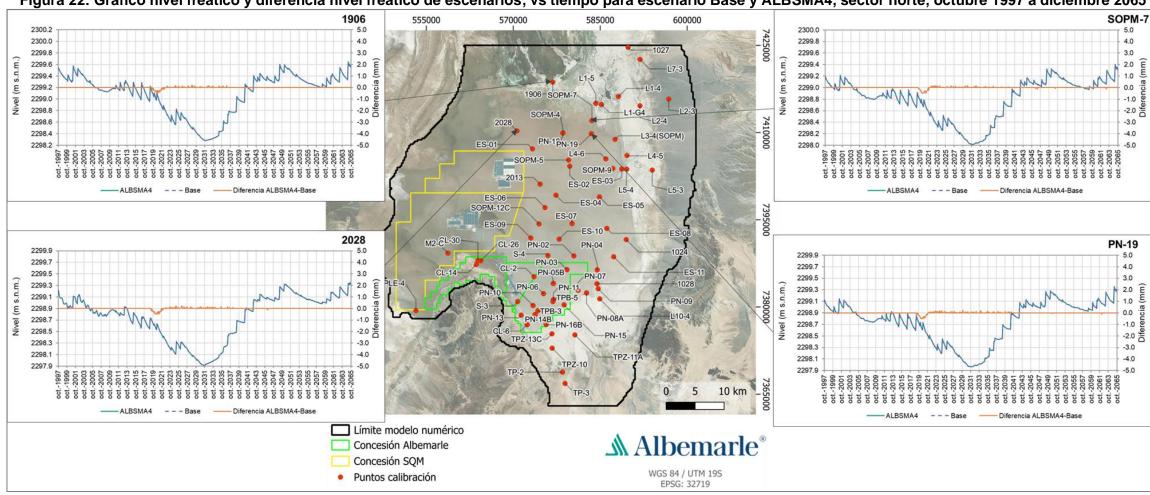


Figura 23: Gráfico nivel freático y diferencia nivel freático de escenarios, vs tiempo para escenario Base y ALBSMA4, sector centro, octubre 1997 a diciembre 2065

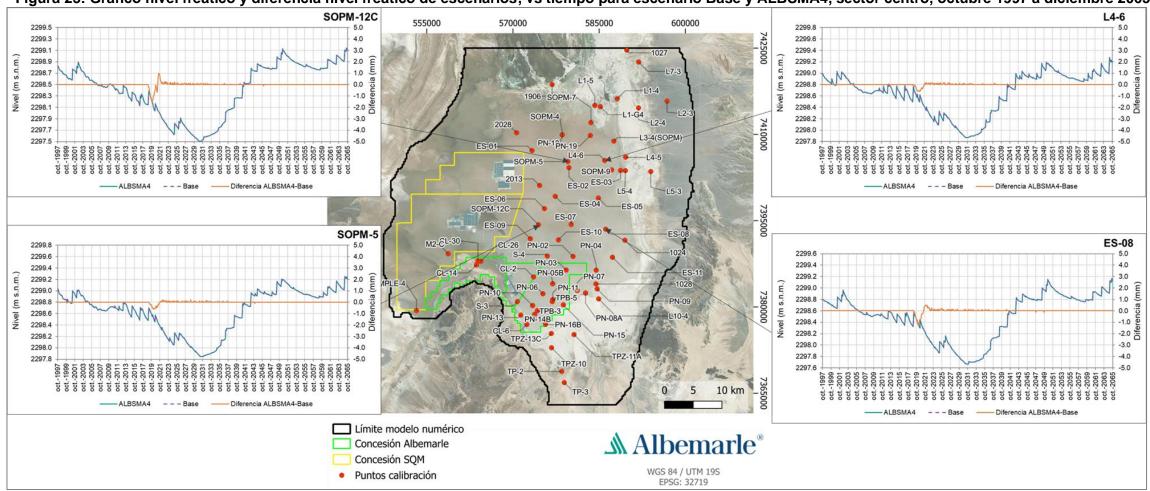
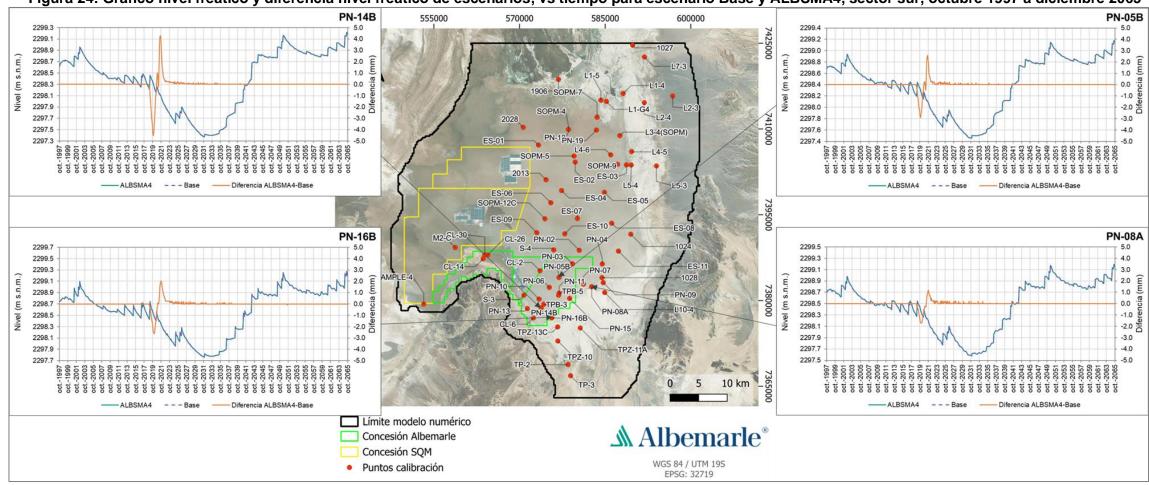



Figura 24: Gráfico nivel freático y diferencia nivel freático de escenarios, vs tiempo para escenario Base y ALBSMA4, sector sur, octubre 1997 a diciembre 2065

Consulta de Extensión

Como se explicó anteriormente, parte de la **Consulta de Extensión**, polígono de 0,1cm; ya se encuentra contenida en la Consulta de Magnitud. Dado eso, a continuación, se presenta la lista de pozos por escenario que están dentro del polígono de 0,1cm.

Tabla 11: Pozos dentro del polígono de 0,1cm por escenario

Dentro Dentro Color Co			e act pengene	ac cjiem per cer		
1027 <0,1cm <0,1cm <0,1cm <0,1cm <0,1cm Dentro	Pozo	ALBSMA1	ALBSMA2	ALBSMA3	ALBSMA4	
1028	1024	Dentro	Dentro	<0,1cm	<0,1cm	
1906 <0,1cm <0,	1027	<0,1cm	<0,1cm	<0,1cm	<0,1cm	
2013 Dentro Pentro <0,1cm	1028	Dentro	Dentro	<0,1cm	Dentro	
2028 Dentro <0,1cm	1906	<0,1cm	<0,1cm	<0,1cm	<0,1cm	
CL-14 Dentro Dentro <0,1cm	2013	Dentro	Dentro	<0,1cm	<0,1cm	
CL-2 Dentro Dentro Col,1cm Dentro CL-26 Dentro Dentro Dentro <0,1cm CL-30 Dentro Dentro Dentro <0,1cm CL-6 Dentro Dentro Dentro <0,1cm Dentro ES-01 <0,1cm Dentro <0,1cm <0,1cm <0,1cm ES-02 Dentro Dentro <0,1cm <0,1cm <0,1cm ES-03 Dentro Dentro <0,1cm <0,1cm <0,1cm ES-03 Dentro Dentro <0,1cm <0,1cm <0,1cm ES-04 Dentro Dentro <0,1cm <0,1cm <0,1cm ES-05 Dentro Dentro <0,1cm <0,1cm <0,1cm ES-05 Dentro Dentro <0,1cm <0,1cm <0,1cm ES-06 Dentro Dentro <0,1cm <0,1cm <0,1cm ES-07 Dentro Dentro <0,1cm <0,1cm <0,1cm	2028	Dentro	<0,1cm	<0,1cm	<0,1cm	
CL-26 Dentro Dentro Dentro <0,1cm	CL-14	Dentro	Dentro	Dentro	<0,1cm	
CL-30 Dentro Dentro <0,1cm	CL-2	Dentro	Dentro	<0,1cm	Dentro	
CL-6 Dentro Dentro <0,1cm	CL-26	Dentro	Dentro	Dentro	<0,1cm	
ES-01 <0,1cm	CL-30	Dentro	Dentro	Dentro	<0,1cm	
ES-02 Dentro Co,1cm Co,1cm ES-03 Dentro Dentro Co,1cm Co,1cm ES-04 Dentro Dentro Co,1cm Co,1cm ES-05 Dentro Dentro Co,1cm Co,1cm ES-06 Dentro Dentro Co,1cm Co,1cm ES-06 Dentro Dentro Co,1cm Co,1cm ES-07 Dentro Dentro Co,1cm Co,1cm ES-08 Dentro Dentro Co,1cm Co,1cm ES-09 Dentro Dentro Co,1cm Co,1cm ES-10 Dentro Dentro Co,1cm Dentro ES-11 Dentro Dentro Co,1cm Co,1cm ES-11 Dentro Dentro Co,1cm Co,1cm L10-4 Dentro Dentro Co,1cm Co,1cm L1-4 Co,1cm Co,1cm Co,1cm Co,1cm L1-5 Co,1cm Co,1cm Co,1cm Co,1cm	CL-6	Dentro	Dentro	<0,1cm	Dentro	
ES-03 Dentro Dentro <0,1cm	ES-01	<0,1cm	Dentro	<0,1cm	<0,1cm	
ES-04 Dentro Co,1cm Co,1cm ES-05 Dentro Dentro Co,1cm ES-06 Dentro Dentro Co,1cm ES-07 Dentro Dentro Co,1cm ES-08 Dentro Dentro Co,1cm ES-09 Dentro Dentro Co,1cm ES-10 Dentro Dentro Co,1cm ES-11 Dentro Dentro Co,1cm ES-11 Dentro Dentro Co,1cm L10-4 Dentro Dentro Co,1cm L10-4 Dentro Dentro Co,1cm L1-4 Co,1cm Co,1cm Co,1cm L1-4 Co,1cm Co,1cm Co,1cm L1-5 Co,1cm Co,1cm Co,1cm L1-64 Co,1cm Co,1cm Co,1cm L2-3 Co,1cm Co,1cm Co,1cm L2-4 Co,1cm Co,1cm Co,1cm L3-4(SOPM) Co,1cm Co,1cm Co,1cm	ES-02	Dentro	Dentro	<0,1cm	<0,1cm	
ES-05 Dentro Co,1cm Co,1cm ES-06 Dentro Dentro Co,1cm Co,1cm ES-07 Dentro Dentro Co,1cm Co,1cm ES-08 Dentro Dentro Co,1cm Co,1cm ES-09 Dentro Dentro Dentro Dentro ES-10 Dentro Dentro Co,1cm Dentro ES-11 Dentro Dentro Co,1cm Co,1cm L10-4 Dentro Dentro Co,1cm Co,1cm L1-4 Co,1cm Co,1cm Co,1cm Co,1cm L1-5 Co,1cm Co,1cm Co,1cm Co,1cm L1-G4 Co,1cm Co,1cm Co,1cm Co,1cm L2-3 Co,1cm Co,1cm Co,1cm Co,1cm L2-4 Co,1cm Co,1cm Co,1cm Co,1cm L3-4(SOPM) Co,1cm Dentro Co,1cm Co,1cm L4-5 Co,1cm Dentro Co,1cm Co,1cm <th>ES-03</th> <th>Dentro</th> <th>Dentro</th> <th><0,1cm</th> <th><0,1cm</th>	ES-03	Dentro	Dentro	<0,1cm	<0,1cm	
ES-06 Dentro Co,1cm Co,1cm ES-07 Dentro Dentro Co,1cm ES-08 Dentro Dentro Co,1cm ES-09 Dentro Dentro Dentro ES-10 Dentro Dentro Dentro ES-11 Dentro Dentro Co,1cm L10-4 Dentro Dentro Co,1cm L1-4 Co,1cm Co,1cm Co,1cm L1-5 Co,1cm Co,1cm Co,1cm L1-64 Co,1cm Co,1cm Co,1cm L2-3 Co,1cm Co,1cm Co,1cm L2-4 Co,1cm Co,1cm Co,1cm L3-4(SOPM) Co,1cm Dentro Co,1cm Co,1cm L4-5 Co,1cm Dentro Co,1cm Co,1cm	ES-04	Dentro	Dentro	<0,1cm	<0,1cm	
ES-07 Dentro Dentro <0,1cm	ES-05	Dentro	Dentro	<0,1cm	<0,1cm	
ES-08 Dentro Dentro <0,1cm	ES-06	Dentro	Dentro	<0,1cm	<0,1cm	
ES-09 Dentro Dentro <0,1cm	ES-07	Dentro	Dentro	<0,1cm	<0,1cm	
ES-10 Dentro Dentro <0,1cm	ES-08	Dentro	Dentro	<0,1cm	<0,1cm	
ES-11 Dentro Co,1cm Co,1cm L10-4 Dentro Dentro Dentro L1-4 Co,1cm Co,1cm Co,1cm L1-5 Co,1cm Co,1cm Co,1cm L1-G4 Co,1cm Co,1cm Co,1cm L2-3 Co,1cm Co,1cm Co,1cm L2-4 Co,1cm Co,1cm Co,1cm L3-4(SOPM) Co,1cm Dentro Co,1cm L4-5 Co,1cm Dentro Co,1cm L4-6 Co,1cm Dentro Co,1cm	ES-09	Dentro	Dentro	<0,1cm	Dentro	
L10-4 Dentro Co,1cm Dentro L1-4 <0,1cm <0,1cm <0,1cm L1-5 <0,1cm <0,1cm <0,1cm L1-G4 <0,1cm <0,1cm <0,1cm L2-3 <0,1cm <0,1cm <0,1cm L2-4 <0,1cm <0,1cm <0,1cm L3-4(SOPM) <0,1cm Dentro <0,1cm L4-5 <0,1cm Dentro <0,1cm L4-6 <0,1cm Dentro <0,1cm	ES-10	Dentro	Dentro	<0,1cm	Dentro	
L1-4 <0,1cm <0,1cm <0,1cm L1-5 <0,1cm <0,1cm <0,1cm L1-G4 <0,1cm <0,1cm <0,1cm L2-3 <0,1cm <0,1cm <0,1cm L2-4 <0,1cm <0,1cm <0,1cm L3-4(SOPM) <0,1cm Dentro <0,1cm <0,1cm L4-5 <0,1cm Dentro <0,1cm <0,1cm L4-6 <0,1cm Dentro <0,1cm <0,1cm	ES-11	Dentro	Dentro	<0,1cm	<0,1cm	
L1-5 <0,1cm <0,1cm <0,1cm L1-G4 <0,1cm <0,1cm <0,1cm L2-3 <0,1cm <0,1cm <0,1cm L2-4 <0,1cm <0,1cm <0,1cm L3-4(SOPM) <0,1cm Dentro <0,1cm <0,1cm L4-5 <0,1cm Dentro <0,1cm <0,1cm L4-6 <0,1cm Dentro <0,1cm <0,1cm	L10-4	Dentro	Dentro	<0,1cm	Dentro	
L1-G4 <0,1cm	L1-4	<0,1cm	<0,1cm	<0,1cm	<0,1cm	
L2-3 <0,1cm <0,1cm <0,1cm L2-4 <0,1cm <0,1cm <0,1cm L3-4(SOPM) <0,1cm Dentro <0,1cm <0,1cm L4-5 <0,1cm Dentro <0,1cm <0,1cm L4-6 <0,1cm Dentro <0,1cm <0,1cm	L1-5	<0,1cm	<0,1cm	<0,1cm	<0,1cm	
L2-4 <0,1cm	L1-G4	<0,1cm	<0,1cm	<0,1cm	<0,1cm	
L3-4(SOPM) <0,1cm		<0,1cm	<0,1cm	<0,1cm	<0,1cm	
L4-5 <0,1cm		<0,1cm	<0,1cm	<0,1cm	<0,1cm	
L4-6 <0,1cm Dentro <0,1cm <0,1cm	L3-4(SOPM)	<0,1cm	Dentro	<0,1cm	<0,1cm	
		<0,1cm	Dentro	<0,1cm	<0,1cm	
L5-3 <0,1cm <0,1cm <0,1cm		<0,1cm	Dentro	<0,1cm	<0,1cm	
	L5-3	<0,1cm	<0,1cm	<0,1cm	<0,1cm	

Pozo	ALBSMA1	ALBSMA2	ALBSMA3	ALBSMA4
L5-4	Dentro	Dentro	<0,1cm	<0,1cm
L7-3	<0,1cm	<0,1cm	<0,1cm	<0,1cm
M2-C	Dentro	Dentro	<0,1cm	<0,1cm
PN-02	Dentro	Dentro	<0,1cm	Dentro
PN-03	Dentro	Dentro	<0,1cm	Dentro
PN-04	Dentro	Dentro	<0,1cm	Dentro
PN-05B	Dentro	Dentro	<0,1cm	Dentro
PN-06	Dentro	Dentro	<0,1cm	Dentro
PN-07	Dentro	Dentro	<0,1cm	Dentro
PN-08A	Dentro	Dentro	<0,1cm	Dentro
PN-09	Dentro	Dentro	<0,1cm	<0,1cm
PN-10	Dentro	Dentro	<0,1cm	Dentro
PN-11	Dentro	Dentro	<0,1cm	Dentro
PN-13	Dentro	Dentro	<0,1cm	Dentro
PN-14B	Dentro	Dentro	<0,1cm	Dentro
PN-15	Dentro	Dentro	<0,1cm	Dentro
PN-16B	Dentro	Dentro	<0,1cm	Dentro
PN-18	<0,1cm	Dentro	<0,1cm	<0,1cm
PN-19	<0,1cm	Dentro	<0,1cm	<0,1cm
S-3	Dentro	Dentro	<0,1cm	Dentro
S-4	Dentro	Dentro	<0,1cm	Dentro
SAMPLE-4	Dentro	Dentro	Dentro	<0,1cm
SOPM-12C	Dentro	Dentro	<0,1cm	Dentro
SOPM-4	<0,1cm	Dentro	<0,1cm	<0,1cm
SOPM-5	Dentro	Dentro	<0,1cm	<0,1cm
SOPM-7	<0,1cm	Dentro	<0,1cm	<0,1cm
SOPM-9	Dentro	Dentro	<0,1cm	<0,1cm
TP-2	<0,1cm	<0,1cm	<0,1cm	<0,1cm
TP-3	<0,1cm	<0,1cm	<0,1cm	<0,1cm
TPB-3	Dentro	Dentro	<0,1cm	Dentro
TPB-5	Dentro	Dentro	<0,1cm	Dentro
TPZ-10	<0,1cm	<0,1cm	<0,1cm	<0,1cm
TPZ-11A	<0,1cm	<0,1cm	<0,1cm	<0,1cm
TPZ-13C	<0,1cm	<0,1cm	<0,1cm	<0,1cm
TOTAL	44 pozos	51 pozos	4 pozos	24 pozos

MODELO RCA 21/2016

Consulta de Duración

En **Consulta de Magnitud**, en la Figura 13 a Figura 24, se pueden ver los gráficos con las diferencias entre escenarios respecto al Base, donde se puede ver el periodo de duración cuando estas diferencias son mayores a cero, para 12 pozos por escenario. El resto de los pozos se encuentra en anexos.

A continuación, se muestran cuatro tablas, una por cada escenario, Tabla 12 a Tabla 15; que contienen las fechas de inicio, máximo y final de la diferencia respecto al Base. Los pozos están ordenados según el inicio de la diferencia. Los valores en blanco se refieren a fechas que no se dieron en el transcurso de la simulación.

Al igual que para los escenarios solicitados, se generó una tabla por escenario, Tabla 16 a Tabla 19; considerando los mismos 3 criterios usados para medir el periodo de la diferencia: mayor a cero, mayor a 0,1cm, y mayor a 1cm.

Tabla 12: Inicio, máxima y fin diferencias entre escenarios ALBSMA1 y Base

		, iliaxillia y i					
Pozo	Inicio diferencia	Máxima diferencia	Fin diferencia	Pozo	Inicio diferencia	Máxima diferencia	Fin diferencia
ES-06	sept2000	feb2035	may2056	PN-09	dic2019	dic2035	ago2057
TPB-3	feb2012	oct2021	ene2057	PN-19	dic2019	ago2034	oct2056
M2-C	may2012	oct2028		1024	ene2020	ene2036	jun2055
2013	oct2019	ago2035	ago2054	ES-02	ene2020	oct2035	ago2057
CL-14	oct2019	jul2021		ES-11	ene2020	feb2035	oct2053
CL-2	oct2019	jun2021	mar2060	L10-4	ene2020	jun2035	abr2056
CL-26	oct2019	mar2023		ES-07	feb2020	jul2036	jul2054
CL-30	oct2019	jul2022		L3- 4(SOPM)	feb2020	mar2036	may2053
ES-05	oct2019	jun2035	jun2053	L4-5	feb2020	dic2034	may2054
ES-09	oct2019	may2021	mar2058	L5-4	feb2020	dic2034	jul2055
PN-03	oct2019	oct2021	nov2057	PN-07	feb2020	nov2021	dic2054
PN-05B	oct2019	ago2021	mar2058	SOPM-7	feb2020	oct2036	ene2055
PN-06	oct2019	sept2021	feb2057	SOPM-9	feb2020	jul2034	dic2054
PN-11	oct2019	oct2021	oct2056	1906	mar2020	ene2036	nov2057
PN-14B	oct2019	oct2021	jul2058	ES-01	mar2020	feb2036	nov2055
PN-16B	oct2019	mar2022	jul2056	ES-03	mar2020	ene2035	may2055
S-3	oct2019	may2021	oct2060	L4-6	mar2020	nov2034	nov2053
S-4	oct2019	jul2021	mar2056	PN-18	abr2020	jun2035	abr2055
SAMPL E-4	oct2019	mar2022	sept2054	SOPM-4	abr2020	nov2034	abr2055
SOPM- 5	oct2019	ago2035	feb2055	L1-5	may2020	ene2036	ene2055
TPB-5	oct2019	sept2021	jun2059	2028	jun2020	abr2035	oct2056
1028	nov2019	feb2022	dic2054	L1-4	jun2020	ago2035	may2052
CL-6	nov2019	nov2021	ago2058	L1-G4	jun2020	sept2034	nov2050
ES-08	nov2019	nov2035	oct2058	TPZ-13C			
ES-10	nov2019	jul2035	ago2055	TPZ-10			
PN-02	nov2019	dic2021	jul2056	1027			
PN-10	nov2019	ago2021	oct2058	TPZ-11A			
PN-13	nov2019	oct2021	sept2060	L2-4			
PN-15	nov2019	dic2021	may2059	L7-3			
SOPM- 12C	nov2019	sept2034	sept2056	L5-3			
ES-04	dic2019	ago2035	may2056	TP-3			
PN-04	dic2019	ene2036	jul2055	TP-2			
PN-08A	dic2019	dic2021	dic2054	L2-3			

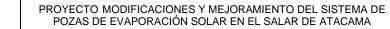


Tabla 13: Inicio, máxima y fin diferencias entre escenarios ALBSMA2 y Base

		, iliaxillia y i				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Pozo	Inicio diferencia	Máxima diferencia	Fin diferencia	Pozo	Inicio diferencia	Máxima diferencia	Fin diferencia
ES-06	sept2000	may2022	may2054	ES-02	ene2020	dic2023	jun2052
TPB-3	feb2012	ago2021	dic2054	ES-04	ene2020	sept2022	oct2053
М2-С	may2012	jul2033	ene2060	ES-07	ene2020	jun2022	dic2052
CL-2	oct2019	jun2021	jul2054	L4-5	ene2020	oct2023	oct2051
CL-6	oct2019	sept2021	ene2054	ES-05	feb2020	sept2022	nov2050
PN-03	oct2019	nov2021	ene2053	L3- 4(SOPM)	feb2020	nov2023	jul2052
PN-05B	oct2019	ago2021	dic2052	L5-4	feb2020	mar2023	jul2050
PN-06	oct2019	ago2021	jul2053	SOPM-7	feb2020	jun2024	sept2053
PN-10	oct2019	jul2021	abr2054	SOPM-9	feb2020	dic2022	may2052
PN-11	oct2019	sept2021	jun2052	TPZ-13C	feb2020	jun2022	feb2041
PN-13	oct2019	jul2021	ago2055	1906	mar2020	nov2024	may2051
PN-14B	oct2019	ago2021	sept2054	CL-26	mar2020	mar2026	
PN-16B	oct2019	nov2021	abr2052	ES-01	mar2020	sept2024	ene2052
S-3	oct2019	abr2021	sept2055	ES-03	mar2020	feb2023	ene2055
S-4	oct2019	oct2021	nov2051	L4-6	mar2020	dic2023	oct2051
SOPM- 5	oct2019	sept2023	abr2054	CL-30	abr2020	mar2027	may2020
TPB-5	oct2019	sept2021	sept2053	PN-18	abr2020	sept2024	jun2052
1028	nov2019	feb2022	oct2051	SOPM-4	abr2020	abr2024	jun2052
2013	nov2019	abr2023	ago2052	CL-14	may2020	sept2026	
ES-08	nov2019	abr2022	may2052	L1-5	may2020	ene2025	mar2050
ES-09	nov2019	dic2021	feb2054	2028	jun2020	nov2024	mar2053
ES-10	nov2019	feb2022	mar2052	L1-4	jun2020	ago2024	may2050
PN-02	nov2019	dic2021	may2053	L1-G4	jun2020	sept2024	feb2049
PN-08A	nov2019	ene2022	may2052	SAMPLE -4	oct2022	sept2038	nov2051
PN-09	nov2019	abr2022	abr2053	TPZ-11A			
PN-15	nov2019	sept2021	sept2052	TPZ-10			
1024	dic2019	ago2022	jul2051	TP-2			
ES-11	dic2019	jun2022	oct2053	TP-3			
L10-4	dic2019	abr2022	ago2051	L5-3			
PN-04	dic2019	mar2022	feb2054	1027			
PN-07	dic2019	dic2021	feb2053	L2-4			
PN-19	dic2019	dic2023	ene2054	L7-3			
SOPM- 12C	dic2019	abr2022	mar2054	L2-3			

MODELO RCA 21/2016

Tabla 14: Inicio, máxima y fin diferencias entre escenarios ALBSMA3 y Base

CL-14 oct2018 may2021 dic2058 PN-11	
CL-2 oct2018 may2021 dic2028 PN-16B CL-26 oct2018 ago2021 sept2056 PN-19 CL-30 oct2018 jun2021 may2060 SOPM-9 ES-09 oct2018 abr2021 ago2021 1024 S-3 oct2018 abr2021 may2028 ES-07 SAMPL oct. 2018 fob. 2023 app. 2046 L3-	liferencia
CL-26 oct2018 ago2021 sept2056 PN-19 CL-30 oct2018 jun2021 may2060 SOPM-9 ES-09 oct2018 abr2021 ago2021 1024 S-3 oct2018 abr2021 may2028 ES-07 SAMPL oct. 2018 fob. 2022 app. 2046 L3-	
CL-30 oct2018 jun2021 may2060 SOPM-9 ES-09 oct2018 abr2021 ago2021 1024 S-3 oct2018 abr2021 may2028 ES-07 SAMPL oct. 2018 fob. 2022 one. 2046	
ES-09 oct2018 abr2021 ago2021 1024 S-3 oct2018 abr2021 may2028 ES-07 SAMPL oct. 2018 fob. 2022 one. 2046 L3-	
S-3 oct2018 abr2021 may2028 ES-07 SAMPL oct. 2018 fob. 2022 one 2046	
SAMPL oct 2018 fob 2022 one 2046	
PN-13 nov2018 jun2021 ago2029 L5-4	
PN-08A dic2018 oct2021 dic2021 1906	
PN-10 ago2020 jun2021 dic2021 ES-01	
PN-14B sept2020 ago2021 ene2022 ES-05	
PN-06 sept2020 jun2021 dic2021 ES-08	
TPB-3 sept2020 jul2021 ene2022 SOPM-5	
CL-6 oct2020 ago2021 feb2022 2028	
ES-06 L10-4	
M2-C 2013	
PN-05B PN-18	
1028 SOPM-4	
ES-10 TPZ-13C	
L4-6	
PN-02 SOPM-7	
S-4 ES-03	
TPB-5 L1-G4	
ES-04 L1-5	
ES-11 TPZ-10	
L1-4 L2-4	
PN-03 TP-3	
PN-04 1027	
PN-07 L2-3	
PN-09 L5-3	
PN-15 L7-3	
SOPM- 12C	
ES-02 TPZ-11A	

MODELO RCA 21/2016

Tabla 15: Inicio, máxima y fin diferencias entre escenarios ALBSMA4 y Base

		, maxima y i					
Pozo	Inicio diferencia	Máxima diferencia	Fin diferencia	Pozo	Inicio diferencia	Máxima diferencia	Fin diferencia
CL-2	oct2018	may2021	ene2026	L4-6			
CL-6	oct2018	ago2021	nov2025	PN-02			
PN-10	oct2018	jun2021	may2023	ES-04			
PN-13	oct2018	jun2021	ene2026	ES-11			
S-3	oct2018	abr2021	jul2022	PN-09			
TPB-5	oct2018	jun2021	may2023	SOPM-9			
CL-26	nov2018	oct1997		L3- 4(SOPM)			
ES-10	nov2018	jul2021	nov2023	L5-4			
PN-04	nov2018	oct2021	ene2024	1906			
PN-06	nov2018	jun2021	feb2024	ES-01			
PN-07	nov2018	ago2021	dic2022	SOPM-5			
CL-14	dic2018	oct1997		2013			
CL-30	dic2018	oct1997		2028			
L1-4	dic2018	oct2021	may2024	L10-4			
PN-03	dic2018	jul2021	oct2023	ES-03			
PN-08A	dic2018	sept2021	feb2024	PN-18			
PN-11	dic2018	ago2021	nov2023	SOPM-4			
ES-02	ene2019	nov2024	abr2019	TPZ-13C			
PN-19	ene2019	dic2029	feb2019	L4-5			
SOPM- 12C	ene2019	jun2021	jun2023	M2-C			
1024	feb2019	nov2021	feb2024	SOPM-7			
ES-07	feb2019	sept2021	abr2023	L1-G4			
ES-05	mar2019	oct2021	feb2023	L1-5			
ES-08	mar2019	nov2021	ago2023	TPZ-10			
PN-14B	jul2020	jul2021	nov2023	SAMPLE- 4			
TPB-3	jul2020	jul2021	abr2024	1027			
ES-09	ago2020	may2021	dic2021	L2-3			
S-4	sept2020	jun2021	ene2023	L2-4			
PN-05B	sept2020	jul2021	nov2022	L5-3			
PN-15	oct2020	ago2021	mar2023	L7-3			
PN-16B	feb2021	sept2021	jul2024	TP-2			
ES-06				TP-3			
1028				TPZ-11A			

MODELO RCA 21/2016

Tabla 16: Meses que el nivel freático del escenario ALBSMA1 está por sobre el Base

Pozo	Dif > 0cm	Dif > 0,1cm	Dif > 1cm	Pozo	Dif > 0cm	Dif > 0,1cm	Dif > 1cm
1024	514	270	0	L7-3	5	0	0
1027	61	0	0	M2-C	549	393	28
1028	516	278	0	PN-02	520	279	0
1906	503	257	0	PN-03	526	287	0
2013	506	262	0	PN-04	514	276	0
2028	501	261	0	PN-05B	527	289	0
CL-14	555	555	370	PN-06	534	295	0
CL-2	534	300	0	PN-07	515	280	0
CL-26	555	544	325	PN-08A	520	275	0
CL-30	555	552	340	PN-09	513	276	0
CL-6	538	296	0	PN-10	536	296	0
ES-01	508	264	0	PN-11	524	289	0
ES-02	503	265	0	PN-13	533	303	0
ES-03	507	259	0	PN-14B	533	299	0
ES-04	511	270	0	PN-15	520	285	0
ES-05	509	265	0	PN-16B	522	274	0
ES-06	517	273	0	PN-18	497	258	0
ES-07	509	268	0	PN-19	503	260	0
ES-08	511	269	0	S-3	540	313	7
ES-09	525	287	0	S-4	522	284	0
ES-10	515	280	0	SAMPLE-4	497	345	232
ES-11	512	271	0	SOPM-12C	518	281	0
L10-4	516	272	0	SOPM-4	497	258	0
L1-4	494	240	0	SOPM-5	514	267	0
L1-5	496	239	0	SOPM-7	510	257	0
L1-G4	484	189	0	SOPM-9	503	261	0
L2-3	0	0	0	TP-2	4	0	0
L2-4	29	0	0	TP-3	11	0	0
L3-4(SOPM)	508	254	0	TPB-3	523	296	0
L4-5	502	249	0	TPB-5	528	290	0
L4-6	496	259	0	TPZ-10	25	0	0
L5-3	19	0	0	TPZ-11A	15	0	0
L5-4	499	257	0	TPZ-13C	326	0	0

MODELO RCA 21/2016

Tabla 17: Meses que el nivel freático del escenario ALBSMA2 está por sobre el Base

Pozo	Dif > 0cm	Dif > 0,1cm	Dif > 1cm	Pozo	Dif > 0cm	Dif > 0,1cm	Dif > 1cm
1024	476	259	0	L7-3	5	0	0
1027	78	0	0	M2-C	526	306	0
1028	470	265	0	PN-02	477	266	0
1906	461	243	0	PN-03	473	268	10
2013	459	245	0	PN-04	484	262	0
2028	465	246	0	PN-05B	480	269	21
CL-14	546	456	74	PN-06	496	275	26
CL-2	482	277	28	PN-07	477	268	12
CL-26	548	434	52	PN-08A	470	262	4
CL-30	544	440	21	PN-09	472	259	0
CL-6	498	278	41	PN-10	497	277	39
ES-01	470	248	0	PN-11	482	274	24
ES-02	466	250	0	PN-13	501	284	46
ES-03	469	247	0	PN-14B	486	280	38
ES-04	459	253	0	PN-15	473	270	21
ES-05	459	251	0	PN-16B	477	261	25
ES-06	472	257	0	PN-18	459	245	0
ES-07	467	254	0	PN-19	459	246	0
ES-08	471	257	0	S-3	507	286	51
ES-09	476	263	0	S-4	481	266	11
ES-10	470	262	0	SAMPLE-4	398	237	0
ES-11	472	261	0	SOPM-12C	481	262	0
L10-4	475	261	0	SOPM-4	459	245	0
L1-4	447	235	0	SOPM-5	477	248	0
L1-5	455	236	0	SOPM-7	465	245	0
L1-G4	433	213	0	SOPM-9	461	245	0
L2-3	1	0	0	TP-2	8	0	0
L2-4	37	0	0	TP-3	16	0	0
L3-4(SOPM)	469	243	0	TPB-3	485	275	31
L4-5	463	242	0	TPB-5	488	273	24
L4-6	463	248	0	TPZ-10	35	0	0
L5-3	19	0	0	TPZ-11A	27	0	0
L5-4	453	246	0	TPZ-13C	311	3	0

MODELO RCA 21/2016

Tabla 18: Meses que el nivel freático del escenario ALBSMA3 está por sobre el Base

Pozo	Dif > 0cm	Dif > 0,1cm	Dif > 1cm	Pozo	Dif > 0cm	Dif > 0,1cm	Dif > 1cm
1024	34	7	0	L7-3	2	0	0
1027	0	0	0	M2-C	357	289	0
1028	46	10	0	PN-02	33	12	0
1906	21	4	0	PN-03	24	12	0
2013	35	13	0	PN-04	32	12	0
2028	27	3	0	PN-05B	37	16	0
CL-14	525	479	182	PN-06	45	22	2
CL-2	49	16	4	PN-07	31	17	0
CL-26	517	470	19	PN-08A	34	14	0
CL-30	513	481	74	PN-09	30	11	0
CL-6	38	19	2	PN-10	43	21	4
ES-01	29	6	0	PN-11	33	11	0
ES-02	24	0	0	PN-13	38	17	5
ES-03	24	0	0	PN-14B	36	10	3
ES-04	32	13	0	PN-15	34	24	0
ES-05	20	8	0	PN-16B	31	21	0
ES-06	30	12	0	PN-18	18	4	0
ES-07	33	10	0	PN-19	22	6	0
ES-08	27	8	0	S-3	48	25	9
ES-09	35	15	3	S-4	32	13	0
ES-10	34	14	0	SAMPLE-4	338	303	122
ES-11	23	10	0	SOPM-12C	39	19	0
L10-4	14	3	0	SOPM-4	18	4	0
L1-4	30	12	0	SOPM-5	23	4	0
L1-5	22	4	0	SOPM-7	27	7	0
L1-G4	21	1	0	SOPM-9	29	7	0
L2-3	0	0	0	TP-2	0	0	0
L2-4	0	0	0	TP-3	1	0	0
L3-4(SOPM)	26	4	0	TPB-3	42	28	2
L4-5	19	4	0	TPB-5	32	11	0
L4-6	22	0	0	TPZ-10	0	0	0
L5-3	0	0	0	TPZ-11A	0	0	0
L5-4	14	5	0	TPZ-13C	1	0	0

MODELO RCA 21/2016

Tabla 19: Meses que el nivel freático del escenario ALBSMA4 está por sobre el Base

Pozo	Dif > 0cm	Dif > 0,1cm	Dif > 1cm	Pozo	Dif > 0cm	Dif > 0,1cm	Dif > 1cm
1024	96	46	0	L7-3	0	0	0
1027	1	0	0	M2-C	1	0	0
1028	111	49	0	PN-02	98	50	0
1906	50	17	0	PN-03	94	54	5
2013	57	29	0	PN-04	106	59	0
2028	65	14	0	PN-05B	105	53	7
CL-14	0	0	0	PN-06	111	60	8
CL-2	112	61	12	PN-07	89	47	6
CL-26	0	0	0	PN-08A	99	50	2
CL-30	0	0	0	PN-09	106	48	0
CL-6	120	70	13	PN-10	112	78	13
ES-01	72	26	0	PN-11	110	57	8
ES-02	69	12	0	PN-13	131	79	14
ES-03	85	16	0	PN-14B	119	63	12
ES-04	82	32	0	PN-15	104	76	8
ES-05	97	40	0	PN-16B	109	82	9
ES-06	90	49	0	PN-18	61	13	0
ES-07	86	46	0	PN-19	72	24	0
ES-08	102	55	0	S-3	116	71	15
ES-09	100	40	5	S-4	110	64	5
ES-10	97	50	0	SAMPLE-4	0	0	0
ES-11	99	45	0	SOPM-12C	88	44	0
L10-4	41	10	0	SOPM-4	61	13	0
L1-4	94	38	0	SOPM-5	78	27	0
L1-5	47	15	0	SOPM-7	62	19	0
L1-G4	53	5	0	SOPM-9	80	27	0
L2-3	0	0	0	TP-2	0	0	0
L2-4	0	0	0	TP-3	0	0	0
L3-4(SOPM)	72	19	0	TPB-3	107	87	9
L4-5	75	21	0	TPB-5	116	62	8
L4-6	83	15	0	TPZ-10	0	0	0
L5-3	0	0	0	TPZ-11A	0	0	0
L5-4	76	25	0	TPZ-13C	34	9	0

MODELO RCA 21/2016

CONCLUSIONES

Escenarios Solicitados

Para el presente ejercicio se simularon, a petición de la DGA, dos escenarios, denominados SMA1 y SMA2, y se compararon con el resultado entregado del modelo de la Tercera Actualización (VAIGS, 2023). Esta comparación se realizó en cuanto a la magnitud, extensión y duración de los efectos provocados por las diferencias en la operación del periodo de un año y dos meses, octubre 2019 a septiembre 2020 y febrero y marzo del 2021.

Con respecto a la **magnitud** de las diferencias entre escenarios, se puede ver que son, en su mayoría, menores a 0,8 cm para los pozos que se encuentran fuera del campo de pozos de Albemarle. Se observa además que estas diferencias disminuyen drásticamente una vez se alcanza el borde del núcleo del Salar. Al mismo tiempo, esta es mucho menor (< 1,1%, para el escenario SMA1), a los descensos que podría experimentar el nivel freático del pozo durante el periodo simulado.

Para el caso del escenario SMA1, debido a la magnitud de diferencia con el escenario Base, ambos niveles simulados se podrían considerar iguales.

Comparando ambos escenarios, SMA1 y SMA2, es posible ver que la modificación de operación en los pozos cercanos a los objetos de protección, generan mayores diferencias con respecto al escenario Base. Siendo estas mayores al acercarse a los pozos modificados. Adicionalmente, el polígono que inscribe las diferencias mayores a 0,1 cm abarca una mayor área hacia el norte en el escenario SMA2, pero al igual que para el escenario SMA1, estas diferencias están acotadas al área del núcleo del Salar.

Por lo anterior, se podría decir que la **extensión** de estas diferencias se encuentra acotadas al núcleo del Salar, y principalmente a los pozos que modificaron su flujo en los escenarios simulados. Al mismo tiempo, se observa en las curvas de diferencias respecto al escenario Base, que estas pierden continuidad con valores bajos. Esto es evidente en la curva de 0,1 cm, pero esta irregularidad se puede observar hasta casi la curva de 1 cm de diferencia. Esto se debe a que la resolución de los resultados de nivel freático entregados por el modelo es del orden de la diferencia de ambos los niveles de ambos escenarios, es decir, la diferencia es pequeña para ser distinguida por el modelo.

La **duración** de las diferencias observadas se ve que en general esta es mayor cuando uno se acerca a los pozos que fueron modificados en cada escenario. Esta diferencia se encuentra acotada a la extensión del modelo.

MODELO RCA 21/2016

De todos modos, para la duración de la diferencia entre ambos escenarios hay que considerar la resolución del modelo. Es por eso que, en la sección de **Consulta de Duración**, se hace el análisis de sensibilidad de aumentar la consideración de existencia de diferencia desde cero a 1 cm, mostrando que puede haber una gran disminución de duración al aplicar un criterio levemente distinto. Esto indica que la duración de la diferencia es muy sensible a la resolución del modelo.

Escenarios Adicionales

Los escenarios adicionales utilizados para este documento responden principalmente a mostrar un escenario más realista de la operación de Albemarle, en particular el escenario ALBSMA3.

Los dos primeros escenarios ALBSMA1 y ALBSMA2, obtienen resultados similares a los escenarios SMA1 y SMA2 respectivamente, dado que sólo discrepan en 23,3 L/s en el mes de febrero 2021. Por lo mismo, todo lo dicho anteriormente respecto a estos es válido para los escenarios ALBSMA1 y ALBSMA2.

Los otros dos escenarios, ALBSMA3 y ALBSMA4, al repartir el caudal restringido en el resto de los meses en los que se permitía extraer más caudal, es más similar a lo que habría ocurrido en un escenario considerando una operación con caudales autorizados. Por lo mismo creemos que tiene más sentido realizar la comparación con estos escenarios respeto al Base.

Para la **magnitud**, se puede notar dos cosas en los resultados. Primero que en ambos escenarios la extensión de los efectos es mucho más acotada que en los otros ya analizados. Y, segundo, que la magnitud de la diferencia, en su mayoría, es menor a 0,5 cm, lo que estaría fuera de la resolución del modelo, por lo que se podrían considerar ambos escenarios iguales, es decir, de diferencia igual a cero.

A diferencia de los escenarios SMA1 (o ALBSMA1) y SMA2 (o ALBSMA2), la **extensión** de estas diferencias es mucho menor que el área del núcleo, especialmente en el escenario ALBSMA3. Y al mismo tiempo la **duración** de estas diferencias es menor a 5 años y 6años en promedio para los escenarios ALBSMA3 y ALBSMA4 respectivamente.

MODELO RCA 21/2016

Generales

Considerando los seis escenarios analizados, es posible concluir que las diferencias entre una operación considerando los caudales autorizados, y la operación real llevada a cabo por Albemarle, son despreciables y acotadas en temporal y espacialmente al Núcleo del Salar, sin la capacidad de propagarse más allá de sus límites.