EN LO PRINCIPAL: Formula Descargos; **PRIMER OTROSÍ:** Personería; **SEGUNDO OTROSÍ:** Acompaña documentos; **TERCER OTROSÍ:** Se practiquen diligencias probatorias que indica; **CUARTO OTROSÍ:** Se tenga presente.-

SUPERINTENDENCIA DEL MEDIO AMBIENTE
VII TALCA
25 C
20 007 2273 MEDIO AMBIENTE DE LA REGIÓN DEL MAULE.- 14 007 2015

OFICINA DE PARTES
RECIBIDO

JOSÉ FLAVIO DA SILVA RODRÍGUES, comerciante, brasilero, y LUIS ALEJANDRO CASTRO BRAVO, comerciante, chileno, ambos domiciliados en Avenida Balmaceda nro. 2215 – C de la comuna de San Javier y en representación de la sociedad denominada "COMERCIAL E INVERSIONES SA SILVA Y CASTRO LIMITADA" en el Expediente Administrativo Nº1/Rol D-045-2015, sobre presunta infracción al artículo 35 letra h) de la ley 20.417, a esta Superintendencia en forma respetuosa señalamos:

Que, por este acto, y estando dentro del plazo legal, venimos en formular los antecedentes de hecho y fundamentos de derecho sobre los cuales se sustentan los descargos de nuestra representada, respecto de los cargos que se le han formulado por vuestra superintendencia, mediante la resolución que le fuera notificada el 24 de septiembre último dictada en este expediente administrativo, solicitando desde ya que, en mérito de los mismos, se acceda a las peticiones formuladas en la parte petitoria de esta presentación.

1. Antecedentes Generales de la presunta infracción.

Conforme se expresa en la Resolución que formula cargos en contra de nuestra representada, estos se formulan por el presunto incumplimiento al artículo 35 letra h de la ley 20.417 que establece la Ley Orgánica de la Superintendencia del Medio Ambiente, todo ello fundada en un supuesto nivel de presión sonora corregido de 61 dBA en horario nocturno en circunstancias que para tal horario el nivel máximo permisible de presión sonora corregido es de 50 dBA.

Por la misma resolución se ha ordenado clasificar la infracción como leve en virtud de lo dispuesto en el numeral 3 del artículo 36 de la misma ley citada.

2. <u>Antecedentes de Hecho y Fundamentos de Derecho de los Descargos</u>

2.1. Antecedentes de Hecho

Sobre el particular, debo señalar que se inicia contra nuestra representada un proceso administrativo por presuntos ruidos molestos desde el local en el cual funciona el pub-discoteque administrado por nuestra representada, dándose lugar a una investigación que derivó en una actividad de inspección ambiental el día 30 de mayo del 2015, la cual consistió en una medición de ruidos generados en el local antes referido.

Que como consecuencia de esa labor fiscalizadora se habría constatado que al momento de la fiscalización la fuente emisora se encontraba funcionando, mediante la reproducción de música envasada dentro del local, la que resultaba perceptible en sectores cercanos fuera del local, que el sector corresponde a una zona homologable a zona III de acuerdo a lo establecido en el DS Nº 38/2011 y que, se constató una superación del límite establecido para el periodo nocturno, generándose una excedencia de 11 dBA por parte de la fuente de ruido.

Pues bien, lo cierto es que el local en que funciona el pub-dicoteque administrado por nuestra representada no ha superado el límite nocturno de generación de ruidos, establecido en la norma antes citada, sino que siempre ha respetado el mismo, conforme se acredita con el informe técnico de evaluación acústica efectuado por un empresa especialista del área, el cual concluye que en dicho local no se supera la norma establecida por el DS Nº 38/2011.

Al respecto, cabe señalar que la constatación de una excedencia de 11 dBA en la fuente emisora de ruido se explica por la generación de ruido de fondo que no ha sido considerado en la medición efectuada. En efecto, el día de la inspección ambiental, esto es, el día 30 de mayo del año 2015 y conforme así consta del acta levantada, los funcionarios de la Superintendencia del Medio Ambiente que desarrollaron la muestra expresan que el ruido de fondo no afecta la medición, con lo cual reconocen expresamente la existencia de ese ruido, restándole toda influencia en el resultado de la toma, en circunstancias, que a pocos metros del establecimiento de nuestra representada se ubica otro pub-discoteque que genera un importante ruido de fondo el que, sin duda, afectó el resultado de la inspección y que esta no consideró.

Efectivamente, a escasa distancia del local de nuestra representada, en la misma manzana y prácticamente deslindando por el patio trasero del inmueble en que se ubica el establecimiento explotado por nuestra representada, funciona otro local de esparcimiento, con generación de música envasada hacia el exterior y utilizando terrazas ubicadas en el mismo local, este se trata del pub-discoteca "Barrakuda" que funciona en Chorrillos nro. 1430, por lo que, necesariamente el ruido de fondo generado por este local de esparcimiento afectó el resultado de la inspección efectuada al pub-discoteque "Verde Amarella." Así entonces, la existencia de ese ruido de fondo, a diferencia de lo que señala el acta levantada por los funcionarios a

cargo de le inspección ambiental, influye notoriamente en el resultado final de la medición.

En el curso de esta investigación acreditaremos que en la oportunidad referida, esto es, el día 30 de mayo del año 2015, el local antes referido funcionó, por lo que, necesariamente generó ruido de fondo, el cual debe ser considerado en el acta final que se levante al efecto.

Nuestra representada jamás ha superado la norma de emisión de ruidos, impartiéndose expresas instrucciones al respecto al personal que labora para ella, tanto así que el día de la constatación de hechos y como acertadamente lo señala el acta levantada, se permitió el acceso tranquilo y pacífico a los funcionarios a cargo de la diligencia prestándoseles la mayor de las colaboraciones, todo ello, por cuanto el personal que laboraba ese día se encontraba en la seria convicción de cumplir con el mandato legal de emisión de sonido.

A mayor abundamiento, y una vez efectuada la inspección personal de los funcionarios de la Superintendencia del Medio Ambiente, nuestra representada a efectos de obtener mayor tranquilidad en el cumplimiento de la normativa, instruyo la realización de un informe técnico de evaluación acústica al prestigioso profesional Rodrigo Salort B. de la firma Acusmania, quien verifica que el local ubicado en Balmaceda nro. 2215 – C de la comuna de San Javier cumple la norma del DS Nº 38/2011 del Ministerio del Medio Ambiente sobre emisión de ruidos, en relación a los niveles máximos permitidos en los horarios diurno y nocturno para zona III, considerando dos puntos de recepción, uno de ellos coincidente al punto de recepción utilizado por los funcionarios de la superintendencia.

Este informe técnico a diferencia de la medición efectuada por los funcionarios de la Superintendencia se preocupa de definir el ambiente acústico del sector y descarta de la medición todo el ruido de fondo que pueda afectar a la misma, principalmente los provenientes del tráfico vehicular que afecta a la zona, el cual no es menor considerando que se trata de una de las principales arterias viales de la comuna de San Javier.

En definitiva, el ruido de fondo debe considerarse a efectos de determinar con exactitud el efecto sonoro provocado por la explotación del local de esparcimiento de mis representadas, al no hacerlo la muestra necesariamente resultará afectada.

Por último, conforme consta del informe de fiscalización ambiental levantado por los funcionarios de la Superintendencia del Medio Ambiente la medida se realizo desde segundo piso de la casa habitación del receptor, cuestión que no es precisa de acuerdo a la norma del Decreto Supremo 38/2011, por cuanto, el artículo 16 de dicha norma obliga a practicar las mediciones desde el punto receptor a una altura de 1,2 a 1,5 metros y

claramente la medición obtenida desde el segundo piso de una casa habitación no satisface esa obligación legal.

2.2. Fundamentos de Derecho

El inciso primero del artículo 55 de la ley 20.417 Orgánica de la Superintendencia del Medio Ambiente dispone que los hechos investigados y las responsabilidades de los infractores deberán acreditarse por cualquier medio de prueba admisible en derecho, los que serán valorados conforme a las reglas de la sana critica. Por su lado, conforme lo dispone el artículo 19 del Decreto Supremo 38/2011 debió necesariamente considerarse el ruido de fondo corrigiendo los valores obtenidos conforme al mecanismo de medición contemplado en la misma norma, principalmente midiendo el nivel de presión sonora de este, bajo las mismas condiciones de medición y seguidamente aplicando las correcciones ordenadas en la norma.

Al descartarse completamente en el informe de fiscalización ambiental levantado por los funcionarios de la Superintendencia del Medio Ambiente el ruido de fondo, pese a reconocer su presencia, aquel informe carece de la debida imparcialidad y atento a que el mismo se pondera conforma a las normas de la sana crítica, no será posible fundar en él la decisión de condenar a nuestra representada como infractora del artículo 35 letra h de la ley 20.417 en relación a las normas de presión sonora corregida.

Por su lado, y conforme lo adelantáramos, el informe de fiscalización ambiental igualmente infringe el artículo 16 del Decreto Supremo 38/2011, por cuanto, las mediciones se localizaron en el punto del receptor a una altura considerablemente superior a 1,2 a 1,5 metros, infringiéndose las letras a) y b) de dicha disposición legal.

Entonces, conteniendo sendos errores de medición el informe de fiscalización ambiental y ponderándose el mismo conforme a las reglas de la sana crítica aquel carece de la sustentación necesaria para dar por acreditados los cargos que se formulan a nuestra representada debiendo, por tanto, absolvérsela de los mismos.

En efecto, conforme lo ha resuelto acertadamente esta Superintendencia del Medio Ambiente en casos en que, al igual que el de la especie, se discutía acerca de la constatación de ruidos de fondos y la posibilidad de que estos hubieran afectado o alterado la medición, se ha señalado que "la observancia mínima de los estándares o normas que rigen la técnica utilizada en dicha medición, resulta fundamental para dar por probados o no, los hechos que fundan los cargos formulados", razón por la cual en dicho escenario se ha decidido que "(...) carece de menciones fundamentales para contextualizar la medición y verificar la integridad de su resultado final, correspondiendo absolver a Constructora Altius S.A. del cargo formulado".

De igual forma se ha resuelto por la resolución exenta nro. 16 de 14 de enero de 2014 dictada por esta Superintendencia en el expediente Rol D -18-2013, la que preciso "que en opinión de este Superintendente, la observancia mínima de los estándares o normas que rigen la técnica utilizada en dicha medición resulta fundamental para dar por probados o no los hechos que fundan los cargos formulados a través del Ord. U.I.P.S.Nº 669. De esta forma, necesariamente se ha de considerar la observancia mínima de los estándares o normas que rigen la técnica utilizada en dicha medición, resultando aplicable al efecto, específicamente el artículo 8º letra A número 4 del D.S. 146/97, que señala las especificaciones que debe tener el informe técnico acompañado a la medición, tales como la identificación de otras fuentes de ruido que influyan en la misma. Al respecto, cabe señalar que no <u>se constato en dicho informe la existencia de otras fuentes emisoras de ruido</u> <u>que hubieses podido influir en la medición, lo que tampoco se descartó.</u> En efecto, la ficha de medición de ruido no consigna si la presencia de ruido de fondo altera o no la toma de muestras, omisión que en el presente caso se estima fundamental para efectos de tener por demostrado el hecho infraccional."

En consecuencia, en mérito de todo lo expuesto, corresponde absolver a nuestra representada de los cargos formulados, o bien, y atento a los graves errores cometidos en la técnica de medición, en caso de condenar a nuestra representada, se le aplique el mínimo de la sanción dispuesta en las normas legales que regulan esta materia, esto es, multa en el mínimo legal.

POR TANTO, en mérito de lo expuesto y conforme a la normativa citada

AL SR. FISCAL DE LA SUPERINTENDENCIA DEL MEDIO AMBIENTE DE LA REGIÓN DEL MAULE, solicito tener por evacuados los descargos de mi representada en el presente procedimiento administrativo y en definitiva, absolver a mi representada del cargo formulado, dejando sin efecto el procedimiento sancionatorio incoado en la especie mediante, o bien condenarla al mínimo legal permitido, o a lo que estime pertinente, todo conforme a los hechos, a lo expuesto y al derecho correspondiente.

PRIMER OTROSÍ: Solicito al sr. Fiscal tener presente que nuestra personería para representar a la denominada "COMERCIAL E INVERSIONES SA SILVA Y CASTRO LIMITADA" consta de la escritura pública otorgada ante el Notario Público de San Javier, don Navarro Escala, de fecha, la que en copia legalizada se acompaña en este acto.

POR TANTO, Solicito tener por acompañada la referida escritura pública y tener presente nuestra representación de la sociedad denunciada.-

SEGUNDO OTROSÍ: Solicito al Sr. Fiscal tener por acompañado copia del informe técnico de evaluación acústica efectuado por don Rodrigo Salort B. ingeniero acústico, perteneciente a Acusmania, en junio de 2015 al local ubicado en Balmaceda nro. 2215 – C de la comuna de San Javier, esto es, al mismo local en el cual se constato la presunta infracción de nuestra representada.

TERCER OTROSÍ: Que a efectos de acreditar los hechos en los cuales se fundan nuestros descargos, solicitamos al señor Fiscal, desde ya, la práctica de las siguientes diligencias probatorias:

- a.) Se cite a declarar a las siguientes personas:
 - Eduardo Sebastián Agurto Cáceres, cédula nacional de identidad número 16.793.075-1, domiciliado en Manuel Torres nro. 1677, Villa don Matías de la comuna de San Javier.
 - José Luis Cáceres Rodríguez, cédula nacional de identidad número 16.005.551-0, domiciliado en El Boldo nro. 1945, Villa Mellares de la comuna de San Javier

fin Mille 1 23 5/3 4 509 - 5

CUARTO OTROSÍ: Solicito al Sr. Fiscal tener presente que en la etapa probatoria respectiva esta parte se valdrá de todos los medios probatorios que le franquea la ley a efectos de desvirtuar los cargos que le han sido formulados, solicitando desde ya se permita la rendición de prueba, estableciéndose un término al efecto.

17 3 (8870.3

INFORME TÉCNICO

EVALUACIÓN ACÚSTICA

DECRETO SUPREMO №38/11 MMA

Pub Restaurante Discotheque

Verde Amarela

Junio de 2015

PREPARADO POR	REVISADO POR	REVISION	A 🦻
HMS	RSB	00	CUSMANIA INGENIERIA ACUBTIGA
			L

INDICE

Índice	2
--------	---

1	introdu	cción	3
2	Objetivo	os	3
3	Anteced	dentes normativos	4
		ciones generales.	
4		ología	
		ción puntos receptores.	
		ciones de ruido	
		Ambiente acústico.	
		ación de niveles de ruido según D.S. № 38/11 del M.M.A.	
5		siones	
i.		Fichas de información de medición de ruido	
	,		
		Fichas de medición de ruido por lugar de medición	23
		Fichas de evaluación de ruido por lugar de medición	27
		Fichas de georreferenciación de la medición de ruido	31
		Certificados de Calibración	

1 INTRODUCCIÓN

El presente informe entrega los resultados de la evaluación acústica realizada al Pub Restaurante Discotheque Verde Amarela, ubicado en avenida Balmaceda 2215, comuna de San Javier, de acuerdo al Decreto Supremo Nº38/2011 Ministerio del Medio Ambiente "Norma de Emisión de Ruidos Generados por Fuentes que Indica".

2 OBJETIVOS

• Realizar mediciones de ruido en puntos receptores sensibles existentes al exterior del local para poder evaluar los niveles de inmisión de ruido hacia la comunidad cumpliendo con los requerimientos establecidos en el D.S. Nº 38/11 del MMA.

3 ANTECEDENTES NORMATIVOS

3.1 DEFINICIONES GENERALES

- Decibel (dB): unidad adimensional usada para expresar 10 veces el logaritmo de la razón entre una cantidad medida y una cantidad de referencia.
- Decibel A (dB(A)): es la unidad adimensional usada para expresar el nivel de presión sonora, medido con el filtro de ponderación de frecuencias A.
- Fuente Emisora de Ruido: toda actividad productiva, comercial, de esparcimiento y de servicios, faenas constructivas y elementos de infraestructura que genere emisiones de ruido hacia la comunidad. Se excluyen de esta definición las actividades señaladas en el artículo 5º (redes de infraestructura de transporte como, por ejemplo, el tránsito vehicular, ferroviario y marítimo, tránsito aéreo, la actividad propia del uso de viviendas y edificaciones habitacionales, tales como voces, circulación y reunión de personas, mascotas, electrodomésticos, arreglos, reparaciones domésticas y similares realizadas en este tipo de viviendas, el uso del espacio público, como la circulación vehicular y peatonal, eventos, actos, manifestaciones, propaganda, ferias libres, comercio ambulante, u otros similares, Sistemas de alarma y de emergencia, voladuras y/o tronaduras.
- **Nivel de Presión Sonora (NPS)**: se expresa en decibeles (dB) y se define por la siguiente relación matemática:

NPS = $20 \log (P 1/P) dB en que$:

P 1 : valor de la presión sonora medida; y

P : valor de la presión sonora de referencia, fijado en 2x10 -5 (N/m²)

- Nivel de Presión Sonora Continuo Equivalente (NPSeq): es aquel nivel de presión sonora constante, expresado en decibeles A, que en el mismo intervalo de tiempo, contiene la misma energía total (o dosis) que el ruido medido.

- Nivel de Presión Sonora Corregido (NPC): es aquel nivel de presión sonora continuo equivalente, que resulta de aplicar el procedimiento de medición y las correcciones establecidas en la presente norma.
- Nivel de Presión Sonora Máximo (NPSmáx): es el NPS más alto registrado durante el período de medición, con respuesta lenta.
- **Nivel de Presión Sonora Mínimo (NPSmín):** es el NPS más bajo registrado durante el período de medición, con respuesta lenta.
- Receptor: toda persona que habite, resida o permanezca en un recinto, ya sea en un domicilio particular o en un lugar de trabajo, que esté o pueda estar expuesta al ruido generado por una fuente emisora de ruido externa.
- Respuesta Lenta: es la respuesta temporal del instrumento de medición que evalúa la energía media en un intervalo de 1 segundo.
- Ruido de Fondo: es aquel ruido que está presente en el mismo lugar y momento de medición de la fuente que se desea evaluar, en ausencia de ésta. Éste corresponderá al valor obtenido bajo el procedimiento establecido en la presente norma.
- Ruido Ocasional: es aquel ruido que genera una fuente emisora de ruido distinta de aquella que se va a medir, y que no es habitual en el ruido de fondo.

La norma con carácter de ley, D.S. Nº 38/11 del MMA, establece límites máximos de los niveles de ruido generado por fuentes fijas en las zonas urbanas y rurales. Existen cuatro tipos distintos de zonas urbanas y sólo un tipo de zona rural, con diferentes límites en cada una, especificándose los límites en horario de diurno y los límites en el horario nocturno. Cada zona se define a partir de los usos de suelo específicos de acuerdo a los instrumentos de planificación territorial.

Los límites de ruido para cada zona y sus horarios se especifican en la siguiente tabla:

Niveles Máximos de Presión Sonora Corregidos NPC en dB(A) lento				
Tipo de Zona	de 7 a 21 horas	de 21 a 7 horas		
Zona I	55	45		
Zona II	60	45		
Zona III	65	50		
Zona IV	70	70		
Rural	Menor valor entre: - Rui	ido de Fondo + 10 dBA C Zona III		

Tabla 1: Límites máximos de ruido según D.S. Nº 38/11 del MMA

Para este caso, de acuerdo al plano regulador de la comuna de San Javier, tanto los receptores como la fuente emisora se ubican en una zona señalada como ZU5 ZONA URBANA 5, la cual permite uso de suelo Residencial, Equipamiento, e infraestructura. Homologando lo anterior a lo señalado en el D.S. 38/11 del MMA, esta zona corresponde a ZONA III, cuyos máximos permitidos se muestran en la tabla 1.

4 METODOLOGÍA

4.1. Ubicación puntos receptores

En terreno se realizó una inspección visual de aquellos puntos receptores sensibles a recibir algún tipo de impacto acústico debido al funcionamiento del Pub Restaurante Discotheque. En esta inspección se determinaron dos receptores, R1 y R2.

La ubicación de los puntos receptores R1 y R2 según coordenadas está descrita en la Tabla 2.

Punto	Descripción	Coord, UTM 19 H		
i diito	Descripcion	Este	Norte	
R1	Vivienda ubicada aprox. a 30 metros del pub restaurante discotheque Verde Amarela (salida de escape nororiente del local). Manuel Antonio Matta 1346.	252.878	6.057,484	
R2	Vivienda ubicada aprox. a 42 metros del pub restaurante discotheque Verde Amarela (salida de escape nororiente del local). Manuel Antonio Matta 1338.	252.884	6.057.500	

Tabla 2 Ubicación puntos de medición (coordenadas UTM)

En la Figura 1 se muestra una fotografía aérea de la ubicación de los puntos receptores.

Figura 1. Fotografía aérea del pub restaurante discotheque Verde Amarela y puntos receptores evaluados

A continuación se presentan imágenes de los puntos de medición R1 y R2.

Figura 2 Punto de medición R1.

Figura 3 Punto de medición R2.

Las mediciones de ruido fueron realizadas en el deslinde de la propiedad de los receptores hacia la vereda, por lo tanto estas mediciones corresponderán a mediciones externas, aplicando por ende la metodología señalada por la normativa para este tipo de mediciones.

4.2 Mediciones de ruido

Se realizaron mediciones de ruido el día 26 de junio de 2015, entre las 20:00 hrs y las 20:57 hrs, para el período diurno y entre las 23:04 hrs. y las 23:57 hrs. para el período nocturno. Los descriptores utilizados en las mediciones son Nivel de Presión Sonora Continuo Equivalente (NPSeq), Nivel de Presión Sonora Máximo (NPSmáx) y Nivel de Presión Sonora Mínimo (NPSmín), todos con filtro de ponderación "A" con respuesta lenta. Se obtuvieron registros de 1 minuto de cada uno de los descriptores mencionados, tal como lo indica la normativa para mediciones externas.

Para las mediciones, se utilizó un sonómetro integrador marca Quest, modelo SoundPro SE/ DL, número de serie DLH0050020, el cual fue debidamente calibrado antes de la medición realizada, utilizando un calibrador marca Quest modelo QC-10, número de serie QIH0040021. El instrumento se ubicó a 1,5 m sobre el nivel del piso, a lo menos a 1,0 m de paredes, y a 1,5 m de las ventanas o puertas, según lo estipula el D.S. Nº 38/11 MMA.

Para el periodo diurno, en que el local funciona como pub-restaurante, se fijó el volumen de los equipos de amplificación de tal forma que en el centro del local, se obtuvo un registro promedio de tres mediciones de NPSeq =68,1 dB(A) (puntos separados 0,5 metros entre si y alejados de superficies reflectantes).

En tanto, para el periodo nocturno, en que el local funciona como discotheque, se fijó el volumen de los equipos de amplificación de tal forma que en el centro del local, se obtuvo un registro promedio de tres mediciones de NPSeq ≈93,7 dB(A) (puntos separados 0,5 metros entre si y alejados de superficies reflectantes).

4.2.1 Ambiente acústico

El ambiente acústico existente durante las mediciones se conformó principalmente por la emisión de ruido de los equipos de amplificación ubicados al interior del pub restaurante discotheque Verde Amarela, conformado por un rack que contiene amplificadores de potencia, ecualizadores, y mesa de sonido. En cuanto a los parlantes existentes podemos destacar 2 cajas Mackie SR-1503 de 500 watts c/u, y 2 bajos RCF de 1200 watts cada uno.

El ruido de fondo corresponde a las emisiones de ruido provenientes del tráfico vehicular por avenida Balmaceda y calle Manuel Antonio Matta.

Es importante señalar que el nivel de ruido de fondo fue predominante en ambos periodos de mediciones (diurno, y nocturno), por lo cual al realizar las mediciones en los receptores se descartaron todos aquellos eventos relacionados con el paso de vehículos en las cercanías de los puntos de medición, pausando la medición cuando estos eventos ocurrían.

Los registros de las mediciones de ruido realizadas en los receptores ante la presencia de las fuentes mencionadas (fichas de información de medición de ruido, fichas de medición de ruido por lugar de medición, fichas de georreferenciación de la medición de ruido), se entregan en el anexo de este informe.

4.3 Evaluación de niveles de ruido según D.S. Nº 38/11 del M.M.A.

De acuerdo a lo indicado en el D.S. 38/11 del MMA, se procede a evaluar los niveles de ruido en los puntos receptores R1 y R2, en periodo diurno y nocturno. En el anexo de este informe, se entregan las fichas de evaluación de ruido por lugar de medición.

En la siguiente tabla se resume el resultado de esta evaluación:

Evaluación DS38/11 del MMA						
		Pub Restau	rante Discothe	que Verde Ama	rela	
	Periodo Diurno			Periodo Nocturno		
Punto	NPC (dBA)	Limite DS 38 (dBA) ZONA III	¿Cumple?	NPC (dBA)	Límite DS 38 (dBA) ZONA III	¿Cumple?
R1	Nula (*)	65	SI	Nula (*)	50	SI
R2	Nula (*)	65	SI	Nula (*)	50	SI

Tabla 3: Evaluación del NPC según el D.S. Nº 38/11 del MMA.

De la tabla anterior podemos señalar que en los puntos receptores R1 y R2 tanto para el periodo de evaluación diurno como nocturno, pese haber dado como resultado un NPC nulo (medición NULA), se verifica el cumplimiento de la normativa de ruido ambiental D538/11 del MMA, en cuanto a niveles de ruido máximos permitidos para este tipo de zona (Zona III). Lo anterior, debido a que la normativa indica que si los niveles de ruido están bajo los límites máximos permisibles, se considerará que la fuente cumple con la normativa, aun cuando la medición sea nula (artículo 19 letra f del D538/11 del MMA). En este caso, para el periodo diurno el NPSeq promedio obtenido tanto para el punto receptor R1 como receptor R2 fue de 52 dBA, valor que está por debajo a lo exigido por la normativa para esta zona en el periodo diurno (65 dBA). Para el periodo nocturno el NPSeq promedio obtenido para el punto receptor R1 fue de 49 dBA, y para el punto receptor R2 fue de 44 dBA, valores que están por debajo a lo exigido por la normativa para esta zona en el periodo nocturno (50 dBA).

^(*) Ver fichas de evaluación de ruido por lugar de medición en anexo informe.

5 CONCLUSIONES

De la evaluación de ruido ambiental realizada en el entorno del pub restaurante discotheque Verde Amarela, ubicado en avenida Balmaceda 2215, comuna de San Javier, de acuerdo al Decreto Supremo №38/2011 Ministerio del Medio Ambiente "Norma de Emisión de Ruidos Generados por Fuentes que Indica", en puntos receptores cercanos, podemos concluir lo siguiente:

- Existe cumplimiento referente a los límites máximos permitidos en horario diurno y nocturno para Zona III, según la normativa de ruido ambiental en los puntos receptores R1 y R2.
- Se recomienda mantener el volumen al interior del local, de tal forma de no sobrepasar el nivel de ruido medido en el centro de la pista de NPSeq =68,1 dB(A) en horario pub restaurante, y NPSeq =93,7 dB(A) en horario discotheque.
- Como medida de mitigación se recomienda cambiar la puerta de escape ubicada en el sector nororiente del local por una puerta de mayor masa (por ej, puerta metálica con lana de vidrio en su interior), o bien la instalación de una mampara. En ambos casos se debe procurar sellar aberturas con sellos especiales para puertas.

Rodrigo Salort B.

Ingeniero Acústico

Acusmania Ingeniería Acústica

Anexo

Fichas de medición

IDENTIFICACIÓN DE LA FUENTE EMISORA DE RUIDO

Nombre o razón social	Sociedad Comercial e Inversiones Da Silva y Castro Limitada
Giro	Restaurante Turismo y Discotheque
RUT	76.273.789-2
Dirección	Av. Balmaceda 2215
Comuna - Ciudad	San Javier
Teléfono	+56 9 89035537

Tipo de actividad/díspositivo	Restaurante Turismo y Discotheque
Zonificación	□ I □ II □ III □ IV □ Rural
Uso de Suelo 1PT	ZU5 ZONA URBANA 5

CONDICIONES DE MEDICIÓN: Horario Diurno			
Fecha de medición	26/06/15		
Periodo de medición			
Temperatura (°C)	10		
Humedad (%)	70		
Velocidad del viento (m/s)			
Hora de inicio de medición	20:00 hrs.		
Hora de término de medición	20:11 hrs.		
Nombre profesional de terreno	Rodrigo Ariel Salort Bizama		

	INSTRUMENTAL	. DE MEDICIÓN		
Identificación sonómetro	Marca: Quest			
	Modelo: SoundPro SE/ DL			
	N° de serie: DLH0050020			
Identificación calibrador	Marca: Quest			
acústico	Modelo: QC-10			
	N° de serie: QIH00	40021		
Ponderación de frecuencia	A	Ponderación Temporal	Slow	
Calibración en terreno	🛮 Antes de medir		☐ Después de medir	

IDENTIFICACIÓN DEL RECEPTOR: R1		
Dirección	Manuel Antonio Matta 1346	
Comuna	San Javier	
Piso	1	
Identificación ruido de fondo	Tráfico vehicular por av. Balmaceda y calle Manuel Antonio Matta.	
Zonificación DS38	□ I □ II 図 III □ IV □ Rural	
Usos de suelos IPT	ZUS ZONA URBANA 5	

IDENTIFICACIÓN DE LA FUENTE EMISORA DE RUIDO

Nombre o razón social	Sociedad Comercial e Inversiones Da Silva y	
	Castro Limitada	
Giro	Restaurante Turismo y Discotheque	
RUT	76.273.789-2	
Dirección	Av. Balmaceda 2215	
Comuna - Ciudad	San Javier	
Teléfono	+56 9 89035537	

Tipo de actividad/dispositivo	Restaurante Turismo y Discotheque
Zonificación	🗔 I 🗆 II 🖾 III 🗆 IV 🗀 Rural
Uso de Suelo IPT	ZU5 ZONA URBANA 5

CONDICIONES DE MEDICIÓN: Horario Nocturno		
Fecha de medición	26/06/15	
Periodo de medición	☐ 7:00 a 21:00 hrs. 21:00 a 7:00 hrs.	
Temperatura (°C)	5	
Humedad (%)	80	
Velocidad del viento (m/s)	•	
Hora de inicio de medición	23:04 hrs.	
Hora de término de medición	23:16 hrs.	
Nombre profesional de terreno	Rodrigo Ariel Salort Bizama	

	INSTRUMENTAL	DE MEDICIÓN		
	Marca: Quest entificación sonómetro Modelo: SoundPro SE/ DL			
Identificación sonómetro				
	N° de serie: DLH0050020			
Tall and the state of the state	Marca: Quest			
Identificación calibrador	Modelo: QC-10 N° de serie: QIH0040021			
acústico				
Ponderación de frecuencia	А	Ponderación Temporal	Slow	
Calibración en terreno	Antes de medir		☐ Después de medir	

	DENTIFICACIÓN DEL RECEPTOR; R1	
Dirección	Manuel Antonio Matta 1346	
Comuna	San Javier	
Piso	1	
Identificación ruido de fondo	Tráfico vehicular por av. Balmaceda y calle Manuel Antonio Matta	
Zonificación DS38	□ I □ II 図 III □ IV □ Rurəl	
Usos de suelos IPT	ZU5 ZONA URBANA 5	

IDENTIFICACIÓN DE LA FUENTE EMISORA DE RUIDO

Nombre o razón social	Sociedad Comercial e Inversiones Da Silva y Castro Limitada
Giro	Restaurante Turismo y Discotheque
RUT	76.273.789-2
Dirección	Av. Balmaceda 2215
Comuna - Ciudad	San Javier
Teléfono	+56 9 89035537

Tipo de actividad/dispositivo	Restaurante Turismo y Discotheque
Zonificación	□ I □ II 図 III □ IV □ Rural
Uso de Suelo IPT	ZUS ZONA URBANA 5

CONDICIONES DE MEDICIÓN: Horario Diurno		
Fecha de medición	26/06/15	
Periodo de medición	☑ 7:00 a 21:00 hrs. ☐ 21:00 a 7:00 hrs.	
Temperatura (°C)	10	
Humedad (%)	70	
Velocidad del viento (m/s)	•	
Hora de inicio de medición	20:18 hrs.	
Hora de término de medición	20:26 hrs.	
Nombre profesional de terreno	Rodrigo Ariel Salort Bizama	

INSTRUMENTAL DE MEDICIÓN			
	Marca: Quest		·
Identificación sonómetro	Modelo: SoundPro SE/ DL		
	N° de serie: DLH00	50020	
Identificación calibrador	Marca: Quest	······································	
acústico	Modelo: QC-10		•
acustico	N° de serie: QIH0040021		
Ponderación de frecuencia	A	Ponderación Temporal	Slow
Calibración en terreno	Antes de medir		Después de medir

10	DENTIFICACIÓN DEL RECEPTOR: R2	
Dirección	Manuel Antonio Matta 1338	
Comuna	San Javier	
Piso	1	
Identificación ruido de fondo	Tráfico vehicular por av. Balmaceda y calle Manuel Antonio Matta.	
Zonificación DS38	□ I □ II ☑ III □ IV □ Rural	
Usos de suelos IPT	ZU5 ZONA URBANA 5	

IDENTIFICACIÓN DE LA FUENTE EMISORA DE RUIDO

Nombre o razón social	Sociedad Comercial e Inversiones Da Silva y
	Castro Limitada
Giro	Restaurante Turismo y Discotheque
RUT	76.273.789-2
Dirección	Av. Balmaceda 2215
Comuna - Ciudad	; San Javier
Teléfono	+56 9 89035537

Tipo de actividad/dispositivo	Restaurante Turismo y Discotheque
Zonificación	□ I □ II ☑ III □ IV □ Rural
Uso de Suelo IPT	ZUS ZONA URBANA 5

CONDICIONES DE MEDICIÓN: Horario Nocturno		
Fecha de medición	26/06/15	
Periodo de medición	☐ 7:00 a 21:00 hrs. ☑ 21:00 a 7:00 hrs.	
Temperatura (°C)	5	
Humedad (%)	80	
Velocidad del viento (m/s)	-	
Hora de inicio de medición	23:25 hrs.	
Hora de término de medición	23:33 hrs.	
Nombre profesional de terreno	Rodrigo Ariel Salort Bizama	

	INSTRUMENTAL	. DE MEDICIÓN				
·	Marca: Quest					
Identificación sonómetro	Modelo: SoundPro SE/ DL					
	N° de serie: DLH0050020					
Identificación calibrador	Marca: Quest					
	Modelo: QC-10					
acustico	N° de serie: QIH00	40021				
Ponderación de frecuencia	Α	Ponderación Temporal	Slow			
Calibración en terreno	🛮 Antes de medir		Después de medir			

10	DENTIFICACIÓN DEL RECEPTOR: R2						
Dirección	Manuel Antonio Matta 1338						
Comuna	San Javier						
Piso	1						
ldentificación ruido de fondo	Tráfico vehicular por av. Balmaceda y calle Manuel Antonio Matta.						
Zonificación DS38	□ I □ II 図 III □ IV □ Rural						
Usos de suelos IPT	ZUS ZONA URBANA 5						

Identificación del lugar de medición del Receptor R1 - Periodo Diurno Receptor R1: Vivienda ubicada en calle Manuel Antonio Matta 1346. Medición realizada en el deslinde de la propiedad con la vereda.

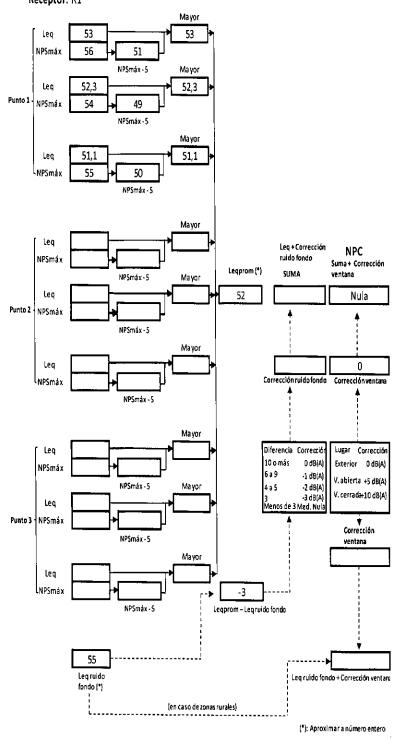
□ Medición Int			
☐ Medición Int	erna	Medición Externa	
Punto 1	Leq 53 52,3 51,1	NPSmin 51,2 50,4	NPSmáx 56 54
Punto 2	Leq	NPSmín	NPSmáx
Punto 3	Leq	NPSmin	NPSmáx
Leq		gistro de ruido de fondo 26-06-2015 Hora: 2 10 55 25 Observaciones	15
	Ruido de fondo Balmaceda y ca	correspode a flujo vehicular por	av

Identificación del lugar de medición del Receptor R1 - Periodo Nocturno Receptor R1: Vivienda ubicada en calle Manuel Antonio Matta 1346. Medición realizada en el deslinde de la propiedad con la vereda.

☐ Medición In	terna	☑ Medición Exte	rna
— Wedicion in	ici ila	- Wedlebit Exte	
Punto 1	Leq 49,1 49,3	NPSmín 44,1 44,7	NPSmáx 50,7 50,4
Punto 2	Leq	NPSmín	NPSmáx
Punto 3	Leq	NPSmín	NPSmáx
Leq		26-06-2015 Hora: 10 50 25	23:35
	Ruido de fondo Balmaceda y ca	Observaciones o correspode a flujo vehicula alle Matta	r por av

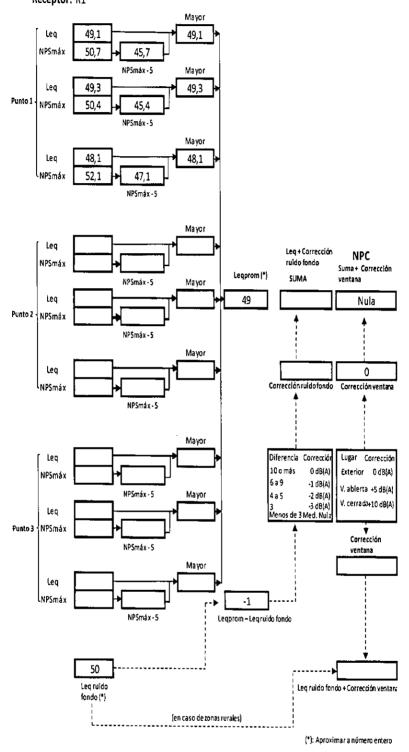
Identificación del lugar de medición del Receptor R2 - Periodo Diurno Receptor R2: Vivienda ubicada en calle Manuel Antonio Matta 1338. Medición realizada en el deslinde de la propiedad con la vereda.

☐ Medición Int	erna	Medición Externa	
Punto 1	52,4 52,1 51,9	NPSmín 50,7 50	NPSmáx 54,8 53,9 54,5
Punto 2	Leq	NPSmín	NPSmáx
Punto 3	Leq	NPSmín	NPSmáx
Leq		26-06-2015 Hora: 20:2	15 30
	Ruido de fondo Balmaceda y ca	Observaciones o correspode a flujo vehicular por av alle Matta]

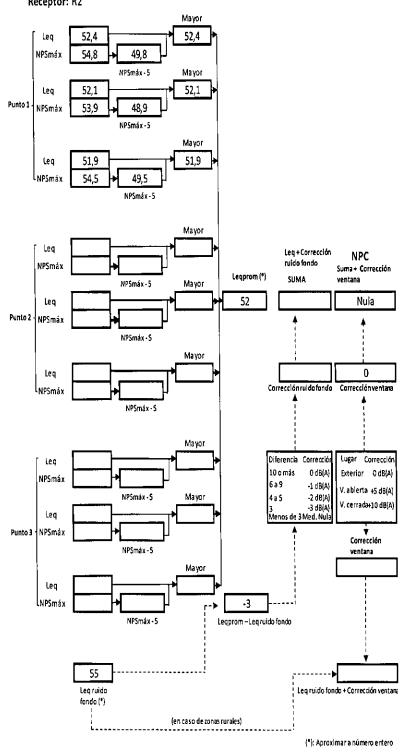


Identificación del lugar de medición del Receptor R2 - Periodo Nocturno Receptor R2: Vivienda ubicada en calle Manuel Antonio Matta 1338. Medición realizada en el deslinde de la propiedad con la vereda.

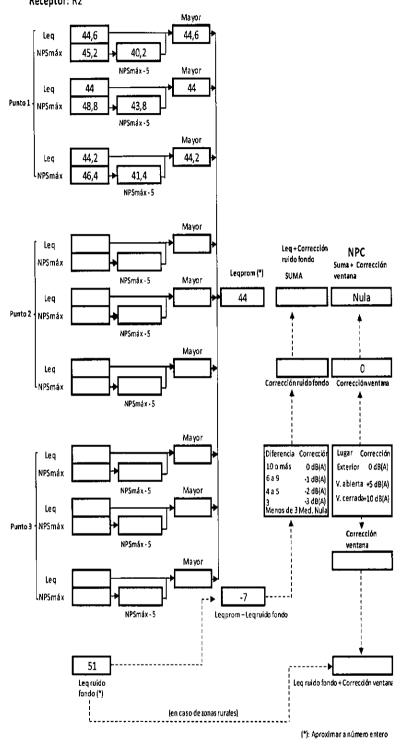
☐ Medición Int	terna	⊠ Medio	ción Externa	
Punto 1	Leq 44,6 44	NPSmír 43,9 41 42,9		NPSmáx 45,2 48,8 46,4
Punto 2	Leq	NPSmíi	n 	NPSmáx
Punto 3	Leq	NPSmí	n 	NPSmáx
Leq	5 50 20	gistro de ruido de fo 26-06-2015 Hora: 10 51 25 Observaciones	23:47	15
	Balmaceda y ca		cincular por dv	



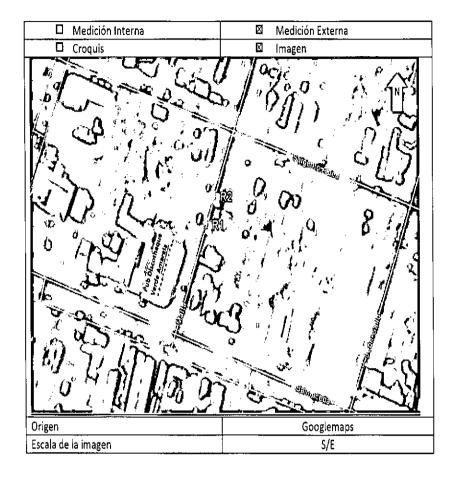
Periodo: Diumo Receptor: R1



Periodo: Nocturno Receptor: R1



Periodo: Diurno Receptor: R2



Periodo: Nocturno Receptor: R2

Ficha de la georreferenciación de la medición de ruido

Símbolo	Descripción
Pub Discotheque Verde Amarela	Local a evaluar. Fuentes de ruido: equipos de amplicación del local.
R1	Vivienda ubicada en calle Manuel Antonio Matta 1346, a 30 metros del pub discotheque Verde Amarela (salida de escape nororiente del local). Medición realizada en el deslinde de la propiedad con la vereda.
R2	Vivienda ubicada en calle Matta 1338, a 42 metros del pub discotheque Verde Amarela (salida de escape nororiente del local). Medición realizada en el deslinde de la propiedad con la vereda.

Certificados de Calibración

CERTIFICADO DE CALIBRACIÓN

Cartificace of calibration Côdigo: CAL20150012

coder Página 1 de 1 páginas (más anexo) Page _ o(_ pages (plus document atlached)

ISP - Laboratorio de Calibración Acústica ISP.

Sección Ruido y Vibraciones - Departamento Salud Ocupacional - Instituto de Salud Pública Marathon 1000 - Nuñoa - Santiago Teléfono 56 2 2575 5561 www.lspeh.et - rafibracionagusticas ispeh.et

INSTRUMENTO

Calibrador

FABRICANTE

QUEST

MODELO Model

QC-10

Número de serie Sertei number

QIH0040021 Número de serie

PETICIONARIO

SERVICIOS ACÚSTICOS LTDA.

FECHA DE CALIBRACIÓN Celibration date

23 - 04 - 2015

PROCEDIMIENTO

TÉCNICO DE CALIBRACIÓN Calibration Technician

Signatario autorizado Authorized signatory

Fecha de emisión 23 – 04 – 2015 Date of issue

Anexo Código: CAL20150012 Página I de 2 páginas

- CONDICIONES AMBIENTALES DE MEDIDA: $T = 23^{\circ}C \pm 2^{\circ}C / 11.R. = 50\% \pm 20\% / P = 95kPa \pm 10kPa$
- CONDICIONES AMBIENTALES DE REFERENCIA: T = 23°C / H.R. = 50% / P = 101,325kPa
- PROCEDIMIENTO DE CALIBRACIÓN: IT 512 03 007
- ESPECIFICACIÓN METROLÓGICA APLICADA:

Las tolerancias aplicadas son las establecidas en el Anexo B la norma UNE-EN 60942:2005, de Calibradores Acústicos. Dichas tolerancías son las establecidas para un grado de precisión del instrumento CLASE 1.

PATRONES UTILIZADOS EN LA CALIBRACIÓN:

Los patrones utilizados garantizan su trazabilidad a través de laboratorios nacionales acreditados por laboratorios acreditados internacionalmente. La trazabilidad de las medidas efectuadas se refiere a nuestro de referencia calibrados periódicamente con los patrones de los laboratorios de Bruel & Kjaer Dinamaca de los patrones de los laboratorios de Bruel & Kjaer Dinamaca de los patrones de los laboratorios de Bruel & Kjaer Dinamaca de los laboratorios de laboratorios de Bruel & Kjaer Dinamaca de los laboratorios de los labor por DANAK) y Agilent Technologies (acreditado internacionalmente).

OBSERVACIONES:

Todos los resultados están referidos a las condiciones ambientales de referencia metrológica aplicada.

RESUMEN DE RESULTADOS:

	~ ~ ~	
Apartados de la especificación metrológica Norma UNE-EN 60942:2005	Jan.	Resultado
Niveles de presión acústica (Apartados 5.22 y 5.23 – Tabla I)	old nominal	POSITIVO
Privates of presion newsition (Apparation 2022 y 2023 = Table 1)	Listabilidad	POSITIVO
Distorsión total (Apartado 5.5 - Tabla 6)	7,	POSITIVO
Frecuencia (Apartado 5.3.2 - Tabla 3)	Valor nominal	POSITIVO
7/1/		

Resultado POSITIVO significa que el instrumenta comfile con la especificación metrológica aplicada.

Resultado NEGATIVO significa que el instrumenta comple con la especificación metrológica aplicada.

Resultado NEGATIVO significa que el ensayo no estable de al instrumento.

Laboratorio de Calibración de Instrumentos Acústicos Mandos 1800 Saños Sajo Teléfono (196) 2 - 2373 5361 ann erakal

Anexo Código: CAL20150012 Página 2 de 2 páginas

NIVEL DE PRESIÓN SONORA

Valor	 dal	NDC

NPS (dB)	Frecuencia (Hz)	Nivel Leido (dB)	Desviación (dB)	Tolerancia Positiva (dB)	Tolerancia Negativa (dB)	Incertidumbe (dB)
114.00	1000.00	113.78	-0.22	0,40	-0.40	± 0.13

Estabilidad del NPS

NPS (dR)	Frecuencia (Hz)	Nivel Leido (dB)	Nivel Esperado (dB)	Desviación (dB)	Tolerancia (dB)	(dB)
114.00	1000.00	0.00	0,00	0.00	0.10	AMI.

<u>DISTORSIÓN</u>

NPS (dB)	Frecuencia (117)	Distorsión Leida (%)	Distorsión Esperada (%)	Desviación (%)	Tolgan	recatidambre (%)
11105	1000 06	0.214	0.000	0.714 6	(D,	+0.007 1

FRECUENCIA

Valor nominal de la Frecuencia

	NPS (dB)	Frequencia (Hz)	Frecuencia Exacta (Hz)	Freenucke) Luciu	estiación (Hz)	Tolerancia Positiva (Hz)	Tolerancia Negativa (H/)	Incertidumbre (Hz)
	114.00	1000.00	1000.00	998.52	-1.48	10.00	-10.00	:1 0,50
			112	Br				
			$\mathcal{C} _{\mathcal{O}_{\bullet}}$)				
			Ou.					
		d	>					
	ć	1/2						
	16.	γ ₂ ,						
	181	7						
2	1/4							
0	7,							
	•							
Si a la source	rtis de la linea di	orece is onlebra i	RROR samife	que la lectura, et	pendicia por la in	cendambre de la	medición, no est	á dentro de las tok

Si a la equienta de la linea aparece la palabra ERROR significa que la lectura, expandida por la incendiambre de la medición, no está dentro de las relestacions en la especificación mierológica aplicada. Las sinidades de medida de son referidos a 20 JPPa.

Código:

CERTIFICADO DE CALIBRACIÓN

Código: SON20150018 Página 1 de 6 páginas

LABCAISP

LABORATORIO DE CALIBRACIÓN DE INSTRUMENTOS ACÚSTICOS INSTITUTO DE SALUD PÚBLICA DE CHILE

Marathón 1000 – Ñuñoa – Santiago – Chile. Tel.: (56 – 2) 2575 55 61. www.ispoh.cl

: QUEST

: QUEST

INSTRUMENTO

: SOUNDPRO SE/DL MODELO INSTRUMENTO

NÚMERO SERIE INSTRUMENTO : DLH0050020

NÚMERO SERIE MICRÓFONO : 42357

MARCA MICRÓFONO

FECHA CALIBRACIÓN

PETICIONARIO

TÉCNICO

MODELO MICRÓFONO

Laboratario de Calibración de Instrumentos AcúsGros Instituto de Salud Pública Maradón 1000 - Nuños - Sontago - Chile Tel: (56 - 2) 578 55 61 wga rgg/ cl

Código: SON20150018 Página 2 de 6 páginas

- · CONDICIONES AMBIENTALES DE MEDIDA: T = 23°C ± 2°C / H.R. = 50% ± 20% / P = 95kPa ± 10kPa
- CONDICIONES AMBIENTALES DE REFERENCIA; T = 23°C / H.R. = 50 %/P = 101.325kPa
- PROCEDIMIENTO DE CALIBRACIÓN:
- ESPECIFICACIÓN METROLÓGICA APLICADA: Las tolerancias aplicadas son las establecidas en la Norma IEC 61672-3:2006 de Sonómetros. Dichas tolerancias son las indicadas para un grado de precisión del instrumento Clase2.
- PATRONES UTILIZADOS EN LA CALIBRACIÓN: PATRONES UTILIZADOS EN LA CALIDINACION:

 Los patrones utilizados garantizan su trazabilidad a través de Laboratorios nacionales acreditados por el INN o por Laboratorios Internacionales acreditados por cualquiera de los organismos de acreditación liturantes de acuerdo EAL — Calibración. La trazabilidad de las medidas efectuadas se refiere a nuestros patrones referencia calibrados periódicamente con los patrones de los laboratorios de Brûci. & Kjaer. Dimendiad (acreditado por DANAK y/o ENAC) por ahora) e INTA (acreditado por ENAC).
- RESUMEN DE RESULTADOS:

		1114.
Apartado de la específica (Ref. IEC 61672	Resultado	
Indicación a la frecuencia de comprobación de la cal	ibración (Apartado 9)	POSTTIVO
Ponderación frecuencial con señales acústicas	Pondemeión frecuencial	N/A
(Apartedo 11)	Ponderación frecuencia V	POSITIVO
	Ponderación frecuncial	POSITIVO
Ponderación (recuencial con señales eléctricas	Ponderación fro ochcia K	POSITIVO
(Apartade 12)	Pondemeion Recursorial lineal	POSITIVO
	Ponde (b) Dr. Trebuencial Z	POSITIVO
Ponderaciones temporales y frecuenciales a 1 kHz	Problem criones frecuenciales	POSITIVO
(Apartado 13)	Pondere liones temporales	POSITIVO
Linealidad de nivel en ei margen de nivel de refereo	ck-(sportado 14)	POSITIVO
Linealidad de nivel incluyendo el selector de maryo	nivel (Apartado 15)	POSITIVO
	Ponderación temporal Fast	POSITIVO
Respuesta a tren de ondas (Apartado 16)	Ponderación temporal Slow	POSITIVO
(1)	Nivel promediado en el tiempo	POSITIVO
Nivel de sonido con ponderación (o xivo (Aparta	do 17)	POSITIVO
Indicación de sobrecarga (Arab. (o 18)		NEGATIVO

- significa que el instrumento cumple con la especificación metrológica aplicada.
- ATIVO significa que el instrumento no cumple con la especificación metrológica aplicada. Significa que el ensayo no es aplicable ni instrumento.

Luboratorio de Calibración de Instrumentes Acústicos Enstituto de Salud Pública Marathón 1000 – Nutona – Santago - Chile Tci : (56 – 2) 575 55 61 www.mpd-cl

Código: SON20150018 Página 3 de 6 páginas

INDICACIÓN A	1.	CRECHENCIA	DE	CALIDI		ÁΝ
INDICACION A	LΛ	FREGUENCIA	Dr.	CALIBI	KACI	UΝ

NPA aplicado (dB)	Precuencia (Hz)	Ponderación Frecuencial (dB)	Corrección (dB)	Ajustado	Nivel Leido (dB)	Nivel Esperado (dB)	Desvinción (dB)	U (dB)	Tolerancia positiva (dB)	Tolerancia negativa (dB)
113.98	0001	0	0	NO	114,20	113.98	0.22	0.16	1.4	-1,4
113.98	1000	0	0	SI	114,00	113.98	0.02	0.16	1.4	-1.4

PONDERACIÓN FREQUENCIAL ACÚSTICA

Ponderación Frecuencial C

NPA aplicado (dB)	Frecuencia (Hz)	Ponderación Frecuencial (dB)	Corrección (dB)	Nivel Leido (dB)	Nivel Esperado (dB)	Desvisción (dB)	(1 (dB)	Tolerancia positiva (dB)
114.02	63	-0.8	0	113.40	113.14	0.26	0.20	2.5
114.00	125	-0.2	0	113,90	113.72	0.18	0.20	2
113,97	250	0	0	[14,00	113.89	6.11	0.20	1.9
113.96	500	0	0	113.95	113.88	0.07	0.23	1,9
113.98	1000	0	0	113,90				
113.98	2000	-0.2	0.2	113,60	113.50	0.10	0.20	2.6
113.87	4000	8.0-	1	112.50	111.99	0.51	8.20	3.6
114,01	8000	-3	3	106.35	107.93	-1.58	0.23	3,60

PONDERACIÓN FRECUENCIAL

Ponderación Frequencial A

NPA aplicado (dB)	Frecuencia (Hz)	Ponderación Frecuencial (dB)	Corrección (eléctrica) (dB)	Nivel Leido (dB)	Nivel Espensóo (dB)	Desviseion (dB)	K	derancia positiva (dB)	Tolerandi negativa (dB)
111.20	63	-26.2	0	85.00	85.00	.601	30.18	2.5	-2.5
101.10	125	-16.5	0	85.90	85.00	ישוו .	0.18	2	-2
93.60	250	-8.6	0	84,90	85.00	1111	0.18	1,9	-1,9
88.20	500	-3.2	0	85.00	85_D()	0.00	0.18	1.9	-1.9
85.00	1000	0	0	85.00	$C\lambda$	().		-	
83.8D	2000	1.2	0	85.00	85.00	0.00	0.18	2.6	-2.6
84.00	4000	1	9	85.00	N5.00	0.00	0.18	3.6	-3.6
86.10	8000	4.1	0	85.30	1500	0.20	0.18	5.6	-5.6

Ponderación Frecuencial C

NPA aplicado (dB)	Frecuencia (1½)	Ponderación Frecuencial (dB)	Compani (eléctrica) NB)		Nivel Esperado (dB)	Desviación (dB)	(dB)	Tolerancia positiva (dB)	Tolerancia negativa (dB)
85.80	63	-0.8	///	85.00	85.00	0.00	0.18	2.5	-2.5
\$5.20	125	- 42 N	_V 0	85.00	85.00	0.00	0.18	2	-2
85.00	250	6//	C 0	85.00	85.00	0.00	0.18	1.9	-1,9
85.00	500	. 11.	0	85.00	85.00	0.00	0.18	1,9	-1.9
85,00	1000	11110	0	85.00					
85.20	2000	(M	0	85.00	85.00	0.00	0.18	2.6	-2.6
85.80	4000	8.6	0	85.00	85.00	0.00	0.18	3.6	-3.6
88.00	1/19	7. 3	0	85.10	85.00	0.10	0,18	5.6	-5.6

S) a la dececha de la linea apareco la palatra ERROR significa que la lectura, expandida por la insentiduature de la medicalm, no està dentro de las solemantars establecidas e ni la especificación metrológica aplitada. Les unidades de incelais del pontefecidos a 20 pPa.

Código: SON20150018

NPA							F	agina 4	de 6 página	s	
\$5.00	aplicado		Frecuencial	(eléctrica)	Leido	Esperado			positiva	negativa	
\$5.00 125 0		44					.a.in	A 10			
1.50 2.50 0											
B5.00 500 0 0 85.00 85.00 0.00 0.18 1.9 -1.9											
St.00				-							
BS.00 2000 O								9.18			
B.S.00											
Recurrency Comparation Procurection Procurection Correcction Nivel soliced Color											
NPA											
NPA	85.00	8000	C	0	84.40	85.00	-0.60	0.18	5.6	-5.6	
Section of Color Color of	<u>Pondera</u>	ción Frecuer	ncial Lineal								
Columbia						Nivel	Desviación	IJ	Tolerancia	Tolerancia	
85.00 63 0 6 8 85.00 83.10 -0.10 0.18 2.5 -2.5 85.00 125 0 6 85.00 85.10 -0.10 0.18 2 -2 -2 85.00 250 0 0 85.00 85.10 -0.10 0.18 1.9 -1.9 85.00 1000 0 0 85.00 85.10 -0.10 0.18 1.9 -1.9 85.00 1000 0 0 85.00 85.10 -0.10 0.18 1.9 -1.9 85.00 2000 0 0 85.00 85.10 -0.10 0.18 1.9 -1.9 85.00 2000 0 0 85.00 85.10 -0.10 0.18 1.5 -1.9 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 2		(Hz)					(dB)	(dH)		negativa	
85.00	(d B)		(dB)	(dB)	(dB)	(dB)			(dB)	(dB)	
85.00	85.00	63	0	8	85.00	85.10	-0.10	0.18	2.5	-2.5	1
85.00 250 0 0 85.00 85.10 -0.10 0.18 1.9 1.32 85.00 1000 0 0 85.00 85.10 -0.10 0.18 1.9 1.32 85.00 2000 0 0 85.00 85.10 -0.10 0.18 1.9 1.32 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 4000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 8000 0 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 8000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											11
85.00 500 0 0 85.00 85.10 -0.10 0.18 1.9 85.00 1000 0 0 85.00 85.10 -0.10 0.18 1.9 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 5.6 3.6 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 5.6 3.6 3.6 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 5.6 3.6 3.6 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 5.6 3.6 3.6 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 5.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3										102	W
85.00 1000 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 2000 0 0 85.00 85.10 -0.10 0.18 3.6 85.00 2000 0 85.00 85.10 -0.10 0.18 3.6 85.00 2000 20.10 20.10 20.10 85.00 2000 20.10 20.10 20.10 85.00 20.10 20.10 20.10 20.10 85.00 20.10 20.10 20.10 20.10 85.00 20.10 20.10 20.10 20.10 85.00 20.10 20.10 20.10 20.10 85.00 20.10 20.10 20.10 20.10 85.00 20.10 20.10 20.10 20.10 85.00 20.10 20.10 20.10 20.10 85.00 20.10 20.10 20.10 20.10 20.10 85.00 20.10 20.10 20.10 20.10 20.10 85.00 20.10 20.10 20.10 20.10 20.10 20.10 85.00 20.10 20.10 20.10 20.10 20.10 20.10 20.10 85.00 20.10 20.10 20.10 20.10 20.10 20.10 20.10 85.00 20.1			-							- K/V	∿,
85.00 2000 0 0 85.00 85.10 -0.10 0.18 2.6 3.5 3.6 85.00 4000 0 0 85.00 85.10 -0.10 0.18 3.6 3.6 3.6 85.00 8000 0 0 85.00 85.10 -0.10 0.18 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6								V, 10			ν,
85.00 4000 0 0 85.00 85.10 0.10 0.18 3.6 5.5 BINEALIDAD NPA Frequencia Nivel Leido Esperado (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)						85 10	-0.10	0 12	16	'IIII'	
NPA			_							////	
NPA										-38	
aplicade (dB) (Hz) Leldo (dB) Esperado (dB) (dB) (dB) positiva (dB) form (dB) 134.10 8000 OVERLOAD 133.20	LINEAL	<u>JDAD</u>							1/2	7,	
aplicado (dB) (Hz) 1.eldo (dB) Esperado (dB) (dB) (dB) positiva (dB) monta (dB) 134.10 8000 OVERLI/AD 133.20	1/04	P	15.			,	D 50.1	١,	CII	•	/
Color Colo									ol with		/ 6
134.10		(HZ)				(dH) (NI)T	/	:
133.10 8000 132.20 132.20 0.00 0.14 1.4 1.4 1.4 1.3 131.10 8000 130.20 130.20 0.00 0.14 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	(00)		(an)	(dis	,		{an	, D	(48)		
133.10 8000 132.20 132.20 0.00 0.14 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	13,110	gann	UAGBLUY	in 122.7	n.		کم	~ L	.1.4	1	,
132.10 8000 131.20 131.20 0.00 0.11 1.1.4 1.1.4 1.1.4 1.2.1 1.2.						• • •	C	(7)		/ `	
131,10 8000 130,20 130,20 0.00 1,4 -1,4 12,10 129,10 8000 129,20 129,20 0.00 1,4 -1,4 -1,4 123,10 8000 127,20 127,20 0.00 1,4 -1,4 1,4 1,4 123,10 8000 127,20 127,20 0.00 1,4 -1,4 1								J		١.٠	
130.10 8000 129.20 129.20 0.00 1								•		٠.	1
129.10 8000 128.20 128.20 0.00 0.11 1.4 1.4 1.4 127.10 8000 127.29 127.20 0.00 1.4 1.4 1.4 1.4 128.10 8000 125.20 125.20 0.00 0.14 1.4 1.4 1.4 128.10 8000 124.20 125.20 0.00 0.14 1.4 1.4 1.4 1.4 129.10 8000 124.2										V	
128.10 8000 127.20 127.20 0.00 1.4 1.4 1.4 1.4 12.10.10 10.10 8000 125.20 125.20 125.20 10.14 1.4 1.4 1.4 1.4 12.10.10 125.10 8000 124.20 124.20 124.20 114 1.4 1.4 1.4 1.4 12.10.10 8000 124.20 124.20 124.20 114 1.4 1.4 1.4 1.4 115.10 8000 119.20 119.20 119.20 119.20 119.20 119.20 119.20 119.20 119.20 119.20 119.20 114.20 1.4 1.4 1.4 1.4 1.4 1.4 1.5 10.5 10 8000 104.20 0.00 0.14 1.4 1.4 1.4 1.4 1.4 10.5 10.10 8000 99.20 99.20 99.20 0.00 0.14 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4							· ·			- X Ý	
127.10 8000 126.20 125.20 0.00 0.44 1.4 1.4 1.4 1.4 1.5.10 8000 124.20 124.20 1.0.14 1.4 1.4 1.4 1.4 1.5.10 8000 124.20 124.20 1.0.14 1.4 1.4 1.4 1.4 1.5.10 8000 119.20 119.20 1.19.20 1.14 1.4 1.4 1.4 1.4 1.5.10 8000 119.20 119.20 1.19.20 1.14 1.4 1.4 1.4 1.4 1.5.10 8000 194.20 (0.4 0.00 0.14 1.4 1.4 1.4 1.4 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6										¥	
125.10 8000 125.20 125.20 125.20 10.14 1.4 -1.4 120.10 8000 124.20 124.20 119.20 114 1.4 -1.4 115.10 8000 119.20 119							1				
125.10 8000 124.20 124.20 1.14 1.4 -1.4 1.5.10 8000 114.20											
120.10 8000 119.20 119.20 1.14 1.4 1.4 1.4 1.15 115.10 8000 119.20 1.6 1.0 0.00 0.14 1.4 1.4 1.4 1.5 115.10 8000 199.20 1.6 0.00 0.14 1.4 1.4 1.4 1.4 1.5 100.10 8000 194.20 0.4 0.00 0.14 1.4 1.4 1.4 1.4 1.4 1.5 1.5 1.5 1.0 8000 94.20 1.5 0.00 0.14 1.4 1.4 1.4 1.5 1.5 1.5 1.0 8000 89.20 1.5 0.00 0.14 1.4 1.4 1.4 1.5 1.5 1.5 1.0 8000 84.2 84.20 0.00 0.14 1.4 1.4 1.4 1.5 1.5 1.5 1.0 8000 1.5 1.0 8000 1.5 1.0 8000 1.5 1.0 8000 1.1 1.4 1.4 1.4 1.5 1.5 1.5 1.0 8000 1.5 1.0 8											
115.10 8000 114.20											
10.10 8000 10.20 10.20 10.20 1.4 1.4 -1.4 10.10 8000 104.20 0.4 0.00 0.14 1.4 -1.4 10.10 8000 99.20 99.20 99.20 0.00 0.14 1.4 -1.4 10.10 8000 94.20 04.20 0.00 0.14 1.4 -1.4 10.10 8000 89.20 89.20 0.00 0.14 1.4 -1.4 10.10 8000 89.20 89.20 0.00 0.14 1.4 -1.4 10.10 8000 83.4 84.20 0.00 0.14 1.4 -1.4 10.10 8000 83.4 84.20 0.00 0.14 1.4 -1.4 10.10 8000 83.4 84.20 0.00 0.14 1.4 -1.4 10.10 8000 84.10 74.20 -0.18 0.14 1.4 -1.4 10.10 8000 84.10 74.20 -0.10 0.14 1.4 -1.4 10.10 8000 84.10 89.20 0.00 0.14 1.4 -1.4 10.10 8000 89.10 89.20 0.10 0.14 1.4 -1.4 10.10 8000 89.20 89.20 89.20 0.10 0.14 1.4 -1.4 10.10 8000 89.20 49.20 0.10 0.14 1.4 -1.4 10.10 8000 48.30 48.20 0.10 0.14 1.4 -1.4 10.10 8000 47.30 47.20 0.10 0.14 1.4 -1.4 10.10 8000 46.30 46.20 0.10 0.14 1.4 -1.4 10.10 8000 46.30 46.20 0.10 0.14 1.4 -1.4 10.10 8000 46.30 46.20 0.10 0.14 1.4 -1.4 10.10 8000 46.30 46.20 0.10 0.14 1.4 -1.4 10.10 8000 46.30 46.20 0.10 0.14 1.4 -1.4 10.10 8000 46.30 46.20 0.10 0.14 1.4 -1.4 10.10 8000 89.20 89.				119.3	1.1	En (-1,4		
105.10 8000 104.20 62.2 0.00 0.14 1.4 -1.4 100.10 8000 99.20 99.20 0.00 0.14 1.4 -1.4 95.10 8000 94.20 0.4 0.00 0.14 1.4 -1.4 80.10 8000 89.20 84.20 0.00 0.14 1.4 -1.4 80.10 8000 83.2 84.20 0.00 0.14 1.4 -1.4 80.10 8000 83.0 79.20 0.00 0.14 1.4 -1.4 75.10 8000 43.0 74.20 -0.18 0.14 1.4 -1.4 75.10 8000 44.0 74.20 -0.18 0.14 1.4 -1.4 65.10 8000 44.0 64.20 0.00 0.14 1.4 -1.4 60.10 8000 39.10 59.20 -0.10 0.14 1.4 -1.4 60.10 8000 54.20 54.20 54.20 0.00 0.14 1.4 -1.4 60.10 8000 44.0 49.20 0.10 0.14 1.4 -1.4 60.10 8000 44.0 48.20 0.10 0.14 1.4 -1.4 60.10 8000 44.0 48.20 0.10 0.14 1.4 -1.4 60.10 8000 44.0 46.20 0.10 0.14 1.4 -1.4 60.10 8000 44.0 46.20 0.10 0.14 1.4 -1.4 60.10 8000 44.0 46.20 0.10 0.14 1.4 -1.4 60.10 8000 44.0 46.20 0.10 0.14 1.4 -1.4 60.10 8000 44.0 46.20 0.10 0.14 1.4 -1.4 60.10 8000 44.0 46.20 0.10 0.14 1.4 -1.4 60.10 8000 44.0 46.20 0.10 0.14 1.4 -1.4 60.10 8000 46.30 46.20 0.10 0.14 1.4 -1.4 60.10 8000 46.30 46.20 0.10 0.14 1.4 -1.4 60.10 8000 46.30 46.20 0.10 0.14 1.4 -1.4 60.10 8000 46.30 46.20 0.10 0.14 1.4 -1.4 60.10 8000 40.0 40.0 40.0 60.10 80.0 40.0 40.0 40.0 60.10 80.0 40.0 40.0 40.0 60.10 80.0 40.0 40.0 40.0 60.10 80.0 40.0 40.0 60.10 80.0 40.0 40.0 60.10 80.0 40.0 40.0 60.10 80.0 40.0 40.0 60.10 80.0 40.0 40.0 60.10 80.0 40.0 40.0 60.10 80.0 40.0 40.0 60.10 80.0 40.0 40.0 60.10 80.0 40.0 40.0 60.10 80.0 40.0 40.0 60.10 80.0 40.0 60.10 80.0 40.0 60.10 80.0 40.0 60.10 80.0					117	1.			•		
100.10 8000 99.20 99.20 0.00 0.14 1.4 1.4 1.4 95.10 8000 94.20 0.20 0.00 0.14 1.4 1.4 1.4 1.5 85.10 8000 89.20 45.20 0.00 0.14 1.4 1.4 1.4 85.10 8000 85.20 0.00 0.14 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4				100	バノ						
95.10 8000 94.20 45.20 0.00 0.14 1.4 -1.4 85.10 8000 85.20 45.20 0.00 0.14 1.4 -1.4 1.4 85.10 8000 84.4 84.20 0.00 0.14 1.4 -1.4 1.4 1.4 1.4 1.4 80.10 8000 4.10 79.20 0.00 0.14 1.4 -1.4 1.4 1.4 70.10 8000 4.10 74.20 -0.16 0.14 1.4 -1.4 1.4 1.4 65.10 8000 4.10 64.20 0.00 0.14 1.4 -1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4				101	V.						
90.10 8000 89.20 4.20 0.00 0.14 1.4 -1.4 85.10 8000 8.42 84.20 0.00 0.14 1.4 -1.4 85.10 8000 8.42 84.20 0.00 0.14 1.4 -1.4 85.10 8000 8.00 79.20 0.00 0.14 1.4 -1.4 -1.4 75.10 8000 4.10 74.20 -0.16 0.14 1.4 -1.4 -1.4 65.10 8000 4.10 64.20 0.00 0.14 1.4 -1.4 -1.4 65.10 8000 8.10 64.20 -0.10 0.14 1.4 -1.4 -1.4 60.10 8000 8.10 64.20 -0.10 0.14 1.4 -1.4 55.10 8000 54.20 54.20 0.00 0.14 1.4 -1.4 -1.4 60.10 8000 4.4 1.4 -1.4 60.10 8000 8.20 4.20 8.20 8.20 8.20 8.20 8.20 8.20 8.20 8				90	9						
85.10 8000 85.1 84.20 0.00 0.14 1.4 1.4 1.4 80.10 8000 4.10 79.20 0.00 0.14 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4				\checkmark	0						
80.10 8000 79.00 79.20 0.00 0.14 1.4 -1.4 75.10 8000 41.00 74.20 -0.18 0.14 1.4 -1.4 -1.4 70.10 8000 41.00 69.20 0.80 0.14 1.4 -1.4 -1.4 65.10 8000 41.00 64.20 -0.10 0.14 1.4 -1.4 -1.4 60.10 8000 59.10 59.20 -0.10 0.14 1.4 -1.4 -1.4 55.10 8000 59.20 54.20 0.00 0.14 1.4 -1.4 -1.4 50.10 2000 41.00 41.00 41.00 1.14 1.4 -1.4 41.4 41.4 41.4 41.4 41.4			89.20								
75.10 8000 4.10 74.20 -0.16 0.14 1.4 -1.4 70.10 8000 4.10 64.20 0.00 0.14 1.4 -1.4 65.10 8000 4.10 64.20 -0.10 0.14 1.4 -1.4 60.10 8000 59.10 59.20 -0.10 0.14 1.4 -1.4 55.10 8000 54.20 54.20 0.00 0.14 1.4 -1.4 50.10 200 48.20 6.10 0.14 1.4 -1.4 49.10 000 48.30 48.20 0.10 0.14 1.4 -1.4 49.10 8000 47.30 47.20 0.10 0.14 1.4 -1.4 47.10 8000 46.30 46.20 0.10 0.14 1.4 -1.4			*								
70.10 8000 69.20 0.00 0.14 1.4 -1.4 65.10 8000 61.00 64.20 -0.10 0.14 1.4 -1.4 60.19 8000 59.10 59.20 -0.10 0.14 1.4 -1.4 1.4 55.10 8000 49.20 0.00 0.14 1.4 -1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4			330								
65.10 8000 4.10 64.20 -0.10 0.14 1.4 -1.4 60.10 8000 59.10 59.20 -0.10 0.14 1.4 -1.4 1.4 55.10 8000 49.20 0.10 0.14 1.4 -1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4			Z(10)						-1.4		
60.10 8000 39.10 59.20 -0.10 0.14 1.4 -1.4 55.10 8000 49.20 0.10 0.14 1.4 -1.4 1.4 50.10 49.30 49.20 0.10 0.14 1.4 -1.4 49.10 40.00 48.20 0.10 0.14 1.4 -1.4 49.10 49.20 47.30 48.20 0.10 0.14 1.4 -1.4 49.10 8000 47.30 47.20 0.10 0.14 1.4 -1.4 49.10 8000 47.30 46.20 0.10 0.14 1.4 -1.4 49.10 46.30 46.20 0.10 0.14 1.4 -1.4			1115		-	0.00	0.14 1.4	ļ	-1.4		
55.10 802 54.20 54.20 0.00 0.14 1.4 -1.4 50.10 50.10 50.10 49.20 0.10 0.14 1.4 -1.4 49.10 600 48.30 48.20 0.10 0.14 1.4 -1.4 49.10 600 47.30 47.20 0.10 0.14 1.4 -1.4 47.10 600 46.30 46.20 0.10 0.14 1.4 -1.4 47.10 600 46.30 46.20 0.10 0.14 1.4 -1.4 47.10 600 46.30 46.20 0.10 0.14 1.4 -1.4 600 600 600 600 600 600 600 600 600 60	65.10	8000		64.2	0	-0.10	3,14 1,4	ļ	-1,4		
55.10 802 54.20 54.20 0.00 0.14 1.4 -1.4 50.10 200 49.30 49.20 0.10 0.14 1.4 -1.4 49.10 000 48.30 48.20 0.10 0.14 1.4 -1.4 48.10 800 47.30 47.20 0.10 0.14 1.4 -1.4 47.10 500 46.30 46.20 0.10 0.14 1.4 -1.4	60.10	8000	Y 159.10	59.2	0		0.14 1,4	ļ			
50.10 49.30 49.20 0.10 0.14 1.4 -1.4 49.10 48.30 48.20 0.10 0.14 1.4 -1.4 48.10 47.30 47.20 0.10 0.14 1.4 -1.4 47.10 46.30 46.30 46.20 0.10 0.14 1.4 -1.4	55.10	3000	54,20	54.2	û		0.14 1.4	,			
49.10 48.30 48.20 0.10 0.14 1.4 -1.4 48.10 47.30 47.20 0.10 0.14 1.4 -1.4 47.10 46.30 46.20 0.10 0.14 1.4 -1.4		~ / /	05 Dt 7	49.2	0						
48.10 47.30 47.20 0.10 0.14 1.4 -1.4 47.10 46.30 46.20 0.10 0.14 1.4 -1.4	50.10	800	47,50								
47.10 860 46.30 46.20 0.10 0.14 1.4 -1,4		· 6%/			0	0.10	3.14 1.4	,	-1.4		
	49,10	OS)	48.30	48,2							
	49,10 48.10	(B)	48.30 47.30	48,2 47.2	0	0.10	0.14 1,4	ļ	-1.4		

Si a la derecha de la libre apprece la palabra ERROR agnifica que la lectura, espandada por la incendambre de la medicalia, no está destro de las soleranesas establecidas en la especificación metrológica aplicada. Las unadades de medida dil son referidos a 20 µPL.

-

										P	igina 5 de	6 página	s		
										•					
45.10	8000		1.50		41.20		0.30	0.14		1,4	-1				
44,10	8000		3,60		43,20		0,40	0.14		1,4	-1				
43.10	8000		2,70		42.20		0.50	0.14		1.4	-1				
42.10	8000	41	1,80		41.20		0.60	0.14		1.4	-1	.4			
41.30	8000	40	0.90		40.20] [0.70	0.14		1,4	-1	.4			
40.10	8000	40	0.20		39.20)	1.00	0,14		1,4	-1	A			
39.10	8000	UNDER	-RAN	GE	38.20)				1.4	-1	A			
INEAT	JDAD SELF	·CTAD	A1 A D	ČENI	e ne	NIVE									
							•								
NPA	Frequencie	Rango	Ran		Nivel	Niw		Desviae		U	Talerane		ancia		
iplicado (un)	(Hz)		(dI	5)	Leido	Esper		(dB)	- 1	dB)	positiva				
(dB)					(85)	(dB)				(dB)	(d	B)		
114.00	1000	Ref	40 -	130	114.10										
124.00	1000	R1	50-		124.10		16	0.00		0,14	1.4	-1			
135.00	1000	R1	50-		135.00			-0.10		0.14	1.4		.4		
104.00		R2	30 -		133.UU 104.10					v.64 0.14	1.4		4	_	
	1000		30 -		115.10			0.00					4	^	1
115.00	1000	R2	-					0.00		0.14	1.4			.7	11
94.00	1000	R3	20-		94.10			0.00		0.14	1.4	-!	.4	M	J,
105,00	1000	R3	20-		105.10			0.00		D, 14	1.4	-1	4.	14	
84.00	1000	R4	10-		84,10			0.00		0.14	1.4	-1	11	111	
95.00	1000	R4	10-		95.00			-0.10		0.14	1.4	-1	M)	7/,	
74,00	1000	R5	Ø - 1		74,10			0.00		0.14	1.4	_ `\	$\langle II \rangle$	7	
85.00	1000	R5	0-	90	85.10	85.1	0	0.00	- 1	0.14	1.4	ك∡	ン	ı .	
64,00	1000	R6	-10-	- 20	64.10	64.1	0	0.00	-	0.14	1.4	\mathcal{C}) `		
75,00	1000	R6	-10-	- 98	75.00	75,1	10	-0 .10		0.14	1.4	$C \setminus J$.4		
54.00	1000	R7	-20 -		54.20			0.10		0.14	₹,	<i>\\\\</i> .	4		
65.00	1000	R7	-20-		65.10			+0.10		0,14	1.(1)	、 /~.	4		133
.,,,,,,	*****	•••	20		02.10	051	••	-0210			1/2	'		/	Z. X.
DIFERE	NCIA DE L	NDICAC	<u>RÓI:</u>								(β)				
Pondera	ciones Temp	orales							2	<u>`</u>	40		1	/	
									IJ.	/:)		<		
NPA	Frecuencia	Pondera		Nive		Nivel		sviación	<i>'\'</i>		olerancia	Toleranci			1
aplicado	(tz)	Tempo	oral	Leide		spenselo		(B)	W) t	esitiva	negativa		`\	
(dB)				(dB)	l	(dB)		in.	7/_		(dB)	(dR)		10	/
		LIAP						CH						.1	
114.00	1008	NPS F		134,1			1	الم			•	•			
114.00	1000	NPS S		114.1		14.10	1	0.00	0.032		0.3	-0.3			
114.00	1000	Leq	l	114,1	0 !	114.10	` ¹	0.00	0.082		0.3	-0.3			
Pondera	ciones Frecu	<u>jenciales</u>	i.			Un	7	•							
N'D 1	Parameter.	Па J		No.	Jr.	<i>\\\\</i>	р.	ndadt.		•	-1	T-1	:_		
NPA	Frequencia (Un)	Ponderi		Nivo	U)	Y		rviación (am	()		pierancia	Tolerand			
aplicado (dB)	(117)	Frecue	IIC I 31	(5)	11	(dB),		(dB)	(dB)	Ī	oositiva (dB)	negativa (dB)			
			ł	/	J.							. ,			
114.00	1000	٨	~	VIX	,	•		•	•		-	-			
114.00	1000	ς	. \	IN		114.00		0.00	0.082		0.4	-0.4			
114.00	1000	<i>i</i> /	W,	∕ /111		114.00		0.10	0.082		0.4	-0.4			
114.00	1000	Łin	ų(Υ)	114.1	0	i 14.00		0,10	0.082		0.4	-0.4			
	_	11	7,												
		7 /Y,	•												
	< <	M													
	• •	` '													

S) a la derecha de la linea apurece la pulsora ERROR asperica que la lectura, expandida por la incenidumbre de la medición, no casi denne de las soleranense establecidas es la especificación metrológica aplicado. Las modados de medida dB son referidos a 20 µPa

Código; SON20150018 Página 6 de 6 páginas

RESPUESTA	A TREN DE	ONDAS

Ponderación	temporal	Fast

NPA aplicado (dB)	Frecuencia (Hz)	Duración (ma)	i_exp (s)	Nivel Leido (dB)	Nivel Esperado (dB)	Desvioción (dB)	(I (dB)	Tolerancia positiva (dB)	Toleranci: negativa (dB)
126.00	4000.00			127.00					
126.00	4000.00	200	0.125	125.90	126.02	-0.12	0,082	1.3	-1.3
126.00	4000.00	2	0.125	108.90	109,01	-0.11	0.082	1.3	-2.8
126.00	4000.00	0.25	0.125	99,90	100.01	-0,11	0.082	1.8	-5.3

Ponderneign temporal Slow

NPA aplicado (dB)	Frecuencia (Hz)	Duración (ms)	1_6\p (8)	Nivel Leido (dB)	Nivel Esperado (dB)	Desvlución (dB)	U (đB)	Tolerancia positiva (dB)	Tolerancia negativa (dB)
126.00	4000,00			127.00			-	-	
126.00	4000.00	200	1	119.40	119.58	-0,18	0.082	1.3	-1,3
126.00	4000.00	2	1	99.80	100.01	-0.21	0.082	13	-53.

Nivel promediado en el tiempo

NPA aplicado (dB)	Frecuencia (1iz)	Duración (ms)	Nivel Leido (dB)	Nive! Esperado (dB)	Desviación (dB)	U (dB)	Tolerancia positiva (dB)	Toleraci
126.00	4000.00		127.10					(')
126.00	4000.00	200	119.45	120.11	-0.66	0.082	1.3	
126.00	4000.00	2	99,45	100.11	-0.66	0.082	- /s	1.28
126.00	4000.00	0.25	91.15	\$1.08	0.07	0.0R2	\mathcal{O} h,	3 .5.3

NIVEL DE SONIDO CON PONDERACIÓN C DE PICO

NPA eplicado (dfi)	Frecuencia (Hz)	Número de Ciclos	1.cpeak-1.c	Nivel Leido (dB)	- / V	Besviación (dB)	(dB)	Tolerancia poritiva (dB)	Toleranci negativa (dB)
138.00	8000	•	•	JX.	>				
135.00	500	•		15-7	(*)				
138.00	8000	Uno	3.4	13/10	138.40	-0.40	0.082	3.4	-3.4
135.00	500	Semiciclo positivo	20	(3) 20	137.30	-0.10	0.082	2.4	-2.4
135.00	500	Semiciclo negativo	3/4	37,20	137.30	-0.10	0.082	2.4	-2.4

155,00	200	Semicicio negativo	11.3	01,20	137.30	-0.10	0.062	2.4	-2,4
INDICA	<u>CIÓN DE S</u>	OBRECARGA							
Margen Superior (dll)	Frecuencia (Hz)	Señal do En (ada	Nivel Sobrecurga (dB)	Nivel Esperado (dB)	Desviación (dB)	(I (dB)	Tolerancia positiva (dB)	Tolerancia negativa (dB)	
140	4000	Service	146.40						
140	4000	Sanicida legativo	144.50	146,40	-1,90	0,14	1.8	-1.8	ERRO

S) a la derecha de la librea aparece la pubbia ERROR rignifica que la lectura, expandida por la meemdumbre de la medicalva, no está destro de las inferiorias establecidas en la especificación metudologos apidenda. Las su